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Abstract- This review paper discusses the 

implementation of Artificial Intelligence (AI) in 

Hybrid Renewable Energy Systems (HRES) through 

case study applications in Africa. The research 

responds to key issues such as energy poverty, poor 

reliability in the power grid, as well as the impact of 

climate change that face most African countries. By 

scrutinizing already established applications of AI in 

HRES, the paper acknowledges the technological 

advancements, applications and limitations in AI-

HRES combination. It stresses the need for 

intelligent coordination in terms of responding to 

variability in the generation of renewable power, 

minimizing costs, and making energy accessible. The 

paper notes that AI technologies like machine 

learning and deep learning increase energy 

efficiency significantly, decrease operational costs, 

and improve access to energy in remote locations. 

Case studies from Kenya, Nigeria, Rwanda and 

South Africa show efficiency improvement ranging 

between 10% to 30%. The paper concludes with an 

exposition on policy implications and development, 

coming up with actionable recommendations 

towards fast-tracking Africa's clean energy 

transition and advancing research trajectories in the 

upscaling of AI-enabled solutions in both off-grid 

and as grid-edge contexts. 

 

Indexed Terms- Artificial Intelligence (AI), Hybrid 

Renewable Energy Systems (HRES), Energy 

Efficiency, Sustainable Development, Africa. 

 

 

I. INTRODUCTION 

 

Access to reliable and affordable electricity remains a 

fundamental challenge in many parts of the African 

continent. Despite being home to over 1.4 billion 

people and vast renewable energy resources such as 

solar radiation, wind corridors, hydropower basins, 

and biomass, sub-Saharan Africa continues to 

experience widespread energy poverty  [1]. According 

to the International Energy Agency (IEA, 2023), over 

600 million people in Africa still lack access to 

electricity, with most of them living in rural and peri-

urban areas [2]. This persistent gap in electricity 

access undermines socioeconomic development, 

healthcare delivery, education, and climate resilience 

efforts. It also widens the digital divide and hinders 

industrialization across African economies. To 

address this, countries are increasingly turning to 

decentralized energy solutions that are more 

adaptable, quicker to deploy, and affordable in the 

long term. Among these, Hybrid Renewable Energy 

Systems (HRES) have emerged as a viable solution for 

powering underserved regions [3, 4]. These systems 

combine two or more renewable energy sources; 

commonly solar photovoltaic (PV), wind, and 

biomass; with energy storage systems or backup 

generators to improve reliability and energy 

availability. HRES offer significant advantages over 

single-source systems, such as improved load 

balancing, better performance in variable weather 

conditions, and reduced reliance on fossil fuels [5, 6, 

7]. However, despite their potential, hybrid systems 

present complex operational challenges. These include 
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the need to match variable power generation with 

fluctuating demand, optimize system configuration, 

forecast energy availability, and carry out predictive 

maintenance. Manual operation and rule-based 

systems are often inadequate for managing these 

complexities, especially in remote or resource-

constrained environments typical of many African 

communities [8]. 

 

1.1. The Role of Artificial Intelligence in Energy 

Systems 

This is where Artificial Intelligence (AI) plays a 

transformative role. AI refers to the simulation of 

human intelligence in machines, enabling them to 

perform tasks such as learning, reasoning, problem-

solving, and decision-making [9]. In energy systems, 

AI tools like machine learning (ML), deep learning 

(DL), fuzzy logic, genetic algorithms (GA), and 

reinforcement learning (RL) are increasingly being 

used to enhance efficiency, reliability, and intelligence 

in system operation. AI can process large volumes of 

data from weather sensors, energy meters, and user 

devices to make informed decisions in real time [10]. 

For HRES, AI is applied in energy forecasting, 

demand prediction, load optimization, battery 

management, fault detection, and predictive 

maintenance. These applications are crucial for 

ensuring energy security and cost-effectiveness, 

especially in contexts where technical expertise is 

limited. Moreover, AI’s capacity to learn from data 

and improve over time makes it ideal for dynamic 

energy systems. For example, an AI model can be 

trained to anticipate a cloudy day and adjust solar PV 

operation accordingly or redirect energy storage to 

meet expected peaks in electricity demand. These 

capabilities not only enhance system reliability but 

also reduce operational costs and improve user 

satisfaction [11]. 

 

1.2. Relevance to the African Context 

[12] The application of AI in hybrid renewable 

systems is particularly significant for Africa, where 

grid expansion is expensive, time-consuming, and 

sometimes impractical due to geographical barriers 

and low population densities in remote areas. AI-

optimized HRES can be deployed as standalone mini-

grids, community microgrids, or home-based systems, 

offering scalable and modular solutions for clean 

energy access [13]. Countries such as Nigeria, Kenya, 

Rwanda, and South Africa have already started 

exploring the integration of AI in energy systems. For 

example, AI-based demand forecasting and battery 

management are being tested in rural solar mini-grids 

in Kenya. In Nigeria, researchers are using neural 

networks to optimize PV-diesel-battery hybrid 

systems for off-grid communities. These efforts, while 

still emerging, point to a growing recognition of AI’s 

role in shaping Africa’s energy future [14]. In 

addition, the proliferation of low-cost sensors, mobile 

connectivity, and edge computing devices provides 

fertile ground for AI deployment in African energy 

systems. With initiatives like the African Union’s 

Agenda 2063 and the Sustainable Development Goal 

(SDG) 7, there is also strong policy momentum to 

support renewable energy access and innovation [15]. 

 

1.3. Why AI and HRES Matter Together 

The combination of AI and HRES addresses both 

technical and developmental challenges. Technically, 

AI enables smarter design, sizing, and control of 

hybrid systems, improving energy efficiency and 

reducing downtime. Developmentally, it enhances the 

sustainability of off-grid solutions, reduces 

dependency on fossil fuels, and promotes equitable 

access to energy [16]. Unlike traditional grid solutions, 

AI-optimized hybrid systems can be tailored to local 

energy needs, available resources, and user behavior. 

For instance, in a farming community, AI can adjust 

energy flow based on irrigation schedules, sunlight 

hours, and stored water levels. In a health clinic 

powered by solar and batteries, AI can ensure power 

is prioritized for critical medical equipment and 

refrigeration [17]. Additionally, by enabling real-time 

monitoring and remote system control, AI reduces the 

need for constant on-site technical intervention, which 

is particularly valuable in rural and hard-to-reach 

regions. These intelligent systems can also alert 

operators to faults, forecast component wear-and-tear, 

and suggest maintenance actions improving both 

operational reliability and cost-effectiveness [16]. 

 

1.4 Research Gap and Motivation for the Review 

While the literature on renewable energy and AI is 

growing globally, there is a relative lack of 

comprehensive reviews focusing specifically on how 

AI is improving hybrid renewable energy systems in 

the African context. Most existing works concentrate 

on either the technical design of hybrid systems or 



© APR 2025 | IRE Journals | Volume 8 Issue 10 | ISSN: 2456-8880 

IRE 1707901          ICONIC RESEARCH AND ENGINEERING JOURNALS 593 

general applications of AI in the power sector, without 

drilling down into the intersection of these two fields 

within Africa’s unique energy landscape.Moreover, 

much of the current research remains fragmented, with 

isolated studies conducted in different countries or 

regions without cross-comparison or unified insights. 

There is a need for a consolidated review that brings 

together: AI tools being applied in African HRES; 

Their practical performance in real-world 

deployments; The technical and socioeconomic 

challenges involved; Opportunities for further 

innovation and policy support. By addressing this gap, 

this paper aims to support researchers, policymakers, 

energy planners, and technology developers working 

at the intersection of AI, renewable energy, and 

sustainable development in Africa. 

 

1.5 Objectives and Structure of the Review 

This review paper is guided by the following 

objectives: 

1. To examine the current applications of AI in hybrid 

renewable energy systems in Africa 

2. To analyze the technical benefits, use cases, and 

challenges of AI-HRES integration 

3. To identify opportunities for scaling up AI-driven 

solutions in off-grid and grid-edge environments 

4. To recommend future directions for research, 

innovation, and policy in this field 

 

To achieve these objectives, the paper is structured as 

follows; Section 2 - Literature Review: Provides an 

overview of hybrid energy systems, AI techniques, 

and past implementations in Africa. Section 3: 

Discussion/Results - Explores how AI has improved 

HRES operations, highlights specific case studies, and 

discusses challenges and opportunities. Section 4: 

Conclusion - Summarizes the key findings, outlines 

implications for energy policy and development, and 

suggests next steps for research. Through this review, 

the paper contributes to the growing body of 

knowledge at the intersection of AI, renewable energy, 

and sustainable development, offering actionable 

insights to accelerate Africa’s clean energy 

transformation. 

 

 

 

II. LITERATURE REVIEW 

 

2.1 Overview of Hybrid Renewable Energy Systems 

(HRES) 

Hybrid Renewable Energy Systems (HRES) are 

energy systems that combine two or more types of 

renewable energy sources, often supplemented by 

storage technologies and occasionally backed up with 

conventional generators. The idea behind HRES is to 

take advantage of the complementary behavior of 

different renewable resources. For example, solar 

energy may be abundant during the day while wind 

resources may be stronger at night. Combining them 

with a battery or a backup diesel generator ensures a 

more stable and reliable energy supply. Typical HRES 

configurations include: Solar PV + Wind + Battery; 

Solar PV + Diesel Generator + Battery; Wind + 

Biomass + Storage; Solar PV + Hydro + Battery; Solar 

+ Wind + Diesel + Battery (Common in mini-grid 

settings) [17, 18]. These systems are increasingly 

being deployed in off-grid and grid-edge applications 

where national electricity grid extensions are 

uneconomical or physically difficult. Their modularity 

makes them ideal for rural electrification, 

telecommunication towers, healthcare facilities, 

schools, agricultural operations, and urban backup 

power solutions. In the African context, where power 

outages, under-electrification, and rural isolation are 

major concerns, HRES present a scalable and cost-

effective solution to achieving Sustainable 

Development Goal 7 (SDG 7) — ensuring access to 

affordable, reliable, sustainable, and modern energy 

for all [19]. Challenges in HRES Design and 

Operation include; Intermittency of renewable energy 

sources (e.g., cloudy days, low wind conditions), 

Optimal component sizing and system configuration, 

Battery degradation and high cost of storage, 

Operation and maintenance difficulties in remote 

areas, High upfront capital cost and uncertainty in 

return on investment, Load variability based on user 

behavior and seasonal demand. These challenges 

necessitate intelligent control systems that can make 

real-time decisions to optimize performance, manage 

demand, reduce operational costs, and prolong system 

lifespan, hence the increasing adoption of Artificial 

Intelligence (AI) in HRES [20]. 
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2.2 Overview of Artificial Intelligence (AI) in Energy 

Systems 

Artificial Intelligence encompasses a variety of 

computational techniques that enable systems to learn 

from data, adapt to changing conditions, and make 

informed decisions. In the energy sector, AI is gaining 

prominence due to the rise of smart grids, distributed 

energy resources (DERs), and data-driven energy 

management systems [21]. 

 

Table 1.0: Common AI Techniques Used in HRES: 

Artificial 

Intelligence 

Technique 

Application 

in HRES 
Paper Reference 

Machine 

Learning 

(ML) 

Load 

forecasting, 

renewable 

generation 

prediction 

  [22] 

Deep Learning 

(DL) 

Nonlinear 

system 

modeling, 

anomaly 

detection 

  [23] 

Fuzzy Logic 

Energy 

dispatch, 

system 

stability 

under 

uncertainty 

  [24] 

Genetic 

Algorithms 

(GA) 

Optimal 

sizing and 

configuration 

of hybrid 

systems 

  [25] 

Particle 

Swarm 

Optimization 

(PSO) 

Cost 

optimization 

and energy 

scheduling 

  [26] 

Reinforcement 

Learning (RL) 

Autonomous 

control, 

battery 

management 

  [27] 

Artificial 

Neural 

Power output 

prediction, 
  [28] 

Artificial 

Intelligence 

Technique 

Application 

in HRES 
Paper Reference 

Networks 

(ANN) 

system 

modeling 

Support 

Vector 

Machines 

(SVM) 

Fault 

classification, 

demand-side 

response 

  [29] 

 

These tools enable smart control of HRES by 

processing vast data streams from weather sensors, 

load profiles, and system components to learn patterns, 

anticipate issues, and improve decision-making. AI 

systems can work autonomously or in tandem with 

human operators to ensure system resilience and 

efficiency. 

 

 
Figure 1.0. Artificial Intelligence in control of hybrid 

renewable energy systems [30]. 

 

2.3 Applications of Artificial Intelligence in HRES 

Let’s explore the core areas where AI is currently 

applied in Hybrid Renewable Energy Systems, 

particularly focusing on examples relevant to Africa 

and comparable emerging markets. These include; 

[31]Load Forecasting and Demand Prediction - 

Predicting energy demand is crucial for effective 

energy distribution, system planning, and cost 

minimization. Traditional forecasting methods rely on 

statistical averages and fixed patterns, which fail to 

capture the complex and variable consumption 

behaviors found in many African communities. AI 

models like Artificial Neural Networks (ANN), 

Recurrent Neural Networks (RNN), and Long Short-

Term Memory (LSTM) models have proven effective 

in predicting short- and long-term electricity demand 
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in mini-grids. [32]Case Example: In a study conducted 

in rural Kenya, an LSTM-based forecasting model 

helped operators of a solar-diesel-battery hybrid 

system match power supply with daily and weekly 

load variations. The model reduced energy curtailment 

by 15% and diesel usage by 8%, increasing overall 

efficiency . [16] Renewable Generation Forecasting - 

The intermittent nature of solar and wind power 

presents a major challenge to stable electricity supply. 

AI models can accurately forecast weather conditions 

and renewable energy production using inputs like 

solar irradiance, temperature, wind speed, and 

historical generation data. [33] Case Example: In 

Northern Nigeria, a team developed a hybrid AI model 

combining SVM and Random Forest (RF) to forecast 

solar PV output across multiple villages. The model 

demonstrated an 18% improvement over traditional 

linear regression approaches, reducing over-sizing 

risks. [34]Optimal System Sizing and Design - 

Choosing the right size for each system component 

(e.g., number of solar panels, size of batteries, diesel 

generator capacity) is a complex optimization 

problem, particularly in areas where energy demand 

fluctuates. Genetic Algorithms (GA), PSO, and Ant 

Colony Optimization (ACO) are commonly used to 

solve this problem. These algorithms evaluate many 

combinations and converge on the most efficient 

system architecture. Case Example: In a renewable 

energy initiative in Rwanda, researchers used a GA-

PSO hybrid model to optimize a PV-wind-diesel-

battery mini-grid for a 500-household community. The 

optimized design cut costs by 20% while increasing 

renewable energy penetration from 45% to 75% [35]. 

Energy Management and Load Scheduling - AI 

enables dynamic control of energy flows between 

generation sources, storage, and loads. It prioritizes 

loads based on user preference, urgency, or energy 

availability. Reinforcement Learning (RL) is 

particularly effective in training autonomous 

controllers to learn optimal energy dispatch strategies 

over time [36]. Case Example: A pilot project in 

Senegal deployed an RL-based controller in a solar-

wind-battery hybrid system used in a medical center. 

The AI system learned to prioritize vaccine 

refrigerators and emergency lighting during shortages, 

improving critical service reliability by 30% [37]. 

Battery Management and Health Monitoring - Battery 

systems are essential for storing excess energy and 

managing nighttime demand. However, they are also 

expensive and sensitive to overuse or poor 

management. AI models such as Convolutional Neural 

Networks (CNN) and Kalman Filters are used to 

estimate battery State of Charge (SoC), State of Health 

(SoH), and predict failures [38]. Case Example: In 

South Africa, a study deployed an ML-based battery 

management system in a hybrid grid connected to a 

telecom tower. Battery life increased by 20% due to 

AI-controlled charge/discharge cycles [39]. Fault 

Detection and Predictive Maintenance - In many 

remote locations, it's difficult to maintain energy 

systems or identify faults quickly. AI can detect 

anomalies in system behavior before actual 

breakdowns occur [40]. Case Example: In Ghana, an 

ANN-based fault detection algorithm was used in solar 

microgrids to identify inverter malfunctions. This 

resulted in a 35% reduction in downtime and improved 

customer satisfaction [41]. 

 

 
Figure 2: Application of advanced technologies in 

hybrid-renewable-energy system (HRES) [42]. 

 

2.4 AI Tools and Platforms in African HRES Projects 

Several open-source and commercial AI tools are 

being integrated into African renewable energy 

projects. These include; HOMER Pro + Python ML 

Libraries - Used in sizing and economic modeling, 

with AI layers for real-time analysis. MATLAB with 

Fuzzy Toolboxes and Simulink AI - Common for 

control system modeling. TensorFlow & PyTorch - 

Used for training deep learning models. Edge AI 

devices (e.g., NVIDIA Jetson, Raspberry Pi 4) - For 

decentralized control in off-grid locations. Some 

African startups and NGOs are also building AI-

integrated energy platforms such as PowerGen, 

Arnergy, and SolarNow [43, 44]. 

 

2.5 Policy, Data, and Infrastructural Challenges 
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While the technical potential of AI-HRES is clear, 

several real-world limitations slow down its 

widespread application in Africa. Such as; Data 

Scarcity - Many rural communities lack historical 

energy data or meteorological records needed for 

training AI models. Connectivity Issues - Reliable 

internet is essential for cloud-based AI models, yet 

many areas remain poorly connected. Lack of Local 

AI Skills - There’s a shortage of professionals who 

understand both energy systems and AI technologies. 

High Cost of AI Integration - Despite reducing costs, 

implementing AI still requires investment in sensors, 

computing hardware, and training. Addressing these 

barriers through policy reform, partnerships, and 

education is essential to unlock the full potential of AI 

in energy access [45, 46]. 

 

 

Table 2.0: Comparism between Relevant Case Studies

 

Papers References Objectives Results Findings Practical Implications 

[47] • Highlight AI 

strategies in energy 

systems simulation. 

• Review case studies 

on AI's impact in 

energy systems. 

• AI strategies enhance 

operational efficiency 

of energy systems. 

• Integration of AI with 

numerical methods 

improves simulation 

accuracy. 

• AI strategies enhance 

operational efficiency 

of energy systems. 

• Integration of AI with 

numerical methods 

improves simulation 

accuracy. 

• Enhances operational 

efficiency of integrated 

energy systems. 

• Combines AI with 

numerical methods for 

optimal energy 

solutions. 

[48] • Minimize total 

economic cost (TEC) 

and annual system 

cost (TAC). 

• Optimize levelized 

cost of energy 

(LCOE). 

• Optimal configuration: 

151 solar panels, 3 

wind turbines, 122 

inverters, 31 batteries. 

• Minimized TEC: USD 

469,200; TAC: USD 

297,100; LCOE: 

0.007/kWh. 

• Optimal 

configuration: 151 

solar panels, 3 wind 

turbines, 122 

inverters, 31 batteries. 

• Minimized TEC, 

TAC, and LCOE: 

USD 469,200, USD 

297,100, 0.007/kWh. 

• Optimal sizing 

improves cost-

effectiveness of hybrid 

energy systems. 

• Energy management 

ensures reliable energy 

supply for 

communities. 

[49] • Optimize hybrid 

renewable energy 

system using 

equilibrium 

optimizer algorithm. 

• Predict exergy 

efficiency using 

machine learning 

techniques. 

• Equilibrium optimizer 

minimizes electricity 

cost to $0.83 per kWh. 

• Machine learning 

predicts exergy 

efficiency with R-

Squared value of 0.98. 

• Equilibrium optimizer 

minimizes electricity 

cost to $0.83 per kWh. 

• Machine learning 

predicts exergy 

efficiency with R-

Squared value of 0.98. 

• Optimizes hybrid 

renewable energy 

systems for cost 

efficiency. 

• Informs policymakers 

on incentivizing 

renewable energy 

implementation. 

[50] • Optimal energy flow 

determination using 

artificial intelligence 

strategies. 

• Enhancing 

performance of 

energy sources 

• Proposed PFM 

strategy meets load 

requirements 

efficiently. 

• ZOA technique 

outperforms GTO in 

computation time 

significantly. 

• ZOA technique 

outperforms GTO in 

computation time for 

PV and wind systems. 

• Proposed PFM 

strategy meets load 

requirements 

efficiently. 

• Reliable power supply 

from hybrid renewable 

energy systems. 

• Enhanced performance 

through optimized 

maximum power point 

tracking techniques. 
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through hybrid 

MPPT techniques. 

[51] • Control non-linear 

nature in hybrid 

renewable energy 

sources. 

• Manage power flow 

between energy 

sources and storage. 

• Good performance in 

voltage, current 

transient, settling time, 

load power efficiency. 

• Prototype model with 

PIC microcontroller 

designed and output 

responses analyzed. 

• ANFIS-XL-PMS 

controller 

outperformed SMC-

XL-PMS and ANN-

XL-PMS controllers. 

• Simulation results 

showed good 

performance in power 

management and 

quality. 

• Improved power 

management in hybrid 

renewable energy 

systems. 

• Enhanced performance 

compared to existing 

control methods. 

[52] • Examine popular AI 

techniques in 

renewable energy 

systems. 

• Compile and 

organize studies from 

2020 to 2022. 

• Over ten popular RES 

modeling and 

optimization 

algorithms discussed. 

• More than a hundred 

studies compiled and 

organized based on 

methods. 

• Over ten popular AI 

techniques in 

renewable energy 

systems. 

• More than a hundred 

studies compiled and 

organized by method. 

• Identifies popular AI 

techniques for 

renewable energy 

applications. 

• Organizes over a 

hundred studies for 

future research 

guidance. 

[53] • Explore renewable 

energy sources for 

power challenges in 

Africa. 

• Design a hybrid 

renewable energy 

power system for 

industrial 

applications. 

• HREPS reliably meets 

load demand in all 

conditions. 

• Projected gains exceed 

600% with smart grid 

integration. 

• Proposed hybrid 

renewable energy 

system for industrial 

applications. 

• Achieves over 400% 

net gain in 21 years. 

• Encourages investment 

in renewable energy 

through tax subsidies. 

• Provides reliable power 

for industrial 

applications in The 

Gambia. 

[54] • Optimize hybrid 

renewable energy 

systems for cost 

efficiency. 

• Analyze techno-

economic feasibility 

in different 

operational modes. 

• EWOA reduced total 

current costs in both 

operational modes. 

• EWOA outperformed 

in total current costs 

with reliability 

improvements. 

• EWOA reduced total 

current costs with 

reliability 

improvements. 

• EWOA outperformed 

other optimization 

techniques in cost 

reduction and 

reliability. 

• Optimal sizing of 

hybrid renewable 

energy systems for cost 

efficiency. 

• Enhanced whale 

optimization algorithm 

reduces total current 

costs effectively. 

[55] • Summarize AI 

methods in managing 

variable renewable 

energy systems. 

• AI techniques applied 

in VRE management 

for optimized 

forecasting and 

integration. 

• AI techniques applied 

in managing variable 

renewable energy 

systems 

• Improved forecasting 

and integration of 

renewable energy into 

power grids. 
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• Discuss future 

research directions in 

AI for VRE 

management. 

• Future research 

directions include 

XAI, QAI, digital 

twins, and NLP. 

• Future research 

directions include 

XAI, QAI, digital 

twins, NLP. 

• Enhancements in 

demand forecasting, 

energy storage, system 

optimization, and cost 

management. 

Table 3.0:  Summary of Reviewed Studies (2021–

2025) 

Study Country 
AI 

Technique 
Application 

[56] Kenya LSTM Load Forecasting 

[57] Nigeria RF + SVM 
Solar 

Forecasting 

[58] Rwanda GA + PSO System Sizing 

[59] Senegal RL 
Load 

Prioritization 

[39] 
South 

Africa 
ML 

Battery SoC/SoH 

Prediction 

[60] Ghana ANN Fault Detection 

 

III. DISCUSSIONS 

 

As discussed in the previous section, the application of 

Artificial Intelligence (AI) in Hybrid Renewable 

Energy Systems (HRES) has demonstrated significant 

promise in enhancing the performance, efficiency, and 

sustainability of energy systems, particularly in off-

grid and rural areas across Africa. This section aims to 

explore the results and key findings emerging from the 

integration of AI into renewable energy systems in the 

African context. The adoption of AI technologies is 

increasingly seen as a critical tool in overcoming the 

complex challenges associated with renewable energy 

integration. AI has the potential to address issues such 

as intermittency, optimization of energy use, and the 

management of decentralized energy sources, while 

ensuring that the resulting systems are both cost-

effective and sustainable. This section will examine 

the outcomes of integrating AI into HRES, focusing 

on areas such as energy forecasting, system 

optimization, battery management, fault detection, and 

demand-side management. By reviewing relevant case 

studies and research findings, we will assess the 

technological advancements, challenges, and socio-

economic impacts that arise from this integration. 

3.1 AI in Energy Forecasting: A Key Enabler for 

Efficiency 

The most significant role that AI plays in HRES is in 

energy forecasting, where it helps to improve the 

accuracy of both generation forecasting and demand 

prediction. In African countries with high reliance on 

intermittent renewable energy sources like solar and 

wind, forecasting plays a crucial role in ensuring a 

stable and reliable energy supply. Energy Generation 

Forecasting - One of the key findings in the literature 

is the ability of AI to predict renewable energy 

generation with increased accuracy compared to 

traditional methods. In countries like Kenya, Nigeria, 

and South Africa, AI-driven models have 

demonstrated improved performance in forecasting 

solar and wind energy output by using real-time 

weather data, historical energy production, and 

meteorological models. For instance, machine 

learning (ML) algorithms such as Long Short-Term 

Memory (LSTM) and Support Vector Machines 

(SVM) have been successfully applied to predict solar 

generation, accounting for variability in solar 

irradiance and cloud cover. This enables better 

alignment of energy supply with demand, minimizing 

over-generation or under-generation. Case Study 

Example: In Kenya, an AI-powered forecasting model 

achieved an improvement in predicting solar PV 

output during seasonal variations compared to 

traditional approaches. This led to more efficient 

system sizing, where energy storage needs were 

optimized, reducing operational costs and minimizing 

energy curtailment. Similarly, wind energy forecasting 

in South Africa has shown promising results, with AI 

models enabling wind farms to predict wind speed 

fluctuations more accurately, which helped in 

optimizing turbine output and maintenance schedules. 

Energy Demand Forecasting - In addition to 

generation forecasting, AI plays a crucial role in 

predicting energy demand, which is essential for 

optimal energy distribution and minimizing wastage. 

AI-based models such as Artificial Neural Networks 

(ANN) and Recurrent Neural Networks (RNN) have 
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proven effective in predicting daily and seasonal load 

profiles, especially in rural and off-grid communities. 

Case Study Example: In Nigeria, AI-based demand 

forecasting models were implemented in a solar-

diesel-battery hybrid system serving a remote village. 

The model achieved a reduction in the mismatch 

between energy supply and demand by predicting 

energy demand with greater accuracy during peak 

hours. This resulted in lower diesel consumption, 

extending the lifespan of the system while reducing 

operational costs. 

 

3.2 AI for Optimizing Hybrid System Sizing and 

Configuration 

Optimizing the sizing and configuration of hybrid 

renewable energy systems is one of the most 

challenging aspects of system design. Traditional 

methods typically use generic load profiles and are 

limited in their ability to account for dynamic weather 

patterns, changes in energy consumption, and the cost-

effectiveness of system components. AI techniques, 

particularly Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and Fuzzy Logic, have become 

valuable tools for system optimization in HRES. 

These algorithms allow engineers to determine the 

optimal configuration of renewable energy 

components (solar, wind, storage, etc.) and their sizes, 

ensuring the system can meet energy demands 

efficiently while minimizing costs. Case Study 

Example: In Rwanda, a hybrid PV-wind-battery 

system was optimized using a combination of GA and 

PSO algorithms. The optimization led to a reduction in 

the system’s capital. 

 

 

Table 4.0: Case Studies from selected African Countries

  

Country Study Title  AI Method 

Used 

Focus Performance 

Metrics 

Key Findings / 

Improvements 

Nigeria Time Series 

Forecasting of 

Electrical Energy 

Consumption 

LSTM Energy 

Consumption 

Forecasting 

MAPE: 1% 

RMSE: 19.759 

Highly accurate short-

term prediction of 

energy usage. 

Nigeria Forecasting of 

Nigeria's Energy 

Demand 

RNN, 

LSTM, 

ARIMA 

Energy Demand 

Forecasting 

RNN had lowest 

error scores 

RNN outperformed 

ARIMA and LSTM in 

long-term predictions. 

Nigeria ANN-Based Load 

Forecasting 

ANN Load 

Forecasting 

(Week-ahead) 

Regression (R): 

0.988 

MSE: 0.27 

Very strong 

correlation; accurate 

forecasting for 

132/33kV substation. 

South 

Africa 

Wind Speed 

Forecasting Using 

ML & EVT 

LSTM, 

CNN, EVT 

Short and Long-

term Wind Speed 

Forecasting 

Not explicitly 

quantified 

AI improved wind 

prediction accuracy 

for turbine 

optimization. 

Kenya Not specifically 

available  

ML, LSTM 

(Inferred) 

Solar PV 

Forecasting 

Not provided Implied 20% 

improvement in solar 

prediction (not peer-

reviewed). 

Rwanda Long-Term 

Electrical Load 

Forecasting in 

Rwanda Based on 

Support Vector 

Machine Enhanced 

with Q-SVM 

SVM with 

Q-SVM 

Kernel 

Long-Term Load 

Forecasting 

Not explicitly 

quantified 

Q-SVM enhanced 

accuracy for long-

term load prediction 

and energy planning. 
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Optimization 

Kernel Function 

Notes: 

MAPE = Mean Absolute Percentage Error (lower 

values indicate better accuracy). 

RMSE = Root Mean Square Error (lower values 

indicate better accuracy). 

MSE = Mean Squared Error (lower values indicate 

better accuracy). 

R = Correlation Coefficient (values closer to 1 indicate 

strong predictive performance). 

This table highlights the application of various AI 

methodologies in enhancing energy forecasting across 

these African nations, contributing to more efficient 

energy management and planning. 

 

IV. CONCLUSION 

 

4.1 Summary of Key Findings 

This paper explored the integration of Artificial 

Intelligence (AI) into Hybrid Renewable Energy 

Systems (HRES) with a specific focus on application-

based use cases in Africa. In response to energy 

poverty, unreliable power grids, and climate change 

challenges, many African nations are turning toward 

hybrid energy solutions. However, these systems 

require intelligent coordination to deal with variability 

in renewable energy generation, optimize component 

sizing, reduce costs, and ensure energy availability. AI 

has proven invaluable in these efforts. From accurate 

solar and wind forecasting to demand prediction, real-

time energy management, intelligent storage use, and 

system configuration optimization, AI enables 

smarter, more reliable, and more sustainable energy 

systems. Results from studies in countries such as 

Kenya, Nigeria, Rwanda, and South Africa reveal 

improvements in energy efficiency (10–30%), 

operational cost reductions, and enhanced energy 

access in remote areas. AI’s impact is particularly 

significant in: Energy Forecasting - Improving 

generation and demand prediction, System 

Optimization - Right-sizing and cost-effective 

configurations, Energy Management - Real-time 

adjustments, predictive maintenance, and demand-

side control. Sustainability - Reduced reliance on 

diesel generators, lower emissions, and better resource 

use. 

 

4.2 Implications for Africa’s Energy Future 

The integration of AI into HRES aligns with Africa's 

urgent need for sustainable, decentralized, and 

inclusive energy solutions. With over 600 million 

people still lacking access to reliable electricity, AI-

powered hybrid systems provide a clear path forward 

for transforming the energy landscape especially in 

underserved and rural communities. This approach 

offers several advantages such as; Calability: Modular 

systems that adapt as demand grows. Affordability: AI 

helps reduce waste, over-sizing, and operational costs. 

Resilience: Real-time monitoring and control make 

systems more robust to faults or weather variability. 

Local Empowerment: With appropriate training, 

communities can take ownership of AI-powered 

microgrids, creating jobs and improving quality of life. 

 

4.3 Challenges and Limitations 

Despite the opportunities, several challenges must be 

addressed to fully realize the potential of AI-enhanced 

HRES in Africa icluding; Data Availability - AI 

models require quality historical and real-time data, 

which is often lacking. Infrastructure Gaps - Many 

rural areas lack reliable internet, sensors, and IoT 

infrastructure. Technical Skills - There is a shortage of 

local expertise in AI and system integration. Cost of 

Technology - Although AI can reduce long-term costs, 

initial investments in AI hardware and software 

remain high. These limitations highlight the 

importance of capacity building, policy support, and 

international collaboration to develop AI 

infrastructure and expertise within the continent. 

 

4.4 Recommendations for Future Work 

To enhance the deployment of AI in hybrid renewable 

systems across Africa, future research and 

development should focus on; Developing localized 

AI models trained on African energy usage, climate, 

and socio-economic data, Open-access data platforms 

to support research and innovation, Low-power AI 

solutions that can work in off-grid environments, 

Community-driven energy models with explainable 

AI that local operators can interpret and use, Policy 

frameworks to support innovation, investment, and 

private-public partnerships in the AI-energy space. 
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4.5 Final Thoughts 

AI represents a powerful ally in Africa’s journey 

toward energy sustainability. When combined with 

hybrid renewable energy systems, AI can transform 

not just power access but also livelihoods, education, 

healthcare, and economic development. As we enter a 

critical decade for climate action and equitable 

growth, the fusion of AI and clean energy holds the 

potential to light up Africa intelligently, sustainably, 

and inclusively. 
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