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Abstract- The reliability and stability of high-voltage 

power transmission systems are critical for efficient 

energy delivery and national grid integrity. In this 

study, we investigate the application of Artificial 

Intelligence (AI) techniques for the diagnosis of 

faults on 330kV power system transmission lines. 

Traditional fault detection and location methods 

often suffer from latency, reduced accuracy under 

complex fault conditions, and limitations in real-time 

analysis. This research leverages machine learning 

algorithms, including Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), and 

Decision Trees (DT), to detect, classify, and locate 

various types of faults—such as single line-to-

ground (SLG), line-to-line (LL), double line-to-

ground (DLG), and three-phase faults—based on 

real-time voltage and current signal features. 

Simulations were conducted using 

MATLAB/Simulink to model the transmission 

network and generate training datasets under diverse 

operating conditions. The AI models demonstrated 

high accuracy and robustness in fault classification 

and location estimation, with significantly improved 

speed compared to conventional methods. This work 

highlights the potential of AI-driven systems to 

enhance fault management in high-voltage 

transmission networks, reduce downtime, and 

support proactive maintenance strategies in smart 

grid applications. Let me know if you want it tailored 

toward a specific region or case study (like Nigeria 

or a particular substation), or if you want to add 

performance metrics or specific AI models. 

 

Indexed Terms- Transmission Line, Artificial Neural 

Network, Fault, Traveling Wave, Location. 

 

 

 

I. INTRODUCTION 

The problem of detecting transmission line faults is as 

old as the power industry itself. In the beginning, the 

fault detection was by direct visual inspections of the 

line. However, the visual inspection of a long line, foot 

or by air, is always extremely slow and subject to the 

terrain circumstances and environmental conditions of 

the moment. Additionally, visual inspection does not 

always ensure that the location is found because in 

many cases, faults do not leave physical evidence.  

Considering the rapid growth in the power grid 

network over the past decades all over the world which 

eventually led to the installation of a large number of 

new transmission and distribution lines, the 

deregulation of electric power has increased the need 

for reliable and uninterrupted electric power supply to 

the end users who are very sensitive to power outage. 

One of the biggest problems in the electrical power 

system is the interruption or discontinuity of power 

supply, which is caused by the occurrence of faults. 

Faults in transmission lines refer to any abnormal 

condition that disrupts the normal operation of the line, 

causing outages, equipment damage, or reduced 

transmission efficiency. Faults occur when two or 

more conductors make contact with one another or 

with ground in a three-phase system, which can either 

be a symmetrical fault or an unsymmetrical fault. 

These faults cause grave damage to power system 

components; it is not only the equipment that is 

affected by the faults, but the power quality also gets 

poor. Therefore, in order to prevent the power system 

equipment from damage and to enhance the power 

quality, it becomes imperative to diagnose the type of 

fault and its location on the transmission line so that it 

can be removed with suitable means (protective 

devices such as relays and circuit breakers). The faults 

are usually taken care of by devices that detect the 

occurrence of a fault and eventually isolate the faulted 

section from the rest of the power system.  

As a result, some of the important challenges for the 

incessant supply of power are detection, classification, 
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and location of faults (Saha et al, 2006).  Most of the 

research done in the field of protective relaying of 

power systems concentrates on transmission line fault 

protection because transmission lines are relatively 

very long and can run through various geographical 

terrain and hence it can take from a few minutes to 

several hours to physically check the line for faults 

(Eriksson et al, 2015).  

Hence, many utilities are implementing fault locating 

devices in their power quality monitoring systems that 

are equipped with Global Information Systems for 

easy location of these faults. Fault location techniques 

can be broadly classified into the following categories 

(Saha et al, 2010):  

II. METHODOLOGY 

This chapter presents the methodological procedure 

for the implementation of the aim and objectives of 

this research. Given in Figures 1.0 and 3.3 is a 

flowchart diagram that represents the methodological 

procedure for this research. 

  

 
Figure 1: Flowchart of the research methodology 

 

 
Figure 2: Flowchart showing the outline of the ANN 

 

At the decision box in Figure 3.1, if the relay set 

impedance Zp is greater than or equal to the fault 

impedance on the line Zf, no fault on the line, there 

will be no further operation, but if the impedance Zp 

is less than the fault impedance Zf, the fault is 

detected. 

 

Modeling of the Nigerian 58–Bus Network  

The Nigerian 58–Bus Power System Network is built 

using the following parameters in Tables 3.1 and 3.2. 

Also, the 58–Bus Network is modeled using the 

Matlab/Simulink tool for the implementation of the 

ANN selected structure for the detection of faults on 

the Power System Network. 

 

Artificial Intelligence (AI) combines neural networks, 

signal processing, and mathematical modeling to 

analyze faults on a 330 kV power transmission line. A 

thorough procedure for carrying out this analysis is 

provided below; 

 

A Mathematical Modeling of the Transmission Line 

When a 330 kV transmission line is mathematically 

modeled, its electrical properties and behavior under 

different circumstances are represented. This detailed 

explanation will include:  

• Transmission Line Parameters 

• Transmission Line Modeling Approaches 

• Derivation of Equations 

• Numerical Calculation Example 

• Equivalent Circuit Representations 
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B. The Transmission Line Parameter  

 

Transmission line parameters include: 

• Resistance (R), Inductance (L), Capacitance (C): 

Represent line characteristics. 

• Distributed Model: A 330 kV line is long, so 

distributed parameters are preferred over lumped 

parameters. 

 

Voltage (V(x,t)) and current (I(x,t)) are governed by 

the Telegrapher’s equations below: 
∂V

∂x
=  −RI − L

∂I

∂t
    (1.0) 

∂I

∂x
=  −GV − C

∂V

∂t
    (2.0) 

Where G is the conductance. 

Conductor Resistance (R): This represents the losses 

due to the flow of current through the conductor, as 

shown in equation 3.0. 

𝑅 =  
𝜌

𝐴
     (3.0) 

Where 𝜌 is the resistivity of the aluminum conductor 

material with a value 2.82x10−8𝛺.m  

A is the cross-sectional area of the aluminum 

conductor. 

Inductance (L): This parameter includes both self-

inductance and mutual inductance, which is given in 

equation 4.0. 

L = 2x10−7lnln (
Dm

rI ) H/m  (4.0) 

where:  

Dm is the Geometric mean distance (GMD) between 

the conductor and rIis the effective radius of the 

conductor, including skin effect. 

Capacitance (C): This is the electric field between the 

conductors and the ground given in equation 5.0. 

𝐶 =  
2𝜋𝜖0

𝑙𝑛 (
𝐷𝑚

𝑟
)
 F/m    (5.0) 

Where 𝜖0 is 8.854 x 10−12F/m and r is the actual 

radius of the conductor. 

Conductance(G): 

Represents leakage current due to imperfect insulation 

and environmental conditions. Usually very small and 

often neglected. 

 

C. Transmission Line Modeling Approaches 

The 330 kV line is categorized as a long transmission 

line (length >250 km). Its behavior is best described 

using a distributed parameter model. 

 

D. Distributed Parameter Model 

The transmission line is modeled by the Telegrapher’s 

Equations:  
𝜕𝑉

𝜕𝑥
= −(𝑅 + 𝑗𝜔𝐿)𝐼   (6.0) 

𝜕𝐼

𝜕𝑥
= −(𝐺 + 𝑗𝜔𝐶)𝑉   (7.0) 

Where V(x, t) is the voltage along the line, I(x,t) is the 

current along the line, and 𝜔 = 2𝜋𝑓 is called the 

angular frequency of the system (50Hz). 

 

Solution of the Telegrapher’s equations 

The voltage and current can be expressed as traveling 

waves in equations 8.0 and 9.0. 

𝑉(𝑥) = 𝑉+𝑒−𝛾𝑥 + 𝑉−𝑒𝛾𝑥   (8.0) 

𝐼(𝑥) =
1

𝑍𝐶
(𝑉+𝑒−𝛾𝑥 + 𝑉−𝑒𝛾𝑥)  (9.0)  

Where,  

𝛾 =  √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)  called propagation 

constant     (10.0) 

𝑍 = √
(𝑅+𝑗𝜔𝐿)

(𝐺+𝑗𝜔𝐶)
 called characteristic impedance (11.0) 

 

E. Numerical Calculation of Transmission Line Data 

Line Length = 96Km 

Conductor Resistance R = 0.02Ω/Km 

Inductance L= 1.2mH/Km 

Capacitance C = 0.01𝜇𝑓/𝐾𝑚 

Conductance G = (Negligible) S/Km 

Step 1:   

Calculation of the Propagation constant (𝛾) 

𝛾 =  √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

R = 0.02, L = 1.2 x 10-3, G = 0, C = 0.01 x 10-6, 𝜔 = 

2𝜋 𝑥 50𝐻𝑧 

𝛾 =  √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) =

 √(0.02 + 𝑗(2𝑋3.142𝑋50𝑋1.2𝑥10−3)(𝑗(2𝑋3.142𝑋50𝑋0.01𝑋10−6)) =

√0.02𝑥𝑗(1.13112)(𝑗(0.030143) = 0.1414Ω    (12.0) 

 

Calculation of the Characteristic Impedance (Zc)   

(Zc) = √
(𝑅+𝑗𝜔𝐿)

(𝐺+𝑗𝜔𝐶)
 = √

(0.02+𝑗(2𝑥3.142𝑥50𝑥1.2𝑥10−3)

(𝑗(2𝑥3.142𝑥50𝑥0.01𝑥10−6)
=  

 j338.49Ω   (13.0) 

 

F. Fault Analysis 

Equation 3.14 can be used to model faults on the line 

by determining the fault current for each fault 

situation; 

𝐼𝑓 =  
𝑉

 𝑍𝑡𝑜𝑡𝑎𝑙
  =  

𝑉

𝑍𝑠𝑜𝑢𝑟𝑐𝑒 +𝑍𝑙𝑖𝑛𝑒+𝑍𝑓 
  (14.0) 

Where; 

Zsource is the source impedance 

Zline  is the line impedance 

Zf is the fault impedance 

If  is it the fault current?  

This mathematical framework models a 330 kV 

transmission line in a comprehensive way by 

combining numerical techniques, steady-state 

analysis, and transient behavior.  

 

In many practical applications, the negative and 

positive sequence impedances are found to be equal. If 
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the generator is solidly grounded, Zn = 0, and for a 

bolted fault, Zf  = 0. 

 

It should be noted that the three-phase balanced source 

impedance is zero (0), since the synchronous generator 

with neutral is grounded through an impedance Zn. 

Saadat, H. (1997). 

 

G. Fault Conditions 

Equation 3.14 is used for a mathematical study of fault 

conditions.  

 

Three-phase, line-to-line (LL), double-line-to-ground 

(DLG), and single-line-to-ground (SLG) faults can all 

be simulated.  

 

In a 330 kV power system transmission line, fault 

circumstances entail figuring out fault currents, fault 

voltages, and the consequences of various fault kinds. 

These comprise three-phase faults, line-to-line (LL), 

double-line-to-ground (DLG), and single-line-to-

ground (SLG) faults. Nilesh and Singh (2016). 

Symmetrical components are used in fault analysis to 

make computations easier.  

 

3.2.4 Symmetrical Components Basics 

Voltage and Current Decomposition 

Voltage Va, Vb, Vc and Ia, Ib, Ic are expressed in 

terms of symmetrical components: 

  (15.0) 

  (16.0) 

𝑎 =  𝑒𝑗1200
=  −

1

2
+ 𝑗

√3

2
   (17.0) 

V0, V1, V2 are zero, positive, and negative sequence 

voltages. This happens under a fault condition. 

I0, I1, 12 are zero, positive, and negative sequence 

currents. 

 

H.  Fault Types and Analysis 

I. Single-Line-to-Ground Fault (SLG) 

Fault occurs on phase a (e.g. Va = 0) 

Boundary conditions: Va = 0, Ib = 0, Ic = 0 

Therefore,  

Relationship among symmetrical components: 

V0 + V1 + V2 = 0    (3.18) 

I0 = I1 = I2 = Ia    (3.19) 

Sequence network connection: Zero, positive, and 

negative sequence networks are connected in series. 

Fault Current: 

𝐼𝑓 =  
3𝑉1

𝑍0+𝑍1+𝑍2+𝑍𝑓
    (3.18) 

Where, 

Z0, Z1, Z2 are zero, positive and negative sequence 

impedance of the line. 

Zfis the fault impedance, 

V1 is the pre-fault positive-sequence voltage at the 

fault point. 

 

II. Line-to-Line Fault (LL) 

Fault occurs between phases b and c    (e.g.)  

Vb = Vc)    (19) 

Boundary conditions Vb = Vc, Ia = 0    (20) 

Relationship among symmetrical components 

V2 = -V1, V0 = 0    (21) 

I2 = - I1, I0 = 0     (22) 

Sequence network connection: Zero, positive, and 

negative sequence networks are connected in series. 

Fault current is given by; 

𝐼𝑓 =  
3𝑉1

𝑍0+𝑍1+𝑍2+3𝑍𝑓
   (23) 

 

III. Double-Line-to-Ground Fault 

(DLG) 

The fault occurs between phases b and c and the 

ground. 

Boundary conditions Vb = Vc, Va = 0    (20) 

Relationship among symmetrical components 

V0 = V1 = V2    (21) 

I0 + I1 + I2 = 0     (22) 

Sequence network connection: Zero, positive, and 

negative sequence networks are connected in series. 

Fault current is given by; 

𝐼𝑓 =  
3𝑉1

𝑍1+𝑍2∥(𝑍0+𝑍f)
   (23) 

 

IV. Three-Phase Fault 

The fault occurs between phases b and c and the 

ground. 

Boundary conditions Vb = Vc, Va = 0    (24) 

Relationship among symmetrical components 

V0 = V2 = 0, V1 = V2   (25) 

I0 + I1 + I2 = 0     (26) 

Sequence network connection: Zero, positive, and 

negative sequence networks are connected in series. 

Fault current is given by; 

𝐼𝑓 =  
𝑉1

𝑍1+𝑍𝑓
    (27) 

 

Fault Current Calculation 

Given Data: 

ZI = 0.1 + j0.5Ω     (28) 

Z2 = 0.1 + j0.5Ω     (29) 

Z0 = 0.3 + j1.0Ω    (30) 

Zf = 0Ω (for bolted fault) 

Pre-fault voltage V1 = 
330𝑘𝑉

√3
 = 190.5Kv (31) 

SL - G Fault 
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𝐼𝑓 =
3𝑉1

𝑍𝑡𝑜𝑡𝑎𝑙
=  

3𝑉1

𝑍0+𝑍1+𝑍2+3𝑍𝑓
   (32) 

Substitute: 

𝐼𝑓 =  
3𝑋190.5

(0.3+𝑗1.0)+(0.1+𝑗0.5)+(0.1+𝑗0.5)+3(0)
 = 

571.5

0.5+𝑗2.0
 = 

571.5

2.06∠75.960 =  277.2∠ − 75.960 𝑘𝐴  (33) 

 

L - L  Fault 

𝐼𝑓 =  
√3𝑉1

𝑍1+𝑍2+𝑍𝑓
    (34) 

𝐼𝑓 =  
√3𝑋190.5

(0.1+𝑗0.5)+(0.1+𝑗0.5)
 = 

329.96

0.2+𝑗1.0
 = 

329.96

1.02∠78.690 =

 323.55∠ − 78.690 𝑘𝐴   (35)  

 

L – L - L Fault 

𝐼𝑓 =  
𝑉1

𝑍1+𝑍𝑓
    (36) 

𝐼𝑓 =  
190.5

(0.3+𝑗1.0)+(0)
 = 182.5∠−73.300 𝑘𝐴 (37)  

 

J. Modeling of the Nigerian 58 – Bus Network 

The parameters in Tables 3.1 and 3.2 are used to build 

the Nigerian 58-Bus Power System Network.  

 

The MATLAB/Simulink tool is used in modeling the 

58-Bus Network so as to apply the ANN-selected 

structure for the Power System Network defect 

identification. 

 

Table 1: Classification and Representation of 

Transmission Lines 

 

https//://www.site.Outtawa.ca.  

 

Figure 3: Nigeria 58-Bus Power System Network 

 

Figure 4: A MATLAB/Simulink Model of Onitsha – 

Enugu of Nigeria 58 – Bus Power System Network 

 

The network is made up of Generating Stations, -

Transmission Lines, -Buses, and -Loads. 

Taking the 330KV transmission line between Onitsha 

and Enugu, which is 96 kilometers away, as our case 

study area. It falls under the medium line category and 

since it corresponds to a line length of more than 80 

kilometers. 

The transmission line's shunt reactance (J𝜔cl), also 

known as its shunt admittance, is so little that it is 

insignificant, leading to the simple equivalent circuit 

shown in Figure 3.5. 
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Figure 5. Equivalent Circuit of Medium Transmission 

Line 

 

The voltage and current relationship between the 

sending and receiving ends is given in the equations 

below; 

[𝑉𝑆𝐼𝑆] =  [1𝑍01] [𝑉𝑅𝐼𝑅]   (38) 

Thus, 
|𝑉𝑆| = [ ( |𝑉𝑅|𝑐𝑜𝑠∅𝑅 +  |𝐼|𝑅)2 +  ( |𝑉𝑅|𝑠𝑖𝑛∅𝑅 +

 |𝐼|𝑋𝐿)2]
1

2    (39) 

|𝑉𝑆| = [ ( |𝑉𝑅|2 +  |𝐼|2(𝑅 + 𝑋𝐿) 2 +

 2( |𝑉𝑅||𝐼|(𝑅𝑐𝑜𝑠∅𝑅 + 𝑋𝐿𝑠𝑖𝑛∅𝑅)]
1

2  (40) 

|𝑉𝑆| = |𝑉𝑅|[1 +  
2|𝐼|𝑅𝑐𝑜𝑠∅𝑅

|𝑉𝑅|
+  

2|𝐼|𝑋𝐿𝑠𝑖𝑛∅𝑅

|𝑉𝑅|
 +

 
2|𝐼|2𝑋𝐿(𝑅2+ 𝑋𝐿

2)

|𝑉𝑅|2 ]
1

2   (41) 

2|𝐼|2𝑋𝐿(𝑅2+ 𝑋𝐿
2)

|𝑉𝑅|2 ≅ 0   

 Then,  

|𝑉𝑆| = |𝑉𝑅|[1 +  
2|𝐼|𝑅𝑐𝑜𝑠∅𝑅

|𝑉𝑅|
+  

2|𝐼|𝑋𝐿𝑠𝑖𝑛∅𝑅

|𝑉𝑅|
]

1

2  (42) 

Nevertheless, using binomial expansion while keeping 

first-order terms, gives;|𝑉𝑆| = |𝑉𝑅|[1 + 
2|𝐼|𝑅𝑐𝑜𝑠∅𝑅

|𝑉𝑅|
+

 
2|𝐼|𝑋𝐿𝑠𝑖𝑛∅𝑅

|𝑉𝑅|
]

1

2     (43) 

|𝑉𝑆| = |𝑉𝑅| + |𝐼|(𝑅𝑐𝑜𝑠∅𝑅  +  𝑋𝐿𝑠𝑖𝑛∅𝑅) (44) 

 

 

K. Artificial Neural Network Application 

 

ℎ𝑗
𝐻 =  𝑏𝑗 + ∑𝑁𝐼

𝑇=1 𝑊𝑗𝑖 𝑋1  (47)                                                                            

Each neuron of the hidden layer takes its input  ℎ𝑗
𝐻 and 

uses it as the argument function and produces an 

output given by  

𝑦𝑗
𝐻 =  Ø ℎ𝑗

𝐻     (48) 

Then, the inputs to the neurons of the outputs layer are 

calculated as 

ℎ𝑘
𝑜 =  𝑏𝑘  +  ∑𝑁𝐻

𝑗=1 𝑊𝑘𝑗𝑦𝑗
𝐻  (49) 

However, the network output is then given by; 

𝑦𝑘 =  ∅ (ℎ)𝑘
𝑜    (50) 

 

L. The Error Back-Propagation Learning 

Algorithm  

An output error is the difference between the network 

output and the desired output value, or for the Kth 

output neuron. 

The output error of the Kth output neuron is given as  

𝑒𝑘 =  𝑑𝑘 − 𝑦𝑘    (51)  

𝑑𝑘 = desired output value  

𝑦𝑘  = Network output value  

The summed square errors can be found using the 

output error in the manner described below: 

Є =  
1

2
∑𝑁𝑂

𝑘=1 𝑒𝑘
2    (52) 

Reducing this error is the aim of the learning process. 

It depends on every network variable, and we can 

determine the gradient of the error to the weight matrix 

that connects the hidden layers to the output layer 

using the chain rule as shown below; 
𝜕Є

𝜕𝑤𝑘𝑗
= (

𝜕Є

𝜕𝑒𝑘
)(

𝜕𝑒𝑘

𝜕𝑦𝑘
)(

𝜕𝑦𝑘

𝜕ℎ𝑘𝑜
)(

𝜕ℎ𝑘𝑜

𝜕𝑤𝑘𝑗
)  (53) 

If we compute each term, we will obtain as follows:  
𝜕Є

𝜕𝑤𝑘𝑗
=  𝑒𝑘    (54)  

𝜕𝑒𝑘

𝜕𝑦𝑘
 - 1      (55) 

𝜕𝑦𝑘

𝜕ℎ𝑘𝑜
=  ∅𝑘 ℎ𝑘𝑜    (56)  

𝜕ℎ𝑘𝑜

𝜕𝑤𝑘𝑗
=  𝑦𝑗

𝐻    (57)  

But, if we combine these expressions above, we will 

obtain that;  
𝜕Є

𝜕𝑤𝑘𝑗
=  𝑒𝑘∅𝑘(ℎ𝑘𝑜)𝑦𝑗

𝐻   (58)  

The change ▲wkj, which is applied to the weight 

matrix that is connected to the hidden layer to the 

output layer, is also given as  

∆𝑊𝑘𝑗 = −𝜂
𝜕Є

𝜕𝑤𝑘𝑗
=  − 𝜂𝑒𝑘∅𝑘ℎ𝑘

𝑂𝑦𝑗
𝐻  (59)  

Where ŋ is a constant known as the step size or 

learning rate. We can also rewrite the equation (58) as: 

∆𝑊𝑘𝑗 =  − 𝜂𝛿𝑘𝑦𝑘
𝐻    (60)  

Where 𝛿𝑘 =  𝑒𝑘∅𝑘(ℎ𝑘𝑜) is called the local gradient 

term. However, in accordance with the following 

equation, we must repeat the above process in order to 

update the weights that link the input layer to the 

hidden layer.  

But to update the weights connecting the input layer to 

the hidden layer, we need to repeat the procedure 

above according to the following equation.  

𝜕Є

𝜕𝑤𝑘𝑗
= (

𝜕Є

𝜕𝑒𝑘
)(

𝜕𝑒𝑘

𝜕𝑦𝑘
)(

𝜕𝑦𝑘

𝜕ℎ𝑘𝑜
)(

𝜕ℎ𝑘𝑜

𝜕𝑤𝑘𝑗
)(

𝜕𝑦𝑗
𝐻

𝜕ℎ𝑗
𝐻 )(

𝜕ℎ𝑗
𝐻

𝜕𝑤𝑗𝑖
) (61)  

Following the computation of the aforementioned 

terms, the relationship to the weight matrix is 

expressed as follows: 

∆𝑊𝑖𝑗 =  − 𝜂𝛿𝑗𝑋𝑖    (62) 

𝛿𝑗 =  ∅𝑗(ℎ𝑗
𝐻) ∑𝑁𝑂

𝑘=1 𝛿𝑘𝑊𝑘𝑗  (63) 

Therefore, in general, the connection term is 

calculated using:  
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∆𝑊𝑖𝑚 =  𝜂𝛿𝑚𝑋𝑖 = Learning rate x local gradient Input 

to the layer     (64) 

The Neuron Transfer Function: The neuron transfer 

functions Ø (.) of the hidden layer are different from 

the ones in the output layer. These activation or 

transfer functions come in a variety of forms and are 

employed to generate an output and choose the 

appropriate weighted input sum.  

 

The neuron's task determines which transfer function 

is used. Different types of transfer functions that are 

frequently employed in neural networks are depicted 

in equations (65) and (66).  

 

The hard limit A transfer function of this type sets the 

neuron's output to zero if the net input value n is less 

than zero or to one if n is larger than or equal to zero.  

 

The linear transfer function: After multiplying the 

neuron's signal by a gradient constant (slope), this 

function adds a neuron bias to the output.  

 

The log-sigmoid transfer function: In back 

propagation networks, the log-sigmoid transfer 

function is frequently employed. It is employed to 

generate an output that fluctuates between 0 and + I 

while the input fluctuates between - and ∞. According 

to Ogboh (2019), it is a differentiable function.  

 

The output layer typically uses the linear transfer 

function, whereas the hidden layer often uses the 

sigmoid function.  

 

The log–sigmoid transfer function is defined as;  

𝑌 =  
(1)

(1+𝑒−𝑥)
  −  ∞ <  𝑥 <  ∞    (65)  

Since the log-sigmoid function is differentiable,  

Therefore, 
𝜕𝑦

𝜕𝑥
=  

𝑒−𝑥 

(1+𝑒−𝑥)2 = 𝑌 ( 1 − 𝑌)  (66) 

 

3.5 Detection of Faults using Artificial Neural 

Network (ANN) 

The methodological process for developing ANN for 

defect detection is presented in this section. The three 

stages of the ANN used here are isolation, 

classification, and detection. An ANN is chosen and 

trained for its task at each step. 

The inputs of each network are the three-phase 

currents (I = {IaIbIc}T) and voltages (V = {Va 

VbVc}T) of the line generated using the Power system 

block set (simpowersystem).  

These three goals should be achieved via a thorough 

fault diagnosis plan for transmission line systems. 

Nasim (2018) 

1. Fault Detection: The purpose of fault 

detection is to determine whether or not a 

transmission line fault has occurred. 

2. Fault classification: Here, the types of faults 

are determined.  

3. Fault location: The purpose of fault location 

is to identify the zone in which the faulty line 

is situated.  

i. Selecting the proper network  

The best and most acceptable function approximates 

are multilayer perceptual networks, while the best 

algorithm for training a network for function 

approximation is supervised learning. Additionally, 

for generalization, a back-propagation learning 

method is employed; however, it necessitates a 

lengthy training period and may only cover a small 

amount of data. 

ii. Training of the Selected ANN 

One of the most crucial stages in the creation of ANN 

detectors and locators is training neural networks; 

hence, training data needs to be carefully and 

methodically prepared. A training simulator can be 

used to generate pertinent data for ANN training in 

situations when training data is not always available as 

part of a real system.  

It is important to create training data that is 

representative of all potential situations in which the 

ANN may be used to carry out its detection and 

classification tasks. As a result, training data can grow 

into enormous data sets. For training, the back-

propagation algorithm (BPNN) has been employed. 

Figure 3.11gives an overview of the training process. 

The training data employed in this work include;  

• Pre-fault (No Fault) Condition: 

The training data used for No fault condition are the 

pre-fault voltage and current magnitude signal in per 

unit. 

Training the ANN network on No fault will give pre-

fault voltage and current waveform that shows that the 

voltage magnitudes are far greater than the current 

magnitudes since there are no faults in the system. The 

ANN network architecture is then connected to the 

system, which will make use of the pre-fault voltage 

and current (V & I) as six inputs of the ANN, which 

will produce the ANN response for pre-fault condition 

(i.e No fault) 

 

• Fault Condition: 

The training data used for fault condition are the fault 

voltage and current magnitude signal in per unit.At 

three phase fault for fault detection, the three phase 

fault voltage and current signal per unit values are used 

as six inputs to the ANN network. These when trained 

will produce three phase fault voltage, current and 

ANN response, that shows voltage has dropped to 
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approximately 0pu while the current increases, 

showing that fault has occurred. 

 

Each layer of neurons in the artificial neural network 

(ANN) serves as an input to the layers that follow. 

Weights are used to regulate each layer, which 

strengthens the signal transmission. The output 

generated by the traditional approach is an actual 

output, while the output generated by BPNN is a target 

output.  

 

We can better grasp the discrepancy (error) between 

the intended and actual process outputs by utilizing the 

error to determine the Least Mean Square Error. The 

BPNN propagates errors backwards from the output 

layer when a null error is obtained. Tayeb (2014). 

 

Figures 9 and 10 also show a selection and sampling 

process for the input data of the ANN. 

 

 
Figure 9: Selection and Sampling of Input Data into 

ANN 

 

The validation and test data is a training process that 

displays the precise number of input data samples 

(Vabc_Iabc) data extracted for training, validation, 

and testing of the ANN. It shows that a total of 1401 

samples (70% of 2001) and 300 samples (15% of 

2001) were utilized for training, validation, and 

testing, respectively. 

 

 
Figure 10: Selection and Sampling of Input Data into 

ANN 

 

The chosen ANN network architecture for defect 

detection and training is displayed in Figure 10. This 

ANN structure helps us to choose intelligently the 

number of neurons in the hidden layer of the 

architecture.  

 

The training network window, trains the chosen 

network and samples using the Levenberg-Marquardt 

backpropagation training algorithm. If regression and 

mean square error values are not reached, retraining 

may be necessary. Until a convergence (Mean Square 

≤0.4 and Regression R ≤1 ≥0.5) is achieved, the 

retraining and neuronal count change will continue.  

 

Electrical problems serve as the foundation for this 

investigation, and the ANN Fault Detector is trained 

with a variety of reasons for matching to various types 

of data. Through simulation, the trained ANN is 

validated, and both the performance and accuracy of 

the outputs are confirmed. As a result, evaluating and 

validating ANN output to input data is crucial.  

 

An ANN must be constructed by explaining and 

correlating the neural network's inputs and outputs in 

order to recognize patterns. It is important to carefully 

analyze the inputs to the network, which provide a 

picture of the state and transient characteristics of the 

defects to be identified.  

 

The neural detector's function is to identify whether a 

transmission line fault is present or absent. By 

immediately determining the power system state, 

beginning with the instantaneous voltages and 

currents, the appearance of such a defect is 

determined. As a result, a scaling strategy (also known 

as signal normalization) is crucial for cutting down on 

the execution computing time before the voltage and 

current data enter the neural network. We used a 

scaling method for this, which is represented by 
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dividing the fundamental voltage and current 

magnitudes.  

 

An artificial neural network (ANN) is a flexible 

system that can generalize to new, unseen data and 

learn associations through repeated data presentation. 

This is accomplished through training, which is 

predicated on learning. 

 

M. Mathematical Approach for Fault Location 

Impedance-Based Method 

𝑍𝑓 =  
𝑉𝑓

𝐼𝑓
     (67) 

𝑑 =  
𝑍𝑓

𝑍𝑙𝑖𝑛𝑒
 𝑋 Lline    (68) 

Where Zf is the fault impedance, Zline is the line 

impedance, and Lline is the total line length and d is the 

distance. 

 

N. Traveling Wave Method 

The traveling wave method was engaged to locate 

faults on the case study 330Kv power system 

transmission line. Using the wavefront arrival times 

(t1, t2), equation 3.69 given below was used to identify 

line faults.  

𝑑 =  
𝑣

2
 𝑥 (𝑡2 − 𝑡1)   (69) 

Where, d is the located fault distance, t1 and t2 are 

wavefront arrival times. 

 

A voltage wave that travels from the supply source end 

to the far end may be responsible for the line voltage's 

steady development. The line capacitances' 

progressive charging will account for the associated 

current wave. Assume that in a very short amount of 

time t, a current I and a voltage V are established over 

a line length x. The emf V is balanced by the back emf 

generated by the magnetic flux generated by the 

current in this line length. The flux built up is ILδx, 

and the back emf is the rate of buildup, thus; IL δx/δt, 

since the inductance of the length δx is Lδx (L is line 

inductance per unit length) (Ogboh et al, 2019). 

So we have 

𝑉 = 𝐼𝐿
𝛿𝑥

𝛿𝑡
= 𝐼𝐿𝑣    (70) 

Where 𝑣 is the velocity of propagation of wave. 

During time δt, the current I carries a charge Iδt, which 

stays on the line to charge it to the potential of V. Since 

the line's charge is VCδx and its capacitance of length 

δx is Cδx (where C is the line's capacitance per unit 

length), so we have; 

𝐼𝛿𝑡 = 𝑉𝐶𝛿𝑥    (71) 

or 

𝐼 = 𝑉𝐶
𝛿𝑥

𝛿𝑡
= 𝑉𝐶𝑣    (72) 

The switching of an emf 𝑉 on to the line results, 

therefore in a wave of current 𝐼 and velocity 𝑣 are 

given by equations (70) and (72). Dividing equation 

(3.70) by equation (72), we have; 
𝑉

𝐼
=

𝐼𝐿𝑣

𝑉𝐶𝑣
=

𝐼

𝑉
.

𝐿

𝐶
    (73) 

or 
𝑉2

𝐼2 =
𝐿

𝐶
     (74) 

or 

𝑉

𝐼
= √

𝐿

𝐶
= 𝑍𝑛    (75) 

 

This formula is known as the line's surge impedance 

since it is a ratio of voltage V to current I, which has 

impedance dimensions. Because this impedance solely 

depends on the line constants and is unrelated to the 

load impedance, it is also known as natural impedance.  

Equation (3.75) gives the following value for surge 

impedance Zn, which is the voltage to current ratio 

with an impedance dimension:  

𝑍𝑛 =
𝑉2

𝐼2 =
𝐿

𝐶
    (76) 

Inductance 𝐿 =
𝑉2𝐶

𝐼2    (77) 

Capacitance 𝐶 =
𝐼2𝐿

𝑉2    (78) 

 

(a) Propagation Velocity 𝑣 of Travelling Wave: 

To get the velocity of a travelling wave, multiply 

equations (3.70) and (3.72) 

𝑉𝐼 = 𝐼𝐿𝑣 × 𝑉𝐶𝑣    (79) 

𝑉𝐼 = 𝑉𝐼𝐿𝐶𝑣2    (80) 

or 

𝑣2 =
1

𝐿𝐶
     (81) 

   

or 

𝑣 = √
1

𝐿𝐶
     (82) 

Where L is the inductance of the line and C is the 

capacitance of the line, 𝑣 is the propagation velocity. 

 

(b) Double fault Location on the Transmission Line 

Based on Travelling Wave. 

The most straightforward and reliable traveling wave-

based fault finding method is founded on a two-ended 

principle and has been used in a variety of fault 

location and protection devices. 
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Figure 12: Double Ended Fault Location Based on 

Time Difference of First Arrival Times 

 

The following formula is used to determine the fault 

location x after comparing the traveling wave arrival 

times on both ends of the line; 

 

𝑥 =
(𝐷+(𝜏𝑙−𝜏𝑟)𝑣)

2
    (3.83) 

Where,  

D = Total length of the line  

τl = Departure time at the remote end 

τr = Arrival time at the local end  

v = Propagation velocity  

 

(C) Simulink Modeling of the Traveling Wave Fault 

Location Equation. 

Equation (3.82) is modeled using 

MATLAB/SIMULINK for the location of any type of 

fault on the transmission line. 

Velocity 𝑣 = √
1

𝐿𝐶
    (3.84) 

But 

Relay impedance 𝑍𝑟 =
𝑉2

𝐼2 =
𝐿

𝐶
  (85) 

Inductance 𝐿 =
𝑉2𝐶

𝐼2    (86) 

Capacitance 𝐶 =
𝐼2𝐿

𝑉2    (87) 

Therefore,  

velocity 𝑣 = √
1

(
𝑉2𝐶

𝐼2 )×(
𝐼2𝐿

𝑉2 )
   (88) 

The figure 13, 14 and 15 shows the travelling wave 

propagation process used to simulate the movement of 

electrical waves along the transmission lines, a typical 

model used to analyze the fault locations by capturing 

the transient voltage and current waves generated at 

the fault point as they propagate in both directions 

along the line. 

 

 
Figure 13: Traveling Wave Propagation Velocity 

Model 

 

 
Figure 14: Traveling Wave Fault Location Model 

       

 
Figure 15: Subsystem of Traveling Wave Fault 

Location Model 

Figure 16 below shows Onitsha – Enugu 330kV, 

96km power net 

work transmission line with travelling wave for fault 

location. 

 

 
Figure 16: Single Onitsha – Enugu 330KV 96Km 

Transmission Line 
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Zones of Protection 

The zone on which the fault occurred can be 

determined using the distance protection zoning 

system shown below. 

 

Zone 1 setting on the transmission line is 80% of the 

line distance, Zone 2 setting on the transmission line 

is 120% of the line distance, and Zone 3 setting on the 

transmission line is 240% of the total line distance. 

 

Zone 1 is meant to protect the primary line and provide 

fastest protection because there is no international time 

delay associated with it. Its operating time can be one 

cycle. 

Zone 1 reach = 0.8 x Total length of the transmission 

line = 0.8 x 96Km = 76.8Km 

Zone 2 reach = 1.2 x Total length of the transmission 

line = 1.2 x 96Km = 115.2Km 

Zone 3 reach = 2.5 x Total length of the transmission 

line = 2.5 x 96Km = 240Km 

The located fault distance is seen on the zone of 

protection. 

 

Using the MATLAB/SIMULINK modeled equations 

(75) to (82), we can locate the different symmetrical 

and unsymmetrical faults using their fault voltage and 

current parameters. 

 

Figure 17 shows the Onitsha - Enugu 330kV 96km 

transmission line, viewing the zones of protection. 

 

 
Figure 17: Single Onitsha – Enugu 330KV 96Km 

Transmission Line 

 

O. Fault Analysis Summary 

• Fault current depends on the fault type and the 

transmission line impedance, and the fault point. 

• Sequence network representation simplifies fault 

analysis. 

• System impedance, fault impedance, and pre-fault 

voltage must all be taken into account in 

calculations.  

 

 

P. RESULTS AND ANALYSIS 

Regardless of the length of the transmission lines, fault 

detection is crucial for identifying, tracking, and 

safeguarding them in the event of a malfunction. The 

technique focuses on determining the fault's position 

on the transmission line, its type, and when it 

happened. Numerous fault kinds, locations, fault 

resistances, and inception angles are used to evaluate 

the ANN detector and classifier. Artificial Neural 

Networks (ANN) for real-time transmission line fault 

detection and classification can be applied to digital 

protection of production systems.  

 

The action of each phase's voltage and current forms 

the basis of this strategy. The presence and type of the 

fault are indicated by the ANN's outputs. Every test 

result demonstrates that the fault-suggested detector 

and classifier can be utilized to accurately and quickly 

support a new system generation of the protection 

relay. Because modern power systems are so linked, 

system stability depends on early failure identification 

and quick isolation. Transmission line faults must be 

promptly identified, categorized, and located.  

 

ANNs are utilized for currents as the inputs of neural 

networks for a variety of reasons. Because Current 

Transformers (CTs) are always present at each line for 

measurement and protection purposes, current signals 

measured at only one end of the line have been used as 

the inputs to the ANN algorithms. Sometimes, for 

revenue-related reasons, VTs may not be employed.  

 

Only current signals that are measured at one end of 

the transmission lines can be utilized to locate and 

classify faults. Since the neural network uses voltages 

and currents as inputs, the output of the ANN will 

produce high-quality results quickly. These voltages 

and currents are used by the ANN approach to 

determine the reactive power of the load.  

 

An overview of the use of ANN in transmission line 

fault detection is provided in this chapter. Since 

transmission line faults can result in equipment 

damage, outages, and power system network 

shutdowns, it is critical to be able to recognize and find 

them, as discussed in earlier chapters. Therefore, there 

will be a significant breakdown in the power system's 

whole networks if transmission line defects go 

unnoticed.  

 

We need to model transmission lines to ensure that if 

there is a fault, it can be noticed on time and the ANN 

can offer reliable data. Three-phase transmission lines 

have been simulated using Simulink.  
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The Onitsha-Enugu 330kV, 50 HZ, 96km 

transmission line is used as a case study to simulate the 

three-phase power system network model in 

MATLAB/Simulink software. Figure 3.4 illustrates its 

components, which include circuit breakers, 

transmission lines, load, and voltage and current 

measurements. Powering the load is the primary 

function of the transmission lines. The generator 

produces the power supply, which is then sent to the 

load via the transmission line network.  

 

A circuit breaker is a high-voltage electrical switch 

designed to protect electrical grids and equipment by 

automatically disconnecting faulty sections when 

abnormal conditions occur, such as short circuits, 

overloads, or system faults. 

 

The load serves as the consumers' feeder, from which 

the consumers feed, and an ANN can identify certain 

issues, such as overload current. On the power system, 

the load can be built as either a radial or a ring feeder; 

the radial feeder provides a straight-line supply to the 

consumers, while the ring feeder contains a backup 

supply.  

 

Earlier systems use a standard method on the 

transmission lines to detect the fault which takes time 

to detect the fault and delivers inaccurate findings. The 

Kirchhoff Voltage and Current Laws on a well-defined 

transmission line protection model serve as the 

foundation for conventional algorithms.  

 

The power swing voltage and current is seen by 

traditional distance relays as a defect and tripping 

mechanism. Such defective parts would cause serious 

issues and fuel instability in the power system. Exact 

results are obtained when Artificial Neural Networks 

are applied to transmission line failures. Table 3 

displays the specifications of the transmission line.  

 

Two three-phase sources make up the three-phase 

transmission line, which simulates a synchronized 

power system as seen in Figure 3.4. A PI transmission 

line component with voltage and current measuring 

points is part of the transmission line. Furthermore, 

three-phase loads are dispersed along the transmission 

line's length. Transmission line phase to ground, phase 

to phase, and three-phase faults are all simulated by a 

three-phase fault. 

 

 

 

 

 

 

 

Table 2: Transmission Line Parameters 

S/N LINE PARAMETERS VALUES 

1 Length (km) 96 

2 Voltage (kV) 330 

3 Positive Sequence 

Resistance (ohm/km) 

0.0114 

4 Zero Sequence Resistance 

(ohm/km) 

0.2467 

5 Positive Sequence 

Inductance (ohm/km) 

5.684e-4 

6 Zero Sequence Inductance 

(ohm/km) 

3.0890e-3 

7 Positive Sequence 

Capacitance (ohm/km) 

1.3426e-8 

8 Zero Sequence Capacitance 

(ohm/km) 

8.5885e-9 

 

Q. ANN Pre-Processing 

Noise and spurious harmonics are commonly 

superimposed on voltage and current measurements, 

which can compromise the precision of the ANN's 

performance. These harmonics are eliminated in 

practical systems by analog signal filtering, which also 

reduces undesired signals. 

 

The computation for every phase is carried out and the 

processing of the simulation data is made simpler by 

the use of per-unit values. 

 

R. Fault Detection and its Accuracy 

Performance Metrics: This discusses metrics such as 

accuracy, precision, recall, F1-score, and specificity 

for identifying whether a fault has occurred. 

Threshold Sensitivity: It explains how threshold 

selection impacts the detection accuracy 

Pre-fault  
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Figure 18: Pre-fault Voltage Signal 

 

Figure 19: Pre-fault Current Magnitude 

 

ANN Response to Pre-fault V & I Signals 

Figure 20: ANN Response to Pre-fault V&I Signals                                                                                               

Figure 21: Three – phase Pre-fault V & I ANN Signal 

Waveform 

 

The Onitsha-Enugu 330kV Power Transmission 

Line's ANN response plot of pre-fault voltage, current, 

and their ANN equivalent signal against simulation 

time prior to fault incidence is shown in Figure 4.4. It 

demonstrates that the signal magnitudes for the three 

– phase Pre-fault V & I ANN Signal Waveform is 

0.17pu. 

 

R.  Single Line to Ground Fault 

 
Figure 22: Voltage Magnitude For L – G Fault 

 

Figure 22 illustrates that a fault occurred on one of the 

lines between 400msecs to 1600msecs, and the voltage 

(Va) drops to 0.38.  
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Figure 23: Current Magnitude For L – G Fault 

Figure 23 shows that after the voltage  (Va) in figure 

4.5 reduces to 0.38, the current (Ia) increases. 

 

ANN Response to Fault V&I Signals for L - G    

Figure 24 shows the ANN response to voltage and 

current as a result of the fault that occurred in between 

the line and ground. 

 

Figure 24: ANN Response to Fault V&I Signals  for L 

- G   

                                                                                           

 
Figure 25: ANN Output of V&I for L - G Faults 

 

Figure 25 shows the ANN output of the L-G fault 

voltage and current in figure 4.5 and 4.6. 

S. Double Line to Ground Fault 

 

 
Figure 26: Voltage Magnitude to for LL – G Fault 

Figure 26 illustrated a fault occurrence of faults in two 

of the lines between the period of 400 to 2000msecs, 

which led to a voltage drop of 0.4pu  
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Figure 27: Current Magnitude for LL - G Fault 

 

Figure 27 shows a rise in the current as a result of the 

fault that occurred in figure 4.9. 

 

ANN Response to Fault V&I Signals LL - G      

 

Figure 28: ANN Response to Fault V&I Signals LL - 

G      

Figure 28 shows the ANN response to voltage and 

current as a result of the fault that occurred  onthe lines 

and ground. 

 

 
Figure 29: ANN Output of V&I for LL - G Faults 

 

Figure 29 shows the ANN output of the LL-G fault 

voltage and current in figure 4.9 and 4.10. 

 

T. Line to Line Fault 

 
Figure 30: Voltage Magnitude to for L – L Fault 

 

Figure 30 illustrates that a fault occurred on one of the 

lines between 400msecs to 2000msecs, and there was 

a voltage drop in two of the lines. 
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Figure 31: Current Magnitude to for L – L Fault 

 

Figure 31 shows a rise in the current as a result of the 

fault that occurred in figure 30 

 

 

 
Figure 32: ANN Response to Fault V&I Signals for L 

– L 

 

Figure 32 shows the ANN response to voltage and 

current as a result of the fault that occurred on the 

lines. 

 

 
Figure 33: ANN Output of V&I for L - L Fault 

 

Figure 33 shows the ANN output of the LL-G fault 

voltage and current in figure 4.13 and 4.14. 

 

U.  Three Phase (L – L – L) Fault 

 

 
Figure 34: Voltage Magnitude For L – L – L Fault 

 

Figure 34 illustrates that a fault occurred on three of 

the lines between 400msecs to 1600msecs, and Va, Vb 

and Vc dropped to zero during the period of the fault. 
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Figure 35: Current Magnitude for L – L – L Fault 

 

Figure 35 shows a rise in the current as a result of the 

fault that occurred in figure 4.1. 

 

ANN Response to Fault V&I Signals for L – L - L                 

 
Figure 36: ANN Response to Fault V&I Signals for L 

– L - L 

 

Figure 36 shows the ANN response to voltage and 

current as a result of the fault that occurred on the 

lines. 

 
Figure 37: ANN Output of V & I for L – L - L fault 

Figure 37 shows the ANN output of the L-L-L fault 

voltage and current in figure 37 and 38. 

 

V. RESULT SUMMARY FOR THE 

DIFFERENT TYPES OF FAULTS 

 

Simulation investigations were conducted for various 

transmission line fault resistances. Pre-fault and three-

phase line-line-line (A-B-C) fault types are taken into 

account. 

 

Figures 4.5 to 4.6, 4.9 to 4.10, 4.13 to 4.14 and 4.17 to 

4.18 shows the different types of faults that occurred 

on the transmission line. It illustrates that when fault 

occurs in any of the phases, the voltage drastically 

reduces and in some cases collapses to zero and the 

current surges. 

 

Figures 4.7 to 4.8, 4.11 to 4. 12, 4.15 to 4.16 and 4.19 

to 4.20 shows the ANN voltage and current responses 

to faults on those lines respectively. 

 

Table 4.2 shows a summary analysis of pre-fault and 

fault voltage and current and their ANN responses. We 

can see from table 4.2 at pre-fault, voltage was 1.75 

(pu) and current 0.8 (pu). But during faults, there was 

a voltage drop from 1.75 (pu) to 0.00 and an increase 

in current from 0.8 to more than 250 (pu), and the 

ANN response 0.6 which detected that there was a 

fault. This is acceptable since it supports the findings 

of electrical standard circuit analysis, which state that 

anytime a power system malfunction arises, the 

voltage magnitude will drop and the current will rise.  
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Table 3: Pre-fault and Fault Data for all the Fault 

Condition and their ANN Responses 

 
 

W. Training of Data for Detection of Faults 

 

 
Figure 38: Training of Data for Detection of Faults 

 

Figure 38 show the type of input and output data used 

for the ANN network architecture for the training fault 

detection data, while figure 38 shows the number of 

samples provided for training, validation and testing. 

 

 
Figure 39: Training Data for validation 

 

X. Valiation of Fault Detection using 

MATLAB/Simulink Tool 

Since the purpose of the section is to check the line's 

pre-fault condition, the entire 96-kilometer line length 

is taken into account. The findings indicate that the 

magnitudes of the three-phase voltages per unit are 

greater than those of their current counterparts. 

Electrical circuit theory states that while the line is in 

a pre-fault state, it is typical for the line voltage 

magnitude to be higher than the current magnitude. 

 

In order to identify the fault distance on each of the 

zones when a three-phase fault occurs on the 96km 

line and to calculate the three-phase fault voltage and 

current per unit magnitudes, simulation was run on the 

ten zonal lines. 

 

The chosen ANN for line fault detection was fed the 

three-phase voltage and current characteristics of each 

simulated line. The findings display the simulation 

window procedure, the data training performance, the 

regression analysis for a suitable fault detection, and 

the chosen ANN network design for fault detection.  

 

Figure 4.23 below shows an ANN architecture 

designed to handle 2001 data samples. The ANN 

architecture was used alongside with the three-phase 

fault voltages (Va, Vb, and Vc) and currents (Ia, Ib, 

and Ic) result in Table 4.2, which serves as inputs to 

the ANN architecture. The ANN architecture has six 

inputs and one output layer and ten concealed layers. 

According to its training, its goal is to identify three-

phase flaws in Phases A, B, and C. The output depicts 

a typical fault alert (or trip) since it is taught to respond 

to any of the fault circumstances that are presented. 

 

 
Figure 40: The ANN Selected Architecture or 

Structure for Fault Detection 

                                                              

In general, figure 40 above was chosen for each of the 

ten zones with varying line lengths.  

 

A closer look at the input, hidden, and output layers of 

the developed ANN is provided in figure 40. The ANN 

Matlab/Simulink Fault Simulator automatically 

chooses it for transmission line fault identification 

during fault simulation.  

 

Depending on the complexity of the problem being 

handled, the neural network's inputs and outputs 

should have multiple hidden layers, with multiple 
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neurons in each ANN layer. A neural network with 

three layers—six neurons in the input layer and one in 

the output layer—is utilized to detect errors. Based on 

the Bias Weights (b), the log-sigmoid function 

assesses the output and suggests the optimal outcomes 

for the output and hidden layers.  

 

The ANN must be trained in order to obtain the proper 

magnitude and correlations for the total number of 

inputs and outputs of the neural network. The size and 

complexity of the task determine which neural 

network inputs are used. An artificial neural network's 

complexity increases with the number of inputs and 

outputs. As a result, there are many hidden layers. 

Effective decision-making is made possible by the size 

of the hidden layers. Three-phase voltages and 

currents at 50 Hz serve as the basis for the inputs.  

Both ends of the transmission line were used to 

measure the three-phase voltages and currents. The 

ANN output would validate a fault for any of the three 

phases, and the fault kind was categorized along the 

transmission line's length.  

 

Y.  Fault Classification 

Types of Faults: Show how well the ANN performs in 

accurately identifying various fault types, such as 

single-phase-to-ground, double-phase, three-phase, 

etc.  

 

Classification Accuracy: Provides the classification 

accuracy for each fault type. 

 

Misclassification Analysis: Discusses situations in 

which faults were misclassified and possible reasons 

for such errors. 

 

Confusion Matrix: A confusion matrix helps visualize 

classification performance by showing the number of 

true positives, false positives, true negatives, and false 

negatives. 

 

 
Figure 42: ANN Simulation Window Processes 

 

 
Figure 43: Performance for the Training Process of 

Fault Detection for 96Km 

                                                                            

 
Figure 44:  Regression analysis of the ANN for the 

Fault Detection for 10Km 
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Figure 44: Shows the number of samples of neurons 

employed for training, validating, and testing the 

selected ANN network architecture. 

 

Figure 43 indicates that, at MSE = 6.0844e-4, the 

training delivers the best training, validation and test 

outcomes for defect detection. 

 

Figure 44 shows the output versus targets regression 

curve of the measure of how well the neural network’s 

targets can track the variations in the outputs. The 

training suggest ‘0’ no correlation at all and ‘1’ a 

complete correlation. From the result in figure 43 

having a coefficient of correlation ( R) approximately 

1 indicates a good correlation. 

 

Figure 27 and 28 shows a display of another dataset 

for training testing and validation using an ANN with 

6 input, 10 hidden layers and 4 output. 

 

 
Figure 45:  Neural Pattern Recognition 

 

 
Figure 46:  Neural Network Training 

 

 
Figure 47: Best Validation Performance 

 

The performance graph illustrates the training result of 

the actions taken place during the trainings process. 

Figure 47 shows that cross entropy which measures 

the difference between the predicted probability 

distribution and the actual, is 1.4539e-06 at 29 epochs. 

Since the loss of 1.4539e-06 is close to zero, it means 

the network’s predictions are almost perfect. 

 

 
Figure 48: Neural Network Training Confusion 

Matrix 

 

Figure 48 above shows the confusion matrices for the 

various types of errors that occurred for the trained 

neural network. The confusion matrix for the three 

phases of training, testing and validation illustrates 

that the diagonal cells in green colour indicate the 

number of cases that have been classified correctly by 

the neural network and the off-diagonal cells which 

are in pink indicate the number of cases that have been 

wrongly classified by the ANN. The last cell in white 

in each of the matrices indicates the total percentage 

of cases that have been classified correctly in green 

and the incorrectly in red. It can be seen that the chosen 

neural network has 100% accuracy in fault 

classification. Hence the neural network can, with 
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utmost accuracy, differentiate between the ten possible 

types of faults on a transmission line. 

 

 
Figure 49: ROC Block 

 

ROC curves provide a comprehensive overview of the 

performance of a classification model across different 

threshold values. They plot the true positive rate (TPR) 

against the false positive rate (FPR) at various 

threshold settings. This allows for a visual comparison 

of the trade-offs between sensitivity and specificity. 

 

The Area Under Curve (AUC)summarizes the model’s 

overall ability to classify correctly. It ranges from 0 to 

1. Below is a summary of the classification; 

 

• AUC = 1.0 → Perfect classifier. 

• AUC ≥ 0.9 → Excellent model. 

• AUC ≥ 0.8 → Good model. 

• AUC ≥ 0.7 → Fair model 

 

Figure 4.31 represents the receiver operating 

characteristics (ROC) curves for the confusion matrix 

in figure 4.31. An area under curve (AUC) of 1.0 was 

obtained, which makes it a perfect classifier. 

Vii  

Z. Location of Fault Distance through Zoning 

The transmission line between Onitsha and Enugu is 

96 kilometers long. The line is set at 10 km for ten 

different outcomes in this part. Three-phase (A-B-C) 

fault distances on each of ten kilometers of lines are 

located using the Traveling Wave MATLAB/Simulink 

model. The analysis and results are presented and 

discussed below.  

 

 

 

Table 3: Location of Three-Phase Fault (A-B-C) 

Distance using MATLAB/Simulink Traveling Wave 

Model 

 
 

By utilizing the MATLAB/Simulink tool to create a 

traveling wave mathematical model for fault distance 

location on the Onitsha – Enugu 330KV power system 

transmission line. 

 

The result indicates that the discovered fault distance 

increases with increasing line length as the wave 

signals' propagation velocity and impedance decrease. 

This results from a shift in the line's topography and 

the incident point of fault.  

 

As the line length increases, the impedance also 

increases and the line becomes more vulnerable to a 

variety of disturbances, including line losses, 

symmetrical and unsymmetrical faults, wind force 

effects, etc.  

 

In location of fault distance through zoning, the 

following terms applies; 

i. Fault Location Estimation: Identifying or 

pinpointing the location of a fault on the transmission 

line. This is important to maintaining power system 

reliability. 

ii Accuracy of Location: Provides the fault distance 

estimation mean absolute error (MAE) or root mean 

square error (RMSE). 

iii Impact of Noise: Assess how noise in the system 

(e.g., due to measurement errors or external 

disturbances) affects fault location accuracy. 

iv Comparison with Standards: Compares ANN's 

location estimation with conventional methods such as 

impedance-based or traveling wave methods. 

 

v. Training and Validation 

The following terms applies in training and validation 

of the neural network architecture; 

vi Model Convergence: Include plots of training and 

validation loss to show the convergence of the ANN 

vii Validation Performance: Evaluate the extent (how 

well) of the ANN's performance on unseen validation 

data. 
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viii Overfitting or Underfitting: Discuss if there are 

indications that the model is overfitting or 

underfitting.  

 

ixTime Performance 

The following terms applies in time performance of 

the neural network architecture; 

X Detection Speed: Highlight the real-time capability 

by reporting the ANN's computing time for fault 

detection and classification.  

 Xi Comparison with Real-Time Requirements: 

Discusses if the detection time satisfies the 

specifications for a power system operating at 330kv 

Xii Robustness to Variation Sensitivity Analysis: The 

artificial neural network analyzes resilience to changes 

in fault conditions (ignore noise and irrelevant data), 

including fault location, fault resistance, and fault 

inception angle.  

Xiii Adaptability: Discuss the ANN’s performance 

under different load conditions and system 

configurations. 

 

xiv. Visualization 

This is visual aids or graphical representation like 

confusion matrices for classification, the ROC 

(Receiver Operating Characteristic) curves for 

detection performance, Plots that display trends under 

different fault scenarios as well as the estimated 

location and real locations of faults. 

The graphical presentations in plots of all the pre-fault 

and fault voltages, regression analysis, validation 

performance, confusion matrix and the Receiver 

Operating Characteristics (ROC) block has enabled 

the analysis of results obtained.  

 

xv. Comparative Analysis 

Benchmarking:  

ANN-based method in comparison to conventional 

methods; 

 The ANN-based method has the ability to handle 

complex data in detection of faults in the transmission 

lines unlike the conventional methods. 

The ANN-based methods can handle non-linear 

relationships between the inputs and outputs data than 

the conventional methods 

The ANN-based methods has the ability to learn from 

data and improve accuracy with time than the 

conventional methods. 

It is equipped with real -time fault diagnosis than the 

conventional methods such the impedance based 

method. 

The combination of the neural network and the 

travelling wave significantly enhanced the fault 

detection and location accuracy in the transmission 

lines by the high-speed and precise nature of the 

travelling wave method and the Artificial Neural 

Network learning capability to improve robustness 

and adaptability. 

 

xvi. Conclusion 

Neural networks have been used in this thesis as a 

viable and efficient technique for identifying, 

classifying, and locating transmission line faults. The 

techniques used, make use of neural networks with 

inputs that are the sum of the wavelet decomposed 

fault voltage and current values for each of the three 

phases. This work has considered a number of 

potential fault types, including line-ground, line-line, 

double line-ground, and three phase faults, and distin 

ANNs have been implemented for each of these fault 

types.  

 

Every neural network used in this thesis is a back-

propagation neural network architecture that uses the 

Scaled Conjugate Gradient algorithm or the 

Levenberg-Marquardt algorithm.  

 

Artificial neural networks have been successfully used 

to develop a fault location scheme for the transmission 

line system, from the line fault detection stage to the 

fault location stage.  

 

The results of the simulation demonstrated that the 

suggested neural network had performed 

satisfactorily. As further demonstrated, the size of the 

ANN (the number of hidden layers and the number of 

neurons per hidden layer) varies continuously based 

on the neural network's application and the size of the 

training data set. This work has emphasized the 

significance of selecting an appropriate ANN 

configuration to achieve optimal network 

performance. The line parameters employed in this 

work are 330kv for voltage, 96km for length, 

conductor resistance of 0.02Ω/Km, inductance of 

1.2mH/km, capacitance of 0.01𝜇𝑓/𝐾𝑚 and 50Hz 

frequency to sample the voltage and current 

waveforms. 
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