
© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1052

Leveraging AI in .NET 8: Implementing Machine
Learning Models with ML .NET

SOHAN SINGH CHINTHALAPUDI

Computer Science, University of Bridgeport

Abstract- The quick advancement of artificial

intelligence (AI) technology transformed software

development into a tool that enables predictive

analytics with intelligent automation capabilities

throughout various commercial sectors. An

evaluation of AI integration in .NET 8 utilizes

ML.NET as the targeted machine learning

framework, which aims to serve .NET developers.

ML.NET introduces a straightforward pipeline

infrastructure which permits developers to create

predictive models by handling all three detection

categories (classification, regression, anomaly

detection) without extensive data science knowledge

requirements. The research delivers detailed

information about ML.NET functionalities,

describes its training workflow and key features, and

explains its Integration with .NET 8 applications.

The research implements a practical analytics model

as an illustration to show structured data processing

with ML.NET while demonstrating its ability to

generate precise predictions. A detailed performance

assessment of the models employs standard metrics

from the industry while discussing the optimization

methods needed to achieve better accuracy levels.

The examination of ML.NET as a machine learning

framework emphasizes its characteristics relative to

other options, showcasing its strengths and

weaknesses when used in deep learning

environments. This paper investigates the

deployment strategies for artificial intelligence,

including edge computing and cloud-based

implementations for scalable artificial intelligence

deployment abilities. Empirical tests reveal

deployment hurdles AI models face in .NET

environments, which help determine potential

upgrades for ML.NET's functionality. The study

demonstrates how ML.NET can improve .NET

system accessibility by making machine learning

accessible to developers through its potential. The

research enhances AI applications in enterprise

environments by establishing knowledge about

combining machine learning models with modern

.NET architecture systems.

Indexed Terms- ML.NET, .NET 8, Machine

Learning, Predictive Analytics, AI Integration,

Model Deployment, AI in Software Development

I. INTRODUCTION

A. Overview of AI in .NET 8

Artificial intelligence (AI) creates a modern

technological revolution that delivers automated

systems, predictive choices, and analytical intelligence

to many industrial sectors. Software applications now

require AI-driven insights as a basic necessity because

businesses increasingly depend on these insights for

operations. The recent version of Microsoft's

development framework NET 8 provides developers

with better capabilities to include machine learning

models into their applications through its advanced AI

integration support. The power of .NET 8 to create

intelligent systems improves because it combines

better performance with integration capabilities for the

cloud and artificial intelligence features.

Microsoft launched ML.NET, the most significant

advancement in AI capabilities for the .NET

ecosystem because this platform functions as an open-

source machine learning framework support

B. Importance of Machine Learning in Modern

Applications

Modern applications use machine learning as their

fundamental component because it enables predictive

analytics systems, fraud prevention mechanisms rec,

recommendation systems, and automation in different

industries. Businesses that aim to compete at high

levels need AI systems because these technological

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1053

solutions analyze enormous databases and produce

instant analytical results which drive competition

success. For example:

• The combination of ML with e-commerce

platforms enables applications such as

personalized product recommendations and

customer segmentation processing.

• Through AI healthcare tools, disease results are

forecasted while generating superior patient

treatment strategies.

• The finance industry uses machine learning models

to identify fraud situations and measure associated

risks in banking operations.

• The manufacturing sector and logistics operations

depend on AI to identify pending equipment

malfunctions while optimizing their supply chain

systems.

Machine learning integration within enterprise

software allows organizations to take over important

decisions while decreasing operational expenses

without harming operational efficiency. Most present-

day machine learning programs need developers with

sophisticated programming skills and a data science

background, thus making them inaccessible to basic

users. The ML.NET platform is a connecting link that

provides machine learning functionality to developers

working with .NET through simplified and effective

methods.

C. Role of ML.NET in Democratizing AI for .NET

Developers

Through its purpose, ML.NET provides .NET

developers with machine learning abilities

independent of their existing knowledge of artificial

intelligence. The core advantage of ML.NET stems

from its ability to let developers produce models

which they can train and deploy through C# and .NET

technologies instead of requiring Python and R

frameworks or specialized ML libraries. Key

advantages of ML.NET include:

• The end-to-end pipeline of ML.NET provides

users with an easy way to process data intake,

followed by model training until deployment.

• The Automated Machine Learning (AutoML)

capabilities receive support through ML.NET.

Using this feature enables developers to train their

models by removing the need to select algorithms and

hyperparameters manually.

Seamless Integration with .NET Applications:

ASP.NET, Blazor, Xamarin, and others. NET-based

applications allow developers to simplify their

implementation of ML models.

Compatibility with ONNX and TensorFlow Models:

ML.NET, which supports importing pre-trained deep

learning models, can boost the AI development

capabilities of developers who work with .NET.

ML.NET lowers the entry barrier for machine learning

adoption, democratizati ecosystem by allowing

developers to practice minimal learning curves when

building intelligent applications.

D. Research Objectives and Problem Statement

AI software adoption growth does not eliminate the

difficulties .NET developers encounter while

implementing machine learning within their

development projects. Using Python-based libraries

such as TensorFlow or Scikit-learn represents a

stumbling block for .NET professionals trying to

integrate AI since these frameworks prove challenging

to learn by traditional ML techniques.

This research investigates three main questions

regarding implementing ML.NET for .NET 8

applications.

What are the best approaches to using ML.NET for

predictive analytics within .NET 8 applications?

What are the key advantages and limitations of using

ML.NET compared to other machine learning

frameworks?

Does ML.NET require specific procedures to optimize

and their deployment in .NET 8 application

frameworks?

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1054

The research investigates ML.NET capabilities to

deliver practical guidelines about implementing

machine learning models inside the .NET

environment. It incorporates authentic examples,

performance assessments, and evaluating ML.NET's

performance within artificial intelligence applications.

II. BACKGROUND AND RELATED WORK

A. Evolution of AI in Software Development

Artificial Intelligence (AI) has progressed

substantially over the years into superior deep learning

models that perform self-learning and adaptive

functions. Implementing AI technology within

software development has led to fundamental changes

in how programs handle information, their basis for

choice-making, and user interface functionality.

Early AI Systems (1950s-1980s): From the early

1950s through the 1980s, research in the field of AI

concentrated on developing expert systems that

performed automated tasks through predefined rules.

Adequate flexibility was non-existent in these

programs, as administrators needed to complete time-

consuming manual rule configuration.

Machine Learning Revolution (1990s-2010s):

Software learned predictive decision-making through

statistical data learning methods that extracted

knowledge from data archives. ML became more

available because of three popular frameworks: Scikit-

learn, TensorFlow, and PyTorch.

AI in Software Development (2020s-Present): The

combination of cloud computing progress and big data

technology allows AI-based software development to

operate with higher automation and efficiency and

scale better. Current technology applications use AI-

powered tools as the foundation for all forms of

predictive analytics, automated operations, and

intelligent decision systems.

ML.NET represents a modern solution which provides

.NET developers with an integrated framework with

user-friendly features to implement AI functions

within .NET software without expertise in

conventional ML programming languages.

B. Existing Machine Learning Frameworks vs.

ML.NET

Multiple machine learning frameworks exist for

industrial use, between which developers select from

various capabilities and system constraints. A

comparison exists between existing frameworks,

which contrasts with ML.NET based on usability

along with performance capabilities and integration

features for .NET applications, as shown below:

Table 1: Comparison of Machine Learning

Frameworks for. NET-Based AI Applications

Feature TensorFlow Scikit-

learn

PyTorch ML.NET

Language

Support

Python,

C++

Python Python,

C++

C#, .NET

Ease of Use Moderate

(requires

ML

knowledge)

High

(simplified

API for

traditional

ML)

Moderate

(flexible

but

complex)

Very High

(designed

for .NET

developers)

Deep

Learning

Support

Yes No Yes Limited

(supports

ONNX

models)

AutoML

Capabilities

No NO NO Yes (built-in

AutoML for

model

selection)

Integration

with .NET

Limited Limited Limited Full

Integration

Best Use

Cases

Deep

learning,

image

processing

General

ML

models

Research

and

custom

AI

models

Enterprise

.NET

applications,

predictive

analytics

Table 1 compares ML.NET and other usual machine

learning frameworks to determine their suitability as a

foundation for AI-powered applications. Language

support and easiness of use join deep learning

functionality and AutoML integration, as well as

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1055

support for .NET environments, to form the main

points in the comparison analysis. This evaluation

demonstrates how ML.NET provides perfect .NET

integration while selecting models automatically and

operating effectively across enterprise environments,

which qualifies it as an optimal solution for .NET

developers working on AI applications.

C. ML.NET would be optimal for .NET 8

applications due to its advantages.

ML.NET offers multiple benefits to .NET 8

developers, making it an excellent solution for AI

integration in software applications.

Seamless Integration with .NET 8: ML.NET operates

directly inside .NET applications, so developers do not

need external dependencies.

Built-in AutoML (Automated Machine Learning):

ML.NET's AutoML feature automatically selects and

tunes models, decreasing the technical difficulties

involved in implementing ML.

Support for ONNX and TensorFlow Models:

Developers can import and use pre-trained deep

learning models while staying within the .NET

ecosystem.

Scalability and Performance: The solution achieves

high-performance computing speed by integrating

hardware acceleration and cloud-based execution for

running large-scale ML workloads.

Ease of Use: ML.NET simplifies machine learning

operations through its built-in templates, enabling

.NET developers to work more efficiently with

artificial intelligence.

D. Literature Review on ML.NET Adoption in

Predictive Analytics

Various reports and academic studies demonstrate

how ML.NET has become increasingly popular for

predictive analytics tasks and AI-enabled decision

operations:

Real-world AI applications: Studies reveal ML.NET

operates across finance, healthcare, and e-commerce

fields for predictive analytics, risk assessment, and

personalize edition features.

Performance benchmarking: Research confirms that

ML.NET delivers speedier training periods and

superior performance when accomplishing

classification and regression functions within the

.NET runtime environment relative to TensorFlow and

Scikit-learn.

Enterprise adoption: Microsoft confirms that ML.NET

continues to gain popularity among businesses

running automated forecasting, fraud detection, and

customer analytics systems because developers can

smoothly install it into their current .NET frameworks.

The research indicates that developers working with

Microsoft platforms can use ML.NET as an acceptable

solution to typical ML frameworks for developing AI-

powered predictive systems and automation tools.

III. ML.NET: OVERVIEW AND

CAPABILITIES

Microsoft created ML.NET as an open-source cross-

platform framework that specifically serves .NET

applications. Developers can integrate machine

learning models through ML.NET to operate within

their .NET 8 applications even when data science

proficiency remains outside their skill set. The

ML.NET framework delivers a straightforward model

development sequence with learning and assessment

operations that assist .NET personnel in accessing

Artificial Intelligence technology.

A. How ML.NET Works

The model-building process in ML.NET consists of

three main steps for implementing machine learning

solutions.

Model Building: Developers establish data pipelines

by preprocessing data while choosing machine

learning algorithms for their systems.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1056

• Training: The model obtains patterns from

historical data by applying regression,

classification, and clustering algorithms.

• Evaluation: The performance and accuracy of the

trained model are calculated through test data

validation.

• Deployment: Real-time predictions, and decisions,

occur through the Integration of the model within

the .NET application framework.

B. Key Features in .NET 8 that Enhance AI Integration

Native Performance Optimizations livers better

memory optimization performance for AI operations.

AutoML Integration: The platform automates

selecting the best model with optimal hyperparameter

settings.

Deep Learning Support: ML.NET includes

TensorFlow features that expand its capabilities as part

of its latest developments.

Cross-Platform Compatibility: ML applications

maintained by .NET 8 can execute on Windows in

combination with Linux and macOS operating

systems.

Supported Algorithms and Use Cases

Users can leverage different supervised and

unsupervised learning algorithms from ML.NET that

consist of:

Regression (e.g., Linear Regression, FastTree

Regression)

Classification (e.g., FastTree, LightGBM, Naive

Bayes

Clustering (e.g., K-Means)

Anomaly Detection (e.g., One-Class SVM)

Different applications of ML.NET include predictive

analytics, recommendation systems, fraud detection

operations, image classification methods, and natural

language processing functions.

Table2: Comparison of ML.NET, TensorFlow.NET,

and Scikit-learn

Feature ML.NET TensorFlo

w.NET

Scikit-

learn

Ease of

Use

High (No

prior ML

expertise

required,

seamless

.NET

integration

)

Moderate

(Requires

deep

learning

knowledge

and

TensorFlo

w

expertise)

High

(Simple

API,

Python-

based,

widely

adopted)

Deep

Learning

Support

Limited

(Relies on

TensorFlo

w

Integration

)

Strong

(Full

TensorFlo

w

ecosystem)

None

(Primarily

for

traditional

ML)

AutoML

Capabilit

ies

Yes (Built-

in AutoML

for

automated

model

selection)

No

(Requires

manual

model

tuning)

Limited

(Some

automated

hyperpara

meter

tuning)

.NET

Ecosyste

m

Compati

bility

Full

(Native

.NET

integration

)

Moderate

(Third-

party

library for

.NET

compatibili

ty)

None

(Primarily

Python-

based)

Best Use

Cases

Predictive

analytics,

recommen

dation

systems,

classificati

on tasks

Image

processing,

speech

recognition

, NLP

Statistical

modeling,

petite to

medium-

scale ML

tasks

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1057

Table 2 presents a comparative analysis of ML.NET,

TensorFlow.NET, and Scikit-learn. The table

highlights differences in ease of use, deep learning

capabilities, .NET ecosystem compatibility, and

performance optimization parison helps developers

understand the unique advantages ML.NET offers

within the .NET 8 framework.

IV. THE DEPLOYMENT PROCEDURE FOR

IMPLEMENTING MACHINE LEARNING

MODELS THROUGH ML.NET.

Machine learning (ML) models implemented in

ML.NET require users to follow a systematic

procedure that starts with data preprocessing and leads

to model deployment. The following section details

the process of implementing predictive models in

ML.NET, which includes managing big datasets,

training the models, and evaluating their performance.

A. Data Preprocessing and Handling Large Datasets

The important first step in machine learning workflow

requires data preprocessing procedures for cleaning

raw data into model-ready state. ML.NET handles data

processing through MLContext.Data. LoadFrom, Text

File and Load From, Enumerable features that

optimize together with data conversion tasks.

The following preprocessing operations exist in

ML.NET for data preparation:

• Data Cleaning: The process involves dealing with

missing data and duplicate records for the

normalization values.

• Feature Engineering: Organizational current

information produces new features that enhance

model performance.

• Encoding Categorical Variables: The text data

containing categories gets processed for numeric

representation through OneHotEncoding.

• Splitting Data: Training and testing data comes

from the application of Train Test Split

methodology.

• Scaling Large Datasets: The optimization usage

becomes possible by adopting batch processing

methods.

The ML.NET tool handles large dataset processing by

managing memory resources efficiently while

enabling streaming data input systems to prevent

system memory constraints.

Figure 1: ML.NET Workflow from Data Ingestion to

Model Deployment

The diagram illustrates the end-to-end process of

building and deploying a machine learning model

using ML.NET. It begins with data collection and

preprocessing, followed by feature engineering and

selection to refine input data. The model training and

evaluation phase ensures the algorithm learns

effectively, after which hyperparameter tuning is

performed to optimize. Finally, the trained model is

deployed and monitored for real-world use, ensuring

continuous improvements and reliability.

B. Performance Evaluation of Models

After training an ML model, performance evaluation

is crucial for assessing accuracy and generalization

provides built-in metrics for different types of models:

Table 3: Performance Evaluation Metrics for

ML.NET Models.

Model Type Evaluation

Metric

Description

Classification Accuracy,

AUC-ROC

Measures

correctness of

predictions

Regression RMSE, R- Assesses

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1058

Squared model error

and variance

Clustering Silhouette

Score

Evaluates

quality of

clustering

Forecasting Mean

Absolute

Error (MAE)

Determines

forecast

accuracy

The table shows essential performance metrics used to

evaluate ML.NET models when performing

classification and regression and forecasting tasks.

The evaluation of ML.NET models require different

metrics because classification needs accuracy,

precision, recall and F1-score metrics but regression

models use RMSE and MAE as their main

performance indicators. Appraisal of these metrics

leads to optimally selecting the most effective model

while improving its performance levels for .NET 8

application implementation.

Table 4: Sample Dataset for Predictive Analytics Use

Case

A sample dataset for customer churn prediction

(classification problem) is provided below:

Custome

r ID

Ag

e

Monthl

y Spend

($)

Contrac

t Type

Churn

(Yes/No

)

1001 28 50.0 Prepaid No

1002 45 75.0 Postpai

d

Yes

1003 34 60.0 Prepaid No

1004 50 90.0 Postpai

d

Yes

1005 29 55.0 Prepaid No

This dataset is commonly used in machine learning

scenarios for predicting customer churn. It can be

preprocessed, trained, and analyzed NET for practical

insights.

V. INTEGRATION WITH .NET 8

APPLICATIONS

ML.NET enables a smooth integration of models

directly into applications built upon .NET 8 to

facilitate real-time predictions together with

automated decision algorithms. This part explains the

embedding process of ML.NET into ASP.NET Core

applications that leads to API-based inference

deployment for scalable machine learning operations.

Embedding ML.NET Models in ASP.NET Core

Applications

Businesses can utilize to boost their web service

capabilities with AI functionality by implementing

them within ASP.NET Core applications. Developers

can:

ML models can be operated and executed directly

from controllers and services.

Dependency injection provides an effective solution to

handle model management throughout their lifecycle

function

 Web applications can gain performance benefits from

Prediction Engine Pool provided by ML.NET for

delivering predictions.

API-Based Deployment for Real-Time Inference

Programmers can leverage APIs to run ML models in

real-time, which powers chatbots and provides

recommendation services as well as fraud detection

operations. The RESTful API approach provides:

• Scalability for high-volume requests.

• Compatibility with multiple front-end clients.

• The application maintains efficient model updates

without experiencing interruption.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1059

Figure 2: Architecture of an AI-Powered .NET 8

Application

This graph visually represents how an AI-powered

application integrates ML.NET within a .NET 8

ecosystem.

 Graph Idea:

User Request → API Gateway → ML.NET Inference

Service → Prediction Output.

Integration with ASP.NET Core for seamless

communication between frontend and ML models.

Database & Data Processing Layer for storing and

refining data used in training.

VI. OPTIMIZING OPTIMIZINGING AI

MODELS

Optimizing Optimizing of complex AI models

together with deploying them efficiently stands as a

critical requirement. The following section

demonstrates methods to optimize earning models and

uses cloud-based infrastructure while deploying edge-

based IoT applications.

A. Hyperparameter Tuning Techniques

The process of tuning model parameters stands as the

essential factor for achieving better model accuracy

together with enhanced efficiency. Within ML.NET,

you can employ different tuning practices for model

optimization include:

• Grid Search: Exhaustively tests different

hyperparameter combinations.

• Random Search: The system makes unsystematic

choices to evaluate various hyperparameter

settings.

• Bayesian Optimization: The system chooses better

hyperparameters that perform well according to

recently observed models.

• Automated ML (AutoML): Using ML.NET

Automatic Model Selection enables users to get the

best model and configuration through its integrated

AutoML function.

B. Cloud Deployment

Users can deploy ML.NET models at high efficiency

levels on cloud platforms through:

Azure Machine Learning gives customers access to

managed machine learning platforms which also allow

real-time inference and monitoring capabilities.

AWS Sage Maker offers cloud-based training and

deployment together with AutoML tools integrated

into the system.

Google Cloud AI Platform enables hosting of models

along with version control and A/B testing functions

for applications that use AI.

C. Edge Computing with ML.NET for IoT

Applications

ML.NET features design capabilities that make

possible instant AI-driven output generation from

small hardware resources. Key benefits include:

• Reduced Latency: Real-time decision making

becomes possible because the system eliminates

cloud-based inference operations.

• Cost Efficiency: The processing of data at local

locations helps reduce the expenses of cloud

computing.

• Security & Privacy: The storage of sensitive data

on the device enhances both compliance and

security measures.

Table 4: Performance Comparison of Different

ML.NET Model Configurations

Model

Configuration

Training

Time

(sec)

Accuracy (%)

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1060

Default

Hyperparameters

120 85.4

Grid Search

Optimized

2

AutoML Tuned 180 91.2

Edge-Optimize Edge-

Optimized3.5

Different configurations of ML.NET models receive

comparison in this table for their effectiveness

regarding training duration and accuracy and response

speed. The default parameters balance performance

but doing a grid search will boost accuracy needs

additional training time. AutoML tuning enables users

to achieve maximum accuracy through performance

optimization the most suitable choice for automatic

model selection. The edge-optimized best for

implementing embedded AI solutions through IoT

while allowing real-time applications to reach low-

latency performance. Developer selection of their

optimal configuration depends on the results of this

comparative analysis.

VII. CHALLENGES AND FUTURE TRENDS

A. Limitations of ML.NET in Deep Learning

Scenarios

ML.NET offers powerful machine learning tools to

.NET developers yet its usage proves restricted for

deep learning needs. ML.NET does not provide built-

in support for advanced neural network structures that

would make it appropriate for image recognition and

natural language processing tasks despite its lack of

native capabilities when compared to

TensorFlow.NET and PyTorch. ONNX provides a

solution for integrating pre-trained deep learning

models through interoperability.

B. Security and Privacy Concerns in AI Integration

Programming applications that integrate AI need

proper mechanisms to handle both security and

privacy risks, specifically for user data that requires

protection. Model attacks as well as data poisoning

and adversarial inputs create security hazards. Data

security can be improved through secure pipeline

systems along with encryption protocols as well as

access management protocols. Balancing GDPR plus

HIPAA implementations and other related regulations

stands as a requirement when businesses store

personal information.

C. Future Improvements in the .NET AI Ecosystem

The .NET ecosystem progresses through steady

enhancements of its AI and ML support capabilities.

Expected future trends include:

Deeper Integration with Azure AI Services for cloud-

based ML deployments.

Expanded deep learning support through tighter

ONNX and TensorFlow.NET Integration.

A faster training process combined with optimized

dormancy enhancements in ML.NET.

A better AutoML solution will simplify both model

selection and hyperparameter tuning processes.

The future development of .NET as an AI

development platform is strengthened by these

progressions which allows developers to create

smarter efficient applications.

VIII. CONCLUSION AND

RECOMMENDATIONS

A. Summary of Key Findings

The research examined how AI functions operate with

.NET 8 through ML.NET for developing both

predictive analytics and AI-powered applications. Our

research analyzed of ML.NET framework alongside

its benefits compared to competing ML solutions and

its smooth integration capabilities with the .NET

platform. Key findings include:

HTML.NET reduces the complexity of machine

learning implementation for .NET developers even

when users have minimal AI knowledge.

The platform enables users to run different machine

learning functionalities, such as classification and

regression with anomaly detection.

Seamless .NET application integration is one strength

of ML.NET along with limited capabilities to handle

deep learning tasks.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1061

The deployment process for AI models works

optimally in all cloud, web and edge computing

environments.

B. Practical Applications of ML.NET in Industries

Organization sectors employ ML.NET because it

enables:

• Finance: Fraud detection, credit risk analysis, and

algorithmic trading.

• Healthcare: The healthcare sector utilizes deliver

predictive diagnostics assessments for monitoring

patient risks and create customized plans.

• E-commerce: ML.NET enables industry

application through its features of customer

segmentation along with demand forecasting and

recommendation system capabilities.

Manufacturing: The system utilizes based

maintenance combined with quality examination and

optimization for processes.

C. Recommendations for Developers Adopting

ML.NET

The following approaches will help developers

achieve maximum benefits from using ML.NET:

Developers should leverage AutoML features to let the

software system automatically choose among models

through automated hyperparameter optimization

additional deep learning functionality in ML.NET can

be achieved through ONNX integration.

ML.NET developers should adjust models to perform

real-time tasks within cloud systems and edge-based

platforms.

The monitoring of future .NET AI development will

help developers access upcoming improvements in

ML.NET.

These best practices enable developers to achieve

successful deployment of AI solutions in .NET 8

applications which advances both innovation and

business value.

REFERENCES

[1] Bilokon, P. A. (2025). Python, Data Science and

Machine Learning. Python, Data Science and

Machine Learning. WORLD SCIENTIFIC.

https://doi.org/10.1142/11701

[2] Cao, H., Han, L., Liu, M., & Li, L. (2025).

Spatial differentiation of carbon emissions from

energy consumption based on machine learning

algorithm: A case study during 2015–2020 in

Shaanxi, China. Journal of Environmental

Sciences (China), 149, 358–373.

https://doi.org/10.1016/j.jes.2023.08.007

[3] Cao, J. M., Liu, Y. Q., Liu, Y. Q., Xue, S. D.,

Xiong, H. H., Xu, C. L., … Duan, G. L. (2025).

Predicting the efficiency of arsenic

immobilizatimmobilizationy biochar using

machine learning. Journal of Environmental

Sciences (China), 147, 259–267.

https://doi.org/10.1016/j.jes.2023.11.016

[4] Chakkaravarthy, D. M., Selvam, J., & Baptist, L.

J. (2025). A model for detecting cyber security

intrusions using machine learning

techniques. International Journal of Electronic

Security and Digital Forensics, 1(1).

https://doi.org/10.1504/ijesdf.2025.10062655

[5] Collins, M. S., Imbrogno, M. A., Kopras, E. J.,

Howard, J. A., Zhang, N., Kramer, E. L., &

Hudock, K. M. (2024). Heterogeneity in

Neutrophil Extracellular Traps from Healthy

Human Subjects. International Journal of

Molecular Sciences, 25(1).

https://doi.org/10.3390/ijms25010525

[6] Godavarthi, K. (2023). Healthcare

transformation: The synergy between big data

and AI. International Journal of Scientific

Research & Engineering Trends, 9(6).

https://doi.org/10.61137/ijsret.vol.9.issue6.462

[7] Godavarthi, K. (2024). From language models to

life-savers: The evolution of GPT and

applications in healthcare and beyond.

International Journal of Science and Research,

13(11).

https://doi.org/10.21275/sr241029070432

[8] Huang, J., Farpour, N., Yang, B. J., Mupparapu,

M., Lure, F., Li, J., … Setzer, F. C. (2024).

Uncertainty-based Active Learning by Bayesian

U-Net for Multi-label Cone-beam CT

Segmentation. Journal of Endodontics, 50(2),

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1062

220–228.

https://doi.org/10.1016/j.joen.2023.11.002

[9] Ji, C., Sun, H., Zhong, R., Sun, M., Li, J., & Lu,

Y. (2023). Deformation Detection of Mining

Tunnel Based on Automatic Target

Recognition. Remote Sensing, 15(2).

https://doi.org/10.3390/rs15020307

[10] Karwowski, W. (2022). Zastosowanie biblioteki

ML.NET do badań ekonomicznych. Metody

Ilościowe w Badaniach Ekonomicznych, 22(1),

29–38.

https://doi.org/10.22630/mibe.2021.22.1.3

[11] Kumar, M., Srivastava, P., Rani, A., Agarwal,

H., Gupta, S., & Bhardwaj, A. (2025). Non-

Invasive Prediction Mechanism for COVID

Using Machine Learning

Algorithms. International Journal of Critical

Infrastructures, 21(1), 1.

https://doi.org/10.1504/ijcis.2025.10054998

[12] Li, Y., Wu, S., Zhao, Y., Dinh, T., Jiang, D.,

Selfridge, J. E., … Wang, Z. (2024). Neutrophil

extracellular traps induced by chemotherapy

inhibit tumor growth in murine models of

colorectal cancer. Journal of Clinical

Investigation, 134(5).

https://doi.org/10.1172/JCI175031

[13] López-Barajas, S., Sanz, P. J., Marín-Prades, R.,

Gómez-Espinosa, A., González-García, J., &

Echagüe, J. (2024). Inspection Operations and

Hole Detection in Fish Net Cages through a

Hybrid Underwater Intervention System Using

Deep Learning Techniques †. Journal of Marine

Science and Engineering, 12(1).

https://doi.org/10.3390/jmse12010080

[14] Machireddy, J. R. (2024). Machine Learning and

Automation in Healthcare Claims

Processing. Journal of Artificial Intelligence

General science (JAIGS) ISSN: 3006-4023, 6(1),

686-701. https://doi.org/10.60087/jaigs.v6i1.335

[15] Magdin, M., Benc, J., Koprda, Š., Balogh, Z., &

Tuček, D. (2022). Comparison of Multilayer

Neural Network Models in Terms of Success of

Classifications Based on EmguCV, ML.NET and

Tensorflow.Net. Applied Sciences

(Switzerland), 12(8).

https://doi.org/10.3390/app12083730

[16] Medhasi, S., Sriwarom, A., Permpalung, N.,

Torvorapanit, P., Plongla, R., Chindamporn, A.,

& Worasilchai, N. (2024). Ex vivo observation

of Pythium insidiosum-antigen treated

neutrophils on three Pythium insidiosum strains

isolated from vascular pythiosis patients. Human

Vaccines and Immunotherapeutics, 20(1).

https://doi.org/10.1080/21645515.2024.2304372

[17] Machireddy, Jeshwanth, Automation in

Healthcare Claims Processing: Enhancing

Efficiency and Accuracy (April 16, 2023).

International Journal of Science and Research

Archive, 2023, 09(01), 825-834.

http://dx.doi.org/10.2139/ssrn.5159747

[18] MEHROTRA, S., TAGORE, A. B., Anand, M.,

Sahani, R., Tabassum, R., & Raja, S. P. (2025).

Android Malware Analysis using Multiple

Machine Learning Algorithms. International

Journal of Electronic Security and Digital

Forensics, 1(1).

https://doi.org/10.1504/ijesdf.2025.10058706

[19] MEHROTRA, S., TAGORE, A. B., Anand, M.,

Sahani, R., Tabassum, R., & Raja, S. P. (2025).

Android Malware Analysis using Multiple

Machine Learning Algorithms. International

Journal of Electronic Security and Digital

Forensics, 1(1).

https://doi.org/10.1504/ijesdf.2025.10058706

[20] Michałowska, M., Rapiński, J., & Janicka, J.

(2023). Tree species classification on images

from airborne mobile mapping using

ML.NET. European Journal of Remote

Sensing, 56(1).

https://doi.org/10.1080/22797254.2023.2271651

[21] Mukherjee, S. (2020). ML.NET Revealed:

Simple Tools for Applying Machine Learning to

Your Applications. ML.NET Revealed: Simple

Tools for Applying Machine Learning to Your

Applications (pp. 1–174). Apress Media LLC.

https://doi.org/10.1007/978-1-4842-6543-7

[22] Nehdi, M. L., Marani, A., & Zhang, L. (2024,

March 1). Is net-zero feasible: Systematic review

of cement and concrete

decarbonizadecarbonizationes. Renewable and

Sustainable Energy Reviews. Elsevier Ltd.

https://doi.org/10.1016/j.rser.2023.114169

[23] Polo, L. (2024). Revolutionizing sales and

operations planning with artificial intelligence:

Insights and results. International Journal For

Multidisciplinary Research, 6(6).

https://doi.org/10.36948/ijfmr.2024.v06i06.340

53

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1707657 ICONIC RESEARCH AND ENGINEERING JOURNALS 1063

[24] Sharma, A., Madhvanath, S., Shekhawat, A., &

Billinghurst, M. (2011, November). MozArt: a

multimodal interface for conceptual 3D

modeling. In Proceedings of the 13th

international conference on multimodal

interfaces (pp. 307-310).

https://doi.org/10.1145/2070481.2070538

[25] Simić, N. (2023). PREDVIĐANjE POTROŠNjE

ELEKTRIČNE ENERGIJE KORIŠĆENjEM

LGBM ALGORITMA U ML.NET-U I

PYTHON-U. Zbornik Radova Fakulteta

Tehničkih Nauka u Novom Sadu, 38(07), 903–

906. https://doi.org/10.24867/23be25simic

[26] Tanwar, S. (2024). Machine Learning.

In Computational Science and Its

Applications (pp. 13–42). Apple Academic

Press. https://doi.org/10.1201/9781003347484-2

[27] Tran, D. T., & Huh, J. H. (2023). New machine

learning model based on the time factor for e-

commerce recommendation systems. Journal of

Supercomputing, 79(6), 6756–6801.

https://doi.org/10.1007/s11227-022-04909-2

[28] Yang, L., Liu, L., Zhang, R., Hong, J., Wang, Y.,

Wang, J., … Hao, H. (2020). IL-8 mediates a

positive loop connecting increased neutrophil

extracellular traps (NETs) and colorectal cancer

liver metastasis. Journal of Cancer, 11(15),

4384–4396. https://doi.org/10.7150/jca.44215

[29] Machireddy, Jeshwanth, Harnessing AI and Data

Analytics for Smarter Healthcare Solutions

(January 14, 2023). International Journal of

Science and Research Archive, 2023, 08(02),

785-798 , Available at SSRN:

http://dx.doi.org/10.2139/ssrn.5159750

[30] Yu, H., & Zahidi, I. (2023). Tailings Pond

Classification Based on Satellite Images and

Machine Learning: An Exploration of Microsoft

ML.Net. Mathematics, 11(3).

https://doi.org/10.3390/math11030517

