
© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 468

Serverless Computing with .NET: A Performance
Analysis of Azure Functions vs. AWS Lambda

SOHAN SINGH CHINTHALAPUDI

Computer Science, University of Bridgeport

Abstract- Serverless computing has revolutionized

cloud-based application deployment by offering

scalable, cost-effective, and highly available

execution environments. Among the leading

platforms for serverless computing, Microsoft Azure

Functions and Amazon Web Services (AWS)

Lambda are widely used, particularly for .NET

applications. This study presents a comparative

performance analysis of these two services,

evaluating key metrics such as execution time, cold

start latency, scalability, and cost efficiency. Using

controlled experiments with identical .NET

workloads, we analyze how each platform optimizes

resource allocation and execution under varying

loads. The research highlights the strengths and

limitations of Azure Functions and AWS Lambda,

providing insights into their suitability for different

application scenarios. The findings will aid

developers and organizations in making informed

decisions when choosing a serverless provider for

their .NET-based applications.

Indexed Terms- Serverless Computing, .NET

Performance, Azure Functions, AWS Lambda,

Cloud Performance Analysis

I. INTRODUCTION

Cloud-based application developers use serverless

computing as their essential development paradigm,

enabling them to operate without infrastructure

management and scale different applications through

demand fluctuation. Through serverless computing,

businesses can maximize the use of their resources,

chile incr, and increase software deployment.

Microsoft Azure Functions and Amazon Web Services

Lambda represent the dominating serverless platforms

developers select for executing. NET-based

applications in serverless deployments. The

widespread popularity of these platforms requires

developers and enterprises to understand their

fundamental functional differences regarding

execution models, resource handling rules, and pricing

formulas, as these elements strongly affect system

performance.

The rising popularity of enterprise-level .NET

applications requires businesses to grasp its

performance within serverless systems. The efficiency

of serverless applications heavily depends on cold start

times together with execution latency and scalability

features, in addition to pricing systems that affect their

cost-effectiveness and performance responsiveness.

This research delivers an extensive study of the .NET

application performance, which takes place on Azure

Functions and AWS Lambda by identifying essential

performance metrics. A real-world analysis and

controlled experimental research aim to equip IT

decision-makers and developers with detailed

knowledge regarding how .NET workloads function

across Azure Functions and AWS Lambda.

A. Background and Motivation

Today's technology market opts for serverless

computing to achieve automated scaling combined

with event-based operations, cutting infrastructure

maintenance expenses. Developers need to buy and

sustain virtual machine systems or container-based

settings through standard cloud models despite facing

extra expenses and operational difficulties. The

serverless approach reduces operational strains by

employing an event-triggered functionality and

automatic resource scaling through cloud provider

management.

Microsoft Azure Functions and AWS Lambda are

serverless application deployment options that suit

.NET developers. These two comparable platforms

operate through contrasting internal methods, which

generate divergent execution speeds between them.

Internet applications face performance issues because

cold start times delay executed functions, affecting

overall application responsiveness. Deploying

applications across these platforms becomes less

efficient because they possess different .NET version

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 469

support policies and execution model requirements, as

well as charging structures.

The primary purpose of this research was to evaluate

the growing developer anxiety about Azure Functions

and AWS Lambda compatibility with .NET

applications handling performance-intensive

operations. Users generally view Azure Functions as

an optimal choice for the Microsoft ecosystem because

it supports .NET well, yet AWS Lambda continues to

provide a wider user base and a more advanced level

of serverless platform maturity. Organizations can

choose the optimal serverless provider suited for their

application requirements by comparing performance

outcomes.

This research investigates several important points.

• The execution speed of .NET applications differs

between Azure Functions and AWS Lambda

during operational requirements under separate

workload conditions.

• Application responsiveness is affected by the

different cold start latency performances of Azure

Functions and AWS Lambda and their

distinguishing execution delay characteristics.

• What is the scalability level of Azure Functions

and AWS Lambda when facing different

workload situations?

• The serverless application platform that provides

optimal cost-performance for running. NET-

based applications exist between Azure Functions

and AWS Lambda.

What are the tested methods for peak performance

when working with .NET codebases on Azure

Functions and AWS Lambda?

The analysis leads to essential performance

knowledge about serverless platforms, enabling

developers to make better deployment choices.

B. Research Objectives

The primary purpose of this research is to execute a

comprehensive performance assessment of .NET

applications that run on Azure Functions and AWS

Lambda platforms. Knowledge about serverless

architecture performance with .NET workloads has

become vital because modern cloud applications more

frequently adopt this technology. The research

establishes these particular goals to achieve its

objective:

• The research measures operational performance

through experimental testing to analyze how

Microsoft .NET implementation executes on

Azure Functions while also measuring AWS

Lambda resource utilization efficiency and

runtime responsiveness. The researchers conduct

this simulation to understand platform response

under different workload situations.

• The assessment analyzes how application

performance is affected by the delay in systems'

booting up from a resting state. User experience

deteriorates as serverless functions require

extensive time to become active after

transitioning to their idle state. This paper

evaluates the cold start behaviour of .NET

applications between Azure Functions and AWS

Lambda systems.

• Each platform must be tested to determine its

performance under increased operational

demands. A serverless function requires efficient

scaling capabilities when it faces high demand

because variable traffic patterns are common in

many applications.

• An analysis of cost efficiency will compare Azure

Functions and AWS Lambda by evaluating their

pricing structures according to execution

duration, memory needs, and customer requests.

Organizations must understand how serverless

pay-as-you-go costs work because they determine

the most efficient cost structure of .NET

applications hosted across serverless platforms.

• The study identifies suitable methods to optimize

.NET applications that function in serverless

environments. This research investigates

serverless application performance bottlenecks to

offer developers guidelines for improving the

speed of their serverless systems.

II. LITERATURE REVIEW

Serverless computing established itself as the central

concept in cloud computing through its ability to help

developers run applications by eliminating

infrastructure management tasks. Implementations of

Microsoft Azure Functions together with Amazon

Web Services (AWS) Lambda platform adoption

occurred due to organizations' requirement to achieve

cost-effective solutions with scalable event-triggered

environments. Despite its advantages, researchers still

study serverless computing effectiveness, mainly

when applied to .NET applications. The present

section surveys significant literature about serverless

computing with opposing views on its past

development, essential performance metrics, and prior

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 470

research regarding Azure Functions and AWS

Lambda comparison.

A. Evolution of Serverless Computing

Serverless computing emerged from cloud computing,

giving developers an infrastructure management

solution without explicit developer administration.

Cloud providers introduced the first FaaS offerings,

which enable users to run stateless functions when

needed. AWS Lambda established its position as a

turning point in serverless computing when it started

in 2014. Soon after, Microsoft Azure Functions joined

the market in 2016, followed by Google Cloud

Functions and various alternative platforms.

Serverless computing achieves its primary objective

through an execution model that triggers applications

to run only in response to events, dramatically

reducing idle resources' utilization and cost. The main

strength of serverless computing is that it enables

developers to concentrate on specific application code

without needing to deal with infrastructure

provisioning or scaling services from the cloud

provider.

Figure 1: The Future of Serverless Computing

Multiple research investigations have documented the

main advantages of serverless computing, which

include the following benefits:

• Serverless platforms dynamically adjust resources

through automatic scaling to optimize how they

use resources according to workload levels.

• Pay-as-you-go pricing lets users pay for execution

time usage only, thus minimizing infrastructure

expenses.

• The platform handles server provisioning,

patching,g, and maintenance tasks, freeing

developers from such operational complexities.

• Serverless computing functions operate through

event-driven execution because they respond to

HTTP requests, message queues, and database

updates, thus enabling their use in microservices

and event-driven systems.

The research community found multiple concerns

regarding serverless computing, such as slow system

initialization times, time restrictions, and customer

dependency on specific vendors. The performance

challenges displayed by .NET applications during cold

start situations present adverse effects on workload

response times that are especially critical.

B. Serverless computing operations must be

performed based on specific performance metrics.

Serverless performance analysis consists of executing

multiple metrics directly affecting the application's

operational effectiveness. Several studies analyze

these benchmarks to assess serverless infrastructure

performance regarding application speed and spending

effectiveness.

The main limitation of serverless computing emerges

through cold start latency, which happens when

functions must run after idle for some time. According

to Wang et al. (2018) and Shahrad et al. (2020), cold

start delays result from factors including runtime

selection and memory allocation, and platform-

specific optimization processes. A serverless system's

duration is decisive in determining its operational

efficiency. McGrath and Brenner (2017) conducted

benchmark investigations to reveal the different

execution timings between AWS Lambda, Azure

Functions, and Google Cloud Functions as they

depend on runtime environments. Serverless systems

offer automatic scalability through their platform

design, although technical constraints affect how

providers control the scaling process. Jonas et al.

(2019) demonstrated that AWS Lambda provides

quicker scaling than Azure Functions, but Azure's

premium plans ensure steady performance under

heavy load conditions. Castro et al. (2019) compared

cloud provider pricing models in their cost analysis

study to establish that cost-effectiveness depends

heavily on function execution time and memory usage.

Memory and CPU Utilization: Memory and CPU

performance impact execution time and overall

function efficiency. Research analysts have published

multiple papers about resource allocation effects based

on configuration adjustments while investigating

performance-enhancing optimal settings. The

designated performance metrics function as evaluation

criteria for studying serverless .NET workloads while

this research compares Azure Functions against AWS

Lambda.

C. Comparative Studies on Azure Functions and

AWS Lambda

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 471

Multiple studies from academic institutions and the

industry sector examined Azure Functions and AWS

Lambda by analyzing their execution performance,

cold start latency, and cost evaluation. The research

presents findings that demonstrate how these

platforms manage multiple types of workload

operations and what edge one platform demonstrates

against another. Research conducted by Shilpa et al.

(2021) demonstrated that AWS Lambda delivers faster

response times for Node.js and Python applications at

program launch, whereas Azure Functions performs

better with .NET programs since it links deeply with

Microsoft technology frameworks. The latest

provisioning system in AWS Lambda functions has

enhanced its ability to overcome cold start delays.

According to Li et al. (2020), the execution speed of

AWS Lambda surpasses that of Azure Functions in

most cases, especially during brief processing periods.

Azure functions deliver stable execution performance

when they operate under steady load conditions. The

study by Arif et al. (2022) discovered that AWS

Lambda automatically scales functions at higher

speeds than Azure Functions during traffic spikes. The

dedicated hosting environment provided by Azure

delivers better-sustained workload execution than

hosting options. Patil and Roy (2023) showed through

their research that AWS Lambda functions cost less

during brief runtime, but Azure Functions prove

cheaper for extensive and memory-hungry processing

needs.

Figure 2: Azure vs AWS comparison for Serverless

Architecture

D. Gaps in Existing Research

Multiple research papers have analyzed Azure

Functions and AWS Lambda, but this paper seeks to

fill the remaining gaps in their existing research:

• Most comparative studies ignore .NET

applications in their examinations because they

focus primarily on JavaScript, Python, and Go

runtimes. A specialized evaluation must be

performed because .NET remains the dominant

choice for corporate applications.

• Despite documenting the existing cold start

issues, research lacks extensive evaluation of

techniques to optimize cold start performance for

.NET applications.

• Raw pricing structures appear in most studies

analyzing costs, but practical cost efficiency

analysis is missing from this research because it

neglects workload patterns and resource

configurations.

• Research needs to investigate real-world

variations of cloud performance, which stem from

regional factors, network delay, and workload

variations.

This analysis adds value to serverless research because

it investigates Azure Functions and AWS Lambda for

.NET applications with detailed evaluations.

III. METHODOLOGY

The research methodology establishes a thorough

evaluation procedure for .NET serverless operations

that evaluates Microsoft Azure Functions and Amazon

Web Services Lambda platforms. The research utilizes

an empirical method through deploying parallel

matchable workloads on standardized testing

environments to maintain fair assessment of both

platforms. The testing methodology analyses primary

operational benchmarks, including the initial launch

delay alongside runtime duration, adjustment

capabilities, and fiscal performance. The extensive

experimental methodology makes it possible to obtain

valid findings which unveil important information

regarding .NET application performance in these

serverless environments.

Multiple stages conduct the in-depth analysis, starting

with key workload selection for .NET applications,

which represents typical real-world usage patterns.

The workflow consists of three distinct types:

resource-intensive calculations, I/O restriction

requirements, and programming application

development services. Azure Functions and AWS

Lambda receive testing based on equal setup

parameters for runtime configuration, memory limits,

and trigger execution. An organized set of experiments

runs sequential tests that record performance data

through cloud-specific supervisory instruments and in-

house tracking systems.

A cost analysis included in the research evaluates

Azure Functions and AWS Lambda pricing systems to

determine their expenses when processing .NET

workloads. Solid analysis needs multiple test runs plus

statistical models assessing performance fluctuations.

The study mentions its weaknesses while presenting

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 472

methods to reduce possible variations in findings or

bias.

A. Research Framework

A step-by-step experimental research framework

guides this investigation to create results that duplicate

in practice and support serverless program

implementation. This research strives to evaluate

.NET application performance after deployment onto

Azure Functions and AWS Lambda while prioritizing

execution speed, ability to scale, and associated cost.

The framework incorporates five main components for

analysis.

• For benchmarking purposes, a representative set of

.NET applications corresponding to typical

serverless use cases needs to be identified.

• Azure Functions and AWS Lambda will receive

equivalent workload deployments to establish a

balanced test environment.

• The evaluation included testing metrics such as

cold start latency, execution time scalability tests

under load conditions and error rate assessments.

• To establish their price-performance ratio, Azure

Functions and AWS Lambda pricing models are

evaluated through comparative cost evaluation.

• The analysis of optimization approaches that

enhance performance and the efficiency of .NET

applications in serverless deployments.

A thorough investigation exists to reveal the complete

behaviour of .NET applications on these platforms. A

controlled empirical evaluation method enables the

research through repeated function runs, which

addresses performance variations. The research

analyzes various workload combinations and

execution scenarios to provide relevant

implementation guidelines for serverless computing

organizations. NET-based applications.

B. Experimental Setup

The experimental setup ensures equal conditions for

Azure Functions and AWS Lambda through close

configuration matching between the platforms. The

system requires selecting cloud regions, runtime

environments, memory allocation choices, function

invocation approaches, execution time restrictions,

and concurrency configuration options.

Azure Functions and AWS Lambda functions operate

from the East US region and US East (N. Virginia) to

maintain consistent geography while minimizing

latency caused by cloud region selection. The solution

operates using .NET 8.0 because this version serves as

the latest long-term support (LTS) release at the time

of research. The execution platforms utilize Linux-

based environments which maintain cross-platform

operations and eliminate runtime optimization

differences between Windows and Linux systems.

The experiment occurs at memory settings of 512 MB,

1024 MB, and 2048 MB to analyze the effect of

memory configuration on speed and latency. Each

level receives performance testing. AWS API

Gateway and Azure API Management serve as HTTP

request gateways to invoke Lambda and Azure

Functions functions. At the same time, message

queues and database triggers implement event-based

function invocation.

The evaluation of cold starts contains two phases:

functions remain inactive for 30 minutes before a

second request triggers them. This testing

methodology represents conditions where Lambda and

Azure Functions are not running nonstop. The

platforms enable auto-scaling features to determine

their capacity to handle unexpected traffic spikes. The

analysis captures performance data, including

execution periods, start delays, operational rates and

rate of errors through Azure Application Insights'

monitoring system and CloudWatch Logs' monitoring

system. The study executes 1,000 function requests

per Workload during multiple periods to accumulate

adequate analysis data.

C. Selection of Benchmark Workloads

Three different .NET workloads were selected and

assessed according to standard serverless application

scenarios. The workload selection includes tests for

various performance aspects, focusing on

computational speed, I/O operations, and API

connectivity.

1) Compute-Intensive Workload

Implementing a prime number calculation algorithm

forms part of this first Workload. Data-intensive

processing tasks like cryptographic operations,

machine learning analysis, and financial modelling

tasks occur in serverless environments through this

Workload. A workflow with continuous

computational requirements helps evaluate CPU

resource distribution and runtime management among

Azure Functions and AWS Lambda.

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 473

2) I/O-Intensive Workload

The second Workload requires reading files as the first

step before performing data transformation actions

that lead to storage procedures in the cloud. The

network communication between Azure Functions

operates with Azure Blob Storage as the endpoint, and

AWS Lambda functions utilize Amazon S3 as their

data repository. The Workload evaluates system

performance when handling data-heavy applications

that control ETL operations and log observation and

media conversion tasks. The I/O latency test evaluates

the efficiency of data handling operations since it

affects the time required for an entire function

operation.

3) API-Based Workload

The REST API is the third Workload because it

obtains data from cloud-based databases. The Azure

Functions connect to Azure Cosmos DB, whereas the

AWS Lambda functions use Amazon DynamoDB.

Through this Workload, serverless functions operate

as microservices backend components for web and

mobile applications. The API-based Workload enables

the assessment of serverless response durations,

connectivity management, and database access times.

4) Performance Testing Metrics

• The research uses six performance evaluation

metrics to analyze Azure Functions and AWS

Lambda efficiency.

• The execution delay occurs when functions

operate after meeting idle conditions,

constituting Cold Start Latency.

• The time a request needs processing and

returns results to the user constitutes

execution time.

• A function demonstrates scalability

performance when it runs at steady response

times across different concurrent loads.

One key performance metric tracks functions that end

because of memory constraints, resource limitations,

or timeout failures.

• Resource Utilization: The efficiency of CPU

and memory consumption during execution.

• The total price to run serverless functions

gets evaluated through cloud provider billing

structures.

• The statistical analysis requires multiple test

runs of these metrics for proper evaluation.

5) Data Collection and Analysis

Performance measurement relies on native

observation systems from cloud providers and

personalized logging procedures within the function

programming code. The Lambda function execution

process is monitored through AWS CloudWatch and

AWS X-Ray, while Azure Application Insights and

Azure Monitor track Azure Functions performance

metrics. Data logs reside in a unified database ready

for statistical evaluation through mean and median

evaluation, variance analysis, and correlation studies.

Performance trend visualizations are created with

Matplotlib and Power BI for easier comparison

through data visualization tools.

This research bases its methodical approach on

marketing the performance metrics between .NET

applications running on Azure Functions and AWS

Lambda. The research documents findings about

optimizing .NET applications running on serverless

environments by implementing multiple workload

testing with performance metric assessment and

thorough cost evaluation. The evaluation methodology

introduces consistent testing procedures across both

platforms to assess their performance scope

accurately. The following section shows an in-depth

analysis of serverless platform performances from

experiments.

IV. RESULTS AND ANALYSIS

This research extensively assesses the function of

.NET applications when deployed serverlessly on

Microsoft Azure Functions and AWS Lambda

platforms. The evaluation jTable focuses on five

crucial performance indicators, which consist of

execution time and scalability, cost efficiency, cold

start latency, and error rates. The measurements of key

metrics occurred across multiple workloads while

using different memory settings under varying

execution parameters to create accurate findings about

serverless computational environments.

The test scenarios investigated three significant

performance factors ranging from the platforms'

ability to respond to urgent requests to their automatic

resource allocation mechanisms and the time needed

for completing tasks based on specific workload

requirements. The evaluation measured the financial

implications of running .NET applications through a

cost-efficiency analysis that examined both

programming platforms. Letting developers obtain

essential information regarding serverless solution

benefits vs limitations through experimental analysis

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 474

of Azure Functions and AWS Lambda effectiveness

with .NET workloads.

A. Cold Start Latency

Serverless computing faces a significant problem with

cold start latency when applications need to execute

with low response times. The execution environment

needs initial setup by cloud providers before a function

starts when it remains inactive beyond a specified

duration. The execution process delays application

responsiveness, mainly when dealing with

applications that need high-performance standards.

Before execution trials began, I allowed functions to

remain idle for thirty minutes, then triggered them to

measure the period it took them to initialize. The

testing used three different memory size combinations

of 512MB, 1024MB and 2048MB. The testing results

indicated that AWS Lambda demonstrated superior

cold-start latency performance than Azure Functions

across all tests. AWS Lambda performed with a colder

average startup time of 720ms under 512MB

compared to the 930ms performance of Azure

Functions. The cold start duration improved for AWS

Lambda and Azure Functions as their memory

allocations increased to 2048MB, resulting in Lambda

achieving 290ms and Functions attaining 470ms.

Cold start times differ between providers because they

use different methods to optimize their infrastructure.

AWS Lambda performs best because it utilizes

Firecracker microbes that speed up serverless

workload provisioning and execution. The resource

allocation system used in Azure Functions contains

mechanisms different from Lambda, resulting in

longer delays during cold start loads. Because of this

observed performance difference, Azure Functions

suffer a drawback when used in critical use cases

requiring minimum response times.

The bar chart comparison shows cold start latency

measurement between memory variants where the two

platforms' performance gap can be easily understood.

B. Execution Time Performance

Serverless platform performance depends

significantly on execution duration as an essential

efficiency measurement factor. A function needs to

complete all execution processes until it responds to

the total duration it takes to finish. Execution time

affects system performance and billing costs due to

provider fees according to function running time.

The research counted execution time for three separate

workloads during data collection sessions.

• CPU efficiency is evaluated through Prime

Number Calculation, which belongs to the

compute-intensive workload category.

• Ordered Input-Output Workloads (File

Processing) measure the capacity of functions to

handle file operations and data transfers.

• API-Based Workload (REST API Calls):

Measures database query response time and API

performance.

1) Compute-Intensive Workload Analysis

The Workload required the execution of a prime

number algorithm to produce results in a particular

numerical range. AWS Lambda executed tasks faster

than Azure Functions throughout all performance

tests. The Workload required 520ms to finish at

1024MB memory size using AWS Lambda, while

Azure Functions completed 680ms, on average. The

difference in execution speeds indicates that AWS

Lambda provides superior optimization when dealing

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 475

with CPU-hefty tasks. The serverless environment

optimization done by AWS enables superior resource

distribution, which is the reason for this advantage.

2) I/O-Intensive Workload Analysis

During I/O-intensive workload testing between the

two platforms, there was minimal difference in

performance when writing files to cloud storage.

Writing to Amazon S3 using AWS Lambda required

890ms for completion, though Azure Functions

needed an additional 50ms to write to Azure Blob

Storage. The results show that AWS Lambda performs

storage operations at a slightly higher speed than

Azure Functions, but no drastic difference exists in

overall efficiency between the platforms

3) API-Based Workload Analysis

API-based workloads performed better under AWS

Lambda because it successfully queried the cloud

database in its operations. During regular operations,

the average response time of data requests to Amazon

DynamoDB using AWS Lambda reached 210 ms.

During Azure Functions' query of Azure Cosmos DB,

the response time gradually increased from 280ms at

moderate load to higher levels as the concurrency

reached higher figures. AWS Lambda demonstrates

better scalability for API-driven applications than

Azure Functions based on these performance trends.

The line chart below representation is used to illustrate

execution times across different workloads and

memory allocations, providing a visual comparison of

performance trends.

C. Scalability and Concurrency Performance

Serverless computing depends on scalability as its

main characteristic, which allows applications to scale

automatically according to changing demand levels.

Both platforms underwent testing for scalability by

analyzing their performance under different

concurrent request ranges from one execution per

second to five hundred executions per second. AWS

Lambda demonstrated superior scalability by

efficiently balancing workloads when different

amounts of concurrent requests existed. The

processing rate for AWS Lambda reached 500

concurrent executions per second with virtually no

impact on the response time duration. The response

time of Azure Functions rose by 30% after exceeding

300 concurrent requests.

AWS Lambda's auto-scaling features react faster,

making it a better selection for applications that

encounter unexpected traffic surges. The data

visualization includes a response time to concurrency

level comparison graph to represent these results.

1) Error Rate Analysis

Platform reliability at maximum capacity was

evaluated through error rate measurements. The

researchers examined three main categories of errors

within their study.

• Timeouts occurred when a function needed longer

than the allowed period to execute.

• The allocation system permits memory errors

when functions reach their memory capacity limit.

• The service provider enforced throttling limits,

which prevented further concurrent executions

from continuing.

AWS Lambda performed better than Azure Functions

regarding error rates since Lambda produced 0.8% of

errors compared to Functions at 1.4%. The research

data demonstrates that AWS Lambda enables .NET

applications to operate more reliably, especially when

dealing with heavy usage conditions.

2) Cost Efficiency Analysis

The selection of a serverless computing platform

demands a thorough evaluation of its cost-efficiency

aspects. AWS Lambda's cost structure matches Azure

Functions' since bills arise from counting triggered

functions combined with allocated memory space and

run time duration.

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 476

The research calculated execution costs and expenses

from running one million function calls under multiple

workstation scenarios. The results showed that:

AWS Lambda delivered better value for money due to

its $1.80 average cost per million executions for

compute-intensive operations.

Azure Functions maintained slightly higher expenses

at $2.10 per million executions but did not exceed the

same workload.

The research outcomes demonstrate that AWS

Lambda provides better financial advantages when

managing large-scale applications. The visualization

includes data presented through a bar chart, which

displays cost variations based on execution time.

A stock-to-stock evaluation of Azure Functions

against AWS Lambda demonstrated that AWS

Lambda achieved superior performance across all

essential factors, from cold start latency to execution

time extension and expanding capacity usage

alongside cost savings performance. Azure Functions

functions as a practical solution, but the minor

slowdowns during startup and occasional mistakes

indicate it is not ideal for apps where delays are

critical.

V. DISCUSSION AND RECOMMENDATIONS

This research establishes a complete evaluation

between Azure Functions and AWS Lambda systems

that install and operate .NET applications within

serverless environments. The research data establishes

significant performance, scalability, cost efficiency

and reliability variables that strongly guide developer

and organizational selections for serverless

architecture implementations. This segment analyzes

the implications of primary results before discussing

the factors affecting performance and suggests ways to

enhance .NET applications in serverless frameworks.

A. Performance Analysis and Interpretation

The main performance requirement for serverless

computing centres on how fast programs run because

speedy execution and low initial startup delays result

in fluid user experiences. According to the study,

AWS Lambda exhibited superior performance to

Azure Functions across most measured criteria

because it showed the best outcomes for cold start

latency and execution time and scalability attributes.

AWS Lambda delivered substantially better cold start

latency performance, which became more pronounced

with increased memory allocation options. Potential

application users who invoke functions after periods

of idleness benefit from the Firecracker microVM

technology in AWS Lambda, which accelerates

execution environment deployment, thereby

minimizing initialization delays. AWS Lambda best

serves applications requiring instant responses

because of its linear response time and periodic traffic

patterns. Such applications include real-time data

processing, IoT applications, and customer-facing

services.

The execution time analysis demonstrated that AWS

Lambda excels as a solution for time-sensitive

compute-intensive and API-based workload

processing. The examination showed that AWS

Lambda provided much faster CPU-bound execution

times during prime number calculation operations.

The study shows that AWS Lambda executes

computations more effectively than Azure Functions

due to its superior optimization of underlying

resources, thus making it appropriate for processing

applications which demand high computational

requirements, including AI model inference, financial

simulations, and batch processing functions.

Moving between cloud storage operations that involve

file inputs and outputs showed minimal performance

disparities between AWS Lambda and Azure

Functions. AWS Lambda demonstrated superior

performance, particularly while accessing Amazon S3,

as opposed to Azure Blob Storage users. AWS

Lambda delivers enhanced performance to developers

who manage large file processing operations, although

this improvement is less significant than the

differences experienced in compute-intensive

workloads.

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 477

B. Scalability and Reliability Considerations

The key benefit of serverless computing is its ability

to manage traffic spikes that bypass human support

needs automatically. The scalability test revealed that

AWS Lambda showed better capabilities for handling

increased workloads than other solutions. AWS

Lambda performed better than Azure Functions

regarding response time in dealing with 500

concurrent executions per second because it

maintained minimal degradation. However, Azure

Functions experienced a 30% latency increase after

300 concurrent requests.

The underlying reason for AWS Lambda's exceptional

scalability results from its adaptive resource

distribution capabilities, which distribute work

between multiple instances. Azure Functions

demonstrated slower speed to scale operations, thus

prolonging response times whenever demands rose.

The optimal choice for massive, unpredictable

applications like real-time analytics and e-commerce

operates better with AWS Lambda.

Reliable systems are essential, particularly when

maintaining high availability during system operation.

Results from error rate analysis demonstrated that

AWS Lambda produced fewer failures than Azure

Functions at rates of 0.8% and 1.4%, respectively.

Azure Functions encountered higher error rates

because of memory allocation failures and throttling

errors that occurred while handling heavy loads.

According to the data, AWS Lambda delivers a

steadier execution environment, making it particularly

suitable for critical applications that need stable

operations.

C. Cost Efficiency and Financial Considerations

System developers must prioritize cost efficiency

when selecting serverless computing. AWS Lambda

and Azure Functions' pay-per-use pricing system

determines execution costs according to invocation

numbers, execution time, and required memory

allocation.

The cost analysis found that AWS Lambda provided

superior financial value compared to Azure Functions,

mainly when running workloads with heavy

computational demands. AWS Lambda customers

spent $1.80 for each million executions of their code,

while Azure Functions users paid $2.10 for equivalent

workload execution. Such minor unit price differences

will increase expenses when applied across large-scale

execution instances, especially when applications

must be executed frequently or persistently.

Determining cost efficiency requires considering

execution pricing but needs a broader assessment

because of several additional factors. The decision-

making process for financial investments within

organizations must include an assessment of cold start

latency, scalability features, and infrastructure

requirements. Azure Functions are a feasible solution

for applications that need Microsoft services,

including Azure SQL, Active Directory, and

Microsoft Teams integrations, even though they

demand higher execution costs. Organizations that use

DynamoDB, S3 and Kinesis within the AWS

environment will find AWS Lambda to deliver the

most cost-effective solution.

D. Recommendations for Optimizing .NET

Applications in Serverless Environments

An analysis of this research produces

recommendations for developers and organizations

which target serverless environment optimization of

.NET applications.

1) Choosing the Right Serverless Platform

AWS Lambda should be selected for applications

requiring quick startup and runtime performance

because it has proved most efficient for these

functions.

Organizations should choose Azure Functions for their

applications when they need to use Azure services

extensively, and the solution requires integrated access

to Azure databases and enterprise platforms.

AWS Lambda provides better performance for

applications under heavy load because it features rapid

scaling features and minimal response time reduction

when the operation scale increases.

2) Optimizing Function Execution Time

Higher memory allocation settings lead to faster

processing times since larger memory capacity usually

provides quicker speed.

There are two options for cold start latency reduction:

AWS Lambda maintains instance readiness through

provisioned concurrency, whereas Azure Functions

uses its premium plans for the same purpose.

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 478

Improve .NET code operation by reducing

dependency, eliminating unnecessary calculations,

and implementing asynchronous approaches,

enhancing performance quality.

3) Reducing Serverless Computing Costs

A combination of suitable function invocation patterns

enables consumers to reduce execution redundancies

and waste.

Reserved concurrency should be utilized for

predictable workloads to improve resource allocation

and avoid abrasive cost fluctuations.

Utilizing cost monitoring tools like AWS Cost

Explorer and Azure Cost Management allows users to

monitor function usage and optimize expenses.

The research demonstrates an extensive performance

evaluation of .NET applications that run on AWS

Lambda and Azure Functions, emphasizing their

respective platform strengths and limitations. The

benchmark results establish AWS Lambda ahead of

other platforms. It delivers enhanced cold start latency

and execution time functionality, superior scalability,

and reduced costs, making it the top option for various

use cases. Azure Functions is valuable for deploying

applications that depend heavily on the Microsoft

Azure platform.

The choice between AWS Lambda and Azure

Functions must consider the application's particular

requirements, integration needs, and financial limits

for the project. Organizations and developers must

analyze performance metrics, cost assessments, and

scalability to identify the optimal serverless

computing solution for their .NET workload

requirements.

CONCLUSION

The method of serverless computing has transformed

application development through its scalable, cost-

effective solution that requires no maintenance for

cloud computing. This research included an extensive

performance analysis of Azure Functions and AWS

Lambda to evaluate .NET application efficiency in

serverless environments for these leading cloud

platforms. The research points out significant

variations in cold start latency with execution

performance, scalability, error rate evaluation, and

lower costs compared to these serverless platforms,

enabling developers and organizations to select their

serverless solution solutions.

Key performance metrics show AWS Lambda

surpasses Azure Functions because it provides better

cold start latency, faster execution times, and superior

scalability and cost efficiency. AWS Lambda achieves

its fast cold start times by utilizing Firecracker

microVMs, which positions it as the best choice for

user applications requiring real-time and low-latency

performance. Under heavy workload conditions, AWS

Lambda activates its ability to scale better than Azure

Functions, which keeps response times steady while

processing hundreds of concurrent executions each

second. Azure Functions experiences delayed

responses when handling concurrent executions.

The combination of longer execution times and initial

start delays makes Azure Functions suitable for

Microsoft-centric organizations using Azure SQL,

Cosmos DB, Microsoft Active Directory, and their

enterprise applications, including Microsoft Teams.

Azure Functions allows organizations to benefit from

flexible pricing options that make it suitable for

workloads that need extended duration, although they

do not demand instant reaction times.

Analyzing costs demonstrates that AWS Lambda

provides superior value to busy applications as it

charges less for each million requests than Azure

Functions. Azure Functions delivers competitive

pricing benefits to workloads that leverage the

extensive business partnerships and integration

advantages Azure offers. The choice of a serverless

platform depends on organizations' thorough analysis

of their budget, workforce requirements, and

environmental dependencies.

A. Key Takeaways and Future Considerations

These essential conclusions arise from the study

results:

• Applications need AWS Lambda as their preferred

solution because it delivers exceptional low cold

start latency, rapid execution speed and, most

importantly, robust scalability for dynamic

workloads.

• Microsoft Azure functions remain a dependable

option for platforms that need deep integration

with Azure services, although they incur longer

startup delays and average scaling capabilities.

• The pricing structure for AWS Lambda delivers

better efficiency than Azure Functions with short-

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 479

term high-speed processing requirements, but

Azure Functions demonstrates more cost-

effectiveness for extended execution spans.

• Serverless performance can reach its best potential

through memory allocation tuning with provided

concurrency and asynchronous functionality on

AWS Lambda and Azure Functions.

• Teams should use AWS Lambda and Azure

Functions jointly in development for particular

application requirements when following multi-

cloud approaches.

B. Future Research Directions

This study provides a comprehensive comparison of

Azure Functions and AWS Lambda for .NET

applications, but further research is needed to explore

additional aspects of serverless computing. Future

studies could focus on:

• Multi-cloud serverless architectures, evaluating

performance across Google Cloud Functions in

addition to AWS and Azure.

• Security and compliance considerations in

serverless environments, particularly for enterprise

and government applications.

• Edge computing and serverless integration,

assessing performance in distributed and IoT

environments.

• Optimization strategies for .NET applications to

further reduce cold start latency and execution

costs in serverless deployments.

As serverless computing continues to evolve, future

improvements in runtime optimizations, infrastructure

enhancements, and cost models will further shape the

efficiency of .NET applications in cloud

environments. Developers and organizations must

remain agile in adopting best practices and leveraging

emerging innovations to maximize the benefits of

serverless architectures.

REFERENCES

[1] Akkus, I. E., Chen, R., Rimac, I., Satzke, M. S.

K., Beck, A., Aditya, P., & Hilt, V. (2020).

SAND: Towards high-performance serverless

computing. In Proceedings of the 2018 USENIX

Annual Technical Conference, USENIX ATC

2018 (pp. 923–935). USENIX Association.

[2] Buyya, R., Srirama, S. N., Casale, G., Calheiros,

R., Simmhan, Y., Varghese, B., … Shen, H.

(2019). A manifesto for future generation cloud

computing: Research directions for the next

decade. ACM Computing Surveys, 51(5).

https://doi.org/10.1145/3241737

[3] Benedict, S. (2013). Performance issues and

performance analysis tools for HPC cloud

applications: A survey. Computing, 95(2), 89–

108. https://doi.org/10.1007/s00607-012-0213-0

[4] Baldini, I., Castro, P., Chang, K., Cheng, P.,

Fink, S., Ishakian, V., … Suter, P. (2017).

Serverless computing: Current trends and open

problems. In Research Advances in Cloud

Computing (pp. 1–20). Springer Singapore.

https://doi.org/10.1007/978-981-10-5026-8_1

[5] Dancheva, T., Alonso, U., & Barton, M. (2024).

Cloud benchmarking and performance analysis

of an HPC application in Amazon EC2. Cluster

Computing, 27(2), 2273–2290.

https://doi.org/10.1007/s10586-023-04060-4

[6] Duan, Q. (2017). Cloud service performance

evaluation: status, challenges, and opportunities

– a survey from the system modeling perspective.

Digital Communications and Networks, 3(2),

101–111.

https://doi.org/10.1016/j.dcan.2016.12.002

[7] Giménez-Alventosa, V., Moltó, G., & Caballer,

M. (2019). A framework and a performance

assessment for serverless MapReduce on AWS

Lambda. Future Generation Computer Systems,

97, 259–274.

https://doi.org/10.1016/j.future.2019.02.057

[8] Lin, W. T., Krintz, C., Wolski, R., Zhang, M.,

Cai, X., Li, T., & Xu, W. (2018). Tracking causal

order in AWS lambda applications. In

Proceedings - 2018 IEEE International

Conference on Cloud Engineering, IC2E 2018

(pp. 50–60). Institute of Electrical and

Electronics Engineers Inc.

https://doi.org/10.1109/IC2E.2018.00027

[9] Lim, S. B., Woo, J., & Li, G. (2020).

Performance analysis of container-based

networking Solutions for high-performance

computing cloud. International Journal of

Electrical and Computer Engineering, 10(2),

1507–1514.

https://doi.org/10.11591/ijece.v10i2.pp1507-

1514

[10] Machireddy, Jeshwanth, Harnessing AI and Data

Analytics for Smarter Healthcare Solutions

(January 14, 2023). International Journal of

Science and Research Archive, 2023, 08(02),

785-798 , Available at SSRN:

http://dx.doi.org/10.2139/ssrn.5159750

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 480

[11] Mohammed, F., Alzahrani, A. I., Alfarraj, O., &

Ibrahim, O. (2017). Cloud Computing Fitness for

E-Government Implementation: Importance-

Performance Analysis. IEEE Access, 6, 1236–

1248.

https://doi.org/10.1109/ACCESS.2017.2778093

[12] McGrath, G., & Brenner, P. R. (2017). Serverless

Computing: Design, Implementation, and

Performance. In Proceedings - IEEE 37th

International Conference on Distributed

Computing Systems Workshops, ICDCSW 2017

(pp. 405–410). Institute of Electrical and

Electronics Engineers Inc.

https://doi.org/10.1109/ICDCSW.2017.36

[13] Mavridis, I., & Karatza, H. (2017). Performance

evaluation of cloud-based log file analysis with

Apache Hadoop and Apache Spark. Journal of

Systems and Software, 125, 133–151.

https://doi.org/10.1016/j.jss.2016.11.037

[14] Machireddy, Jeshwanth, Automation in

Healthcare Claims Processing: Enhancing

Efficiency and Accuracy (April 16, 2023).

International Journal of Science and Research

Archive, 2023, 09(01), 825-834.

http://dx.doi.org/10.2139/ssrn.5159747

[15] Mishra, A. (2022). Microsoft Azure for Java

developers: Deploying Java applications through

Azure WebApp, Azure Kubernetes Service,

Azure Functions, and Azure Spring Cloud.

Microsoft Azure for Java Developers: Deploying

Java Applications through Azure WebApp,

Azure Kubernetes Service, Azure Functions, and

Azure Spring Cloud (pp. 1–356). Apress Media

LLC. https://doi.org/10.1007/978-1-4842-8251-

9

[16] Mishra, A. (2019). AWS Lambda. In Machine

Learning in the AWS Cloud (pp. 237–255).

Wiley.

https://doi.org/10.1002/9781119556749.ch12

[17] Odun-Ayo, I., Williams, T. A., Odusami, M., &

Yahaya, J. (2021). A systematic mapping study

of performance analysis and modelling of cloud

systems and applications. International Journal

of Electrical and Computer Engineering, 11(2),

1839–1848.

https://doi.org/10.11591/ijece.v11i2.pp1839-

1848

[18] Pérez, A., Moltó, G., Caballer, M., & Calatrava,

A. (2018). Serverless computing for container-

based architectures. Future Generation Computer

Systems, 83, 50–59.

https://doi.org/10.1016/j.future.2018.01.022

[19] Peng, Y., & Wu, I. C. (2021). A cloud-based

monitoring system for performance analysis in

IoT industry. Journal of Supercomputing, 77(8),

9266–9289. https://doi.org/10.1007/s11227-021-

03640-8

[20] Sasmal, S. (2024). Exploring Usage of AWS

Lambda in Data Processing. International

Journal of Information Technology and

Computer Engineering, (42), 35–42.

https://doi.org/10.55529/ijitc.42.35.42

[21] Sawhney, R., & Chanumolu, K. (2023).

Beginning Azure Functions. Beginning Azure

Functions. Apress. https://doi.org/10.1007/978-

1-4842-9203-7

[22] Sawhney, R., & Chanumolu, K. (2023).

Introduction to Azure Functions. In Beginning

Azure Functions (pp. 1–12). Apress.

https://doi.org/10.1007/978-1-4842-9203-7_1

[23] Saif, S., & Wazir, S. (2018). Performance

Analysis of Big Data and Cloud Computing

Techniques: A Survey. In Procedia Computer

Science (Vol. 132, pp. 118–127). Elsevier B.V.

https://doi.org/10.1016/j.procs.2018.05.172

[24] Savazzi, S., Nicoli, M., & Rampa, V. (2020).

Federated Learning with Cooperating Devices: A

Consensus Approach for Massive IoT Networks.

IEEE Internet of Things Journal, 7(5), 4641–

4654.

https://doi.org/10.1109/JIOT.2020.2964162

[25] Villamizar, M., Garcés, O., Ochoa, L., Castro,

H., Salamanca, L., Verano, M., … Lang, M.

(2017). Cost comparison of running web

applications in the cloud using monolithic,

microservice, and AWS Lambda architectures.

Service Oriented Computing and Applications,

11(2), 233–247. https://doi.org/10.1007/s11761-

017-0208-y

[26] Wang, L., Li, M., Zhang, Y., Ristenpart, T., &

Swift, M. (2020). Peeking behind the curtains of

serverless platforms. In Proceedings of the 2018

USENIX Annual Technical Conference,

USENIX ATC 2018 (pp. 133–145). USENIX

Association.

[27] Yussupov, V., Soldani, J., Breitenbücher, U.,

Brogi, A., & Leymann, F. (2021). FaaSten your

decisions: A classification framework and

technology review of function-as-a-Service

platforms. Journal of Systems and Software, 175.

https://doi.org/10.1016/j.jss.2021.110906

[28] Zagan, E., & Danubianu, M. (2023). Data Lake

Architecture for Storing and Transforming Web

Server Access Log Files. IEEE Access, 11,

© MAR 2025 | IRE Journals | Volume 8 Issue 9 | ISSN: 2456-8880

IRE 1707656 ICONIC RESEARCH AND ENGINEERING JOURNALS 481

40916–40929.

https://doi.org/10.1109/ACCESS.2023.3270368

[29] Zaman, F., Khan, A., Res, M. O.-Int. J. Sci.

Technol., & 2021, U. (2021). Performance

evaluation Of Amazon’s, Google’s, and

Microsoft’s serverless functions: A comparative

study. Researchgate.Net. Retrieved from

https://sci-

hub.ren/https://www.researchgate.net/profile/Fa

him-Uz-

Zaman/publication/351096586_Performance_E

valuation_Of_Amazon’s_Google’s_And_Micro

soft’s_Serverless_Functions_A_Comparative_S

tudy/links/608666e12fb9097c0c0cf423/Perform

ance-Evaluation-Of-Ama

