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Abstract—This paper introduces BOLT (Bilateral 

filtering and Octree Lightweight Technique), a 

novel, fast, and parameter-free method for up-

sampling point clouds. We leverage the structural 

efficiency of the octree data structure and detail-

preserving properties of the bilateral filter to 

achieve a fast and parameter-free sampling method. 

Unlike the current state-of-the-art techniques, BOLT 

does not require any parameters, deep learning, fine-

tuning, or any type of training, making it a suitable 

candidate for real-time applications. BOLT 

understands the underlying structure of the point 

cloud by dividing the point cloud into a hierarchical 

octree structure. Empty children are filled in the 

octree, and outliers are smoothed using a bilateral 

filter. 

 

I. INTRODUCTION 

 

A point cloud is an unordered 3D representation of 

a set of points in space. It is commonly used in 

computer graphics, computer vision, and robotics. 

Point clouds are often generated using 3D scanners, 

LIDAR, and 3D applications. In this work,  we wish 

to upsample a point cloud. Given a set of point 

clouds, we wish to find a new set of more dense 

points that still represent the same underlying surface. 

Further, while preserving the underlying structure, the 

new points should not introduce any new artifacts, 

should be informative, and should not cluster around 

the original points. The unstructured and unordered 

nature of point clouds makes this a challenging 

problem. Further, existing point cloud upsampling 

methods are often computationally expensive and 

require extensive training and parameter tuning. 

 

To address the above challenges, we present a data-

structure-driven method for point cloud upsampling 

that is fast and parameter-free. Our method utilizes an 

octree data structure without a depth limit to 

understand the underlying structure and initially add 

points to the empty children of the octree. The lack of 

a depth limit allows tighter fitting bounding cubes 

around points and allows for a more accurate 

representation of the underlying structure. This 

representation is often noisy and coarse but captures 

the underlying structure of the point cloud. To smooth 

the point cloud, we use a bilateral filter in a point 

cloud application  

 

Point cloud upsampling can be used as a downstream 

task for various applications, such as 3D 

reconstruction, 3D object recognition, and 3D 

rendering. It can improve the quality of surface 

reconstruction, enhance object detection, extract 

features more accurately, and more. 

 

Our method, BOLT, learns the geometry and structure 

of the point cloud, upsamples it, and smooths it 

without any parameters, deep learning, or fine-tuning. 

 

II. RELATED WORK 

 

Many non-deep learning-based methods for point 

cloud upsampling have been proposed in the past, such 

as moving least squares interpolation (MLS 

interpolation) in 2002 [2], Locally Optimal Projection 

(LOP) in 2007 [3], Edge-Aware Sampling (EAR) in 

2013 [4], and graph total variation in 2019 [5]. 

 

MLS works by fitting a continuous surface to a set of 

local points using a weighted least squares fit of a 

polynomial surface to the points. Points are added by 

computing the Voronoi cells on the local surface and 

adding points to the vertices of the diagram. 

 

LOP, unlike MLS, does not require fitting a local 

surface. Instead, it uses a projection operator to 

project points onto a surface in a way that minimizes 

the sum of the weighted distances between the original 

and projected points. Improvements to LOP, such as 

weighted LOP [6], were proposed that make LOP 

more robust to noise and outliers. 
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MLS and LOP have demonstrated promising results, 

but a common problem with these methods is that they 

do not perform well on sharp edges and corners, as the 

model often assumes a smooth surface. 

 

EAR was designed to work well on edges [4]. It works 

by first computing the normals and relative curvature 

of each point. Then, if the curvature is above a certain 

threshold, the point is considered to be on an edge, and 

it is projected onto the tangent plane of the edge. If a 

point is considered a surface, it is projected onto the 

tangent plane of the surface. 

 

Graph total variation is a method that uses a graph to 

represent the point cloud. First, a triangular mesh is 

constructed, and points are inserted at the centroids of 

the triangles. Assuming the point cloud is piecewise 

smooth, a weighted average of the L1 norms of 

normals between points is minimized. 

 

Many deep learning-based approaches also exist, such 

as PU-Net [7], PU-GAN [8], and PU-GCN [9]. 

Although these point cloud upsampling methods 

tackle a different problem, they are still used as a point 

of comparison. These methods solve  different 

problems because they  are large networks trained on 

large datasets and require a lot of computational power 

to train and run. This paper proposes a fast and 

parameter-free parameter-free method for point cloud 

upsampling. 

 

III. BACKGROUND 

 

A. Octree 

An octree is a tree data structure with eight children in 

each internal node. It is often used to partition 3D 

space and in various applications, such as computer 

graphics, computer vision, and robotics. 

 

 

Fig. 1: An example of an octree. Each cube gets 

recursively divided into eight equal octants. The 

points are stored in the leaf nodes. Image from [10] 

 

In point clouds, an octree is used to partition the 3D 

space and store the points in the leaf nodes. The 

octree is a hierarchical data structure that recursively 

divides 3D space into eight equal octants. Each node 

in the octree represents a rectangular prism in 3D 

space with a particular center, width, length, and 

depth. Nodes, not leaf nodes, have exactly eight 

children; leaf nodes store the points in the point cloud. 

The octree's root node represents the point cloud's 

bounding box. An octree has O (log n) complexity for 

insertion and search operations, where n is the 

number of points in the point cloud. The bounding 

cube's nearest points are much finer and tighter fitting 

than those further away, allowing for a more accurate 

representation of the underlying structure of the point 

cloud. 

 

Further, these tighter bounding boxes hint at where to 

add new points to the point cloud. Adding points to 

the tighter bounding boxes will result in more 

informative points that are not clustered around the 

original points, will not introduce any new artifacts, 

and will preserve the underlying structure of the point 

cloud. 

 

Most octrees have a depth limit, which means that the 

octree. will not divide the space beyond a certain depth 

to avoid a problem of infinite recursion. However, our 

method has no depth limit, and we allow the octree to 

divide the space as much as possible. Since the 

starting point clouds. They are often sparse and noisy, 

and the lack of a depth limit allows for a more accurate 

representation of the underlying structure of the point 

cloud. Other stops, such as checking if an existing 

close points  a r e  already in the node a n d  are used 

to avoid infinite recursion. 
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Fig. 2: An example of an octree with its point cloud 

and cubed representation. The figure was from a blog 

post [11] and generated using the Open3D library 

[12] with a max depth of 4. 

 

B. Bilateral Filter 

The non-linear bilateral filter smoothes images and 

reduces noise while preserving edges. It is a 

generalization of the Gaussian filter and is used in 

various applications such as image processing, 

computer graphics, and computer vision. It is defined 

as follows: 

 
Our paper uses the bilateral filter to smooth the point 

cloud. Similar to the image case, the bilateral filter 

smooths the point cloud while preserving the edges 

and the underlying structure of the point cloud. It 

works by shifting points along a normal vector, and 

the shift amount is a weighted average distance to its 

neighbors. We follow Digne et al. [1] and use the 

following definition of the bilateral filter for point 

clouds: 

p′ = p + δp · np                (1) 

 

Where np is the normal to the regression plane of 

some k nearest neighbors of p. Following Dinge et 

al.  [1], our implementation computes the normal with 

PCA. PCA will find the regression plane that fits the 

data best, and the corresponding found eigenvectors 

will be orthogonal to said plane, which is simple to 

compute compared to an iterative least squares 

method. δp is the displacement of the point p. The 

displacement is computed as follows: let Np be the set 

of k nearest neighbors of p: 

 
In our implementation, wd and we are the Gaussian 

functions defined as follows: 

 
In our implementation, we set σd = 0.1 and σn = 0.1. 

 

IV. METHODOLOGY 

 

We aim to upscale and smooth a sparse point cloud 

using an octree with a significant depth and bilateral 

filing on a point cloud. We start with a sparse point 

cloud P = {p1, . . . , pn}, and generate an octree T by 

iterating through and inserting one at a time. To 

generate the initial upsampling of the points, we find 

the parent of each for point pi in T, then add a new 

point to an empty child of the parent in T. One such 

iteration will double the number of points in the point 

cloud; then another will quadruple, and so on. This 

process gets repeated the number of times necessary to 

get the desired final number of points. Then, we 

extract all points from T to get our new upsampled 

point cloud P′. We then smooth P′ with bilateral 

filtering. Bilateral filtering requires hyperparameters 

σd, σn, and k. k indicates the number of neighbors used 

to find the normal of the regression plane, and σd and 

σn are the standard deviations for the Gaussians used 

in (3). 

 

Algorithm 1 Main upsampling algorithm 

Require: sparse point cloud P with n points, nup 

number of iterations required to get the desired 

number of points functions UPSAMPLE(P) 

T ← CONSTRUCTOCTREE(P) Pn ← 

EMPTYPOINTCLOUD  

 i ≤ nup   

for p ∈ P do   

parent ← p.parent child ← 

RANDOMEMPTYCHILD(parent)  

p′ ← RANDOMPOINTINSIDE(child. Dimensions) 

 end for 

 P ← CONVERTTOPOINTCLOUD(T )  

end function 
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V. EXPERIMENTS 

 

Experiments were done mainly with the ShapeNet 

dataset [13], a large dataset of 3D models. A random 

set of 1024-point clouds was sampled and then 

upscaled to double or 2048 points. We then compared 

some evaluation metrics with the ground truth to see 

how well our method performs quantitatively. In the 

appendix, we highlight the qualitative results of our 

method compared to other methods used in this paper. 

 

A. Evaluation 

We will eventually evaluate our model using the 

Chamfer and Hausdorff distances, as they are standard 

metrics used in point cloud upsampling. We will 

compare it to other parameter-free works and deep 

learning-based methods. 

 

Algorithm 2 Bilateral smoothing algorithm, borrowed 

heavily from [1] 

Require: point cloud P with n points, Pn new 

points, k neighbours, σd, σn  

function BILATERALSMOOTH (P, Pn)  

for p ∈ Pn do 

 Np  ← FINDNEIGHBOURS(P, k, p)

 np ← COMPUTEUNITNORMALTOPLANE(N) 

S W  ← 0 δp ← 0 

q ∈ Np 

w ←wd(  p − q  ) · wn(⟨np, p − q⟩) ▷ From (3) 

S W  ←sw + w 

δp ←δp + w · ⟨np, p − q⟩ 

end for 

p′ ←p + δp  

end function 

 

The Chamfer distance is a measure of how different 

two shapes are and is defined as the following: 

 
The Hausdorff distance is a measure of how similar 

two sets are. It is defined as the following:  

H(A, B) = max(h(A, B), h(B, A))  

Where: 

 
In terms of comparisons, we perform comparisons 

with MLS as a baseline for another non-deep learning-

based BILATEmReAthLoSdM, 

OasOTwHe(lPl,aPsn)with PU-GCN as a deep 

learning-based method. We also see how our method 

performs compared to  

 

B. Comparison with Non-Deep Methods  

Other smoothing methods, such as KNN and no 

smoothing, and different sampling methods, such as 

random sampling and octree sampling, are also used to 

show that our choices in smoothing and sampling are 

the best in this context.  

 

We compared our results with MLS, a non-deep 

learning-based method of upsampling point clouds 

using local surface fitting.  

 

Chamfer distance ×103 

class MLS Ours 

plane 14.8 15.8 

helmets 26.7 29 

cap 22.4 24.4 

car 28.6 31 

headset 25.3 23.8 

TABLE I: Comparison of our method with MLS with 

chamfer distance ×103. Note that lower is better 

 

 Hausdorff distance×103 

class MLS Ours 

plane 282.9 80.5 

helmets 454.8 182.2 

cap 150.2 156.3 

car 75.3 73.5 

headset 171.3 166.5 

TABLE II: Comparison of our method with MLS 

with Haus- Dorff distance ×103. Note that lower is 

better. 

 

Our method generally performed better than MLS 

regarding the Hausdorff distance but worse in the 

Chamfer distance. In some cases, our method 

performed better in both metrics, such as the headset 

class. In terms of execution time, our method was also 

slower than MLS, taking 0.5 seconds to run compared 

to 0.2 seconds for MLS. Note, however, that the MLS 

implementation was written entirely in C++. Our 

method only implements the bilateral filter in C++; the 

rest are implemented in Python. This difference in 

overhead may account for the difference in execution 

time.  

sw ·np 
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A worse Chamfer distance but better Hausdorff 

distance indicates that our method is better at 

preserving the global shape but worse at preserving the 

local shape. It also implies that our method is better at 

preserving the overall structure of the point cloud but 

worse at preserving the details. It also implies that our 

method is less sensitive to outliers than MLS. This 

sensitivity to outliers for MLS can be reflected in the 

car example in the appendix, where the MLS method 

has a few points very far from the shape, whereas our 

method does not have this issue.  

 

Depending on the task, one may use MLS or our 

method. Our method is better if the task requires 

preserving the overall structure of the point cloud, 

while MLS is better if the task requires preserving the 

details of the point cloud. 

 

C. Comparison of Other Smoothing Methods 

We compared our method with other smoothing 

methods, such as the bilateral filter and a K-nearest 

neighbors-based method, as well as no smoothing and 

just the octree sampling.  

 

Chamfer distance ×103 

class  KNN Bilateral  None  

plane 16.2 15.8 16 

helmets  29.3  29  29.8  

cap  24.5  24.4  25.5  

car  31.3  31  31  

headset  24.4  23.8  24.2  

TABLE III: Comparison of our method with MLS 

with cham- fer distance ×103. Note that lower is 

better 

 

In general, our method performed better than the KNN 

method in terms of both the Chamfer and Hausdorff 

distance, except in the cap and car classes. Bilateral 

also performed better than no smoothing regarding the 

Chamfer distance but worse in the Hausdorff distance. 

 

Hausdorff distance x103 

class MLS Ours None 

plane 81.3 80.5 78.4 

helmets 186.2 182.2 182.1 

cap 149.4 156.3 155.6 

car 72.1 73.5 74 

headset 168.3 166.5 166.5 

TABLE IV: Comparison of our method with MLS 

with Hausdorff distance ×103. Note that lower is 

better. 

 

D. Comparison of Different Sampling Methods 

In this subsection, we compare our octree sampling 

method with random sampling, and both cases use 

bilateral smoothing. 

 

Chamfer distance ×103 

class Random Octree 

plane 49.1 15.8 

helmets 40 29 

cap 38.7 24.4 

car 36.7 31 

headset 46 23.8 

TABLE V: Comparison of our method with random 

sampling with chamfer distance ×103. Note that 

lower is better. 

 

Hausdorff distance ×103 

Class Random Octree  

plane 86.2 80.5 

helmets 172.4 182.2 

cap 153.4 156.3 

car 74.6 73.5 

headset 178.3 166.5 

TABLE VI: Comparison of our method with random 

sampling with Hausdorff distance ×103. Note that 

lower is better 

 

The octree sampling method outperforms the random 

sampling method in terms of Chamfer distance but is 

slightly better regarding the Hausdorff distance. This 

shows that using an octree to voxelize and add points 

nearby points is a better method than randomly 

sampling points. 

 

E. Comparison with Deep Methods 

We will compare our method with the deep learning-

based method PU-GCN[9]. First, the computational 

cost of using PU-GCN will be analyzed. When 

experimenting with an Nvidia 4090, we found that the 

PU-GCN took 10GB of memory during training. We 

trained the PU-GCN model for 10 epochs, which took 

2 hours. The original paper trained the model for 100 

epochs. This is a significant amount of time and 

memory and is a disadvantage of the PU-GCN 



© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880 

IRE 1707250          ICONIC RESEARCH AND ENGINEERING JOURNALS 689 

method. In the PU-GCN paper, the authors claimed a 

chamfer distance of ∼ 0.5×103 and a Hausdorff 

distance of ∼ 1×103. This is much lower than our 

method, but the computational cost is much higher. 

This is also much lower than what we found in our 

experiments but is likely because we only trained for 

10 epochs. This comparison was done with the PU1K 

dataset. Each point cloud was a sample of 256 points 

and was upsampled to 1024 points. 

 

Hausdorff ×103 

Class PU-GCN Ours 

eight 96.1 221.3 

elephant 74.1 122.6 

elk 94.6 52 

Sandisk 86 169.3 

genus3 127.1 378.6 

TABLE VII: Comparison of our method with PU-

GCN with chamfer distance ×103. Note that lower is 

better 

 

Our method performs much worse in terms of the 

Hausdorff distance. However, its computational cost is 

much lower than that of PU-GCN. 

 

VI. FUTURE WORK 

 

Since this method does not require any parameters and 

is very light, it is suitable for real-time applications. 

One issue, however, is that it is slower than methods 

such as MLS. This is due to the overhead in Python 

and the lack of concurrency. Thus, one potential future 

work is to implement this method in C++ to reduce the 

overhead since, in this work, the bilateral filter was 

already implemented in C++. Further, this method can 

benefit significantly from concurrency. Numerous 

works parallelize the creation of octree structures [14]. 

One can also parallelize the bilateral filter u s i n g  

a n  o c t r e e ,  as shown in [1]. The method can be 

made faster and more suitable for real-time 

applications with both optimizations. 

 

CONCLUSION 

 

In conclusion, this paper presents BOLT, a fast and 

parameter-free method for upsampling point clouds. 

Our method leverages the octree data structure's 

structural efficiency and the bilateral filter's detail-

preserving properties to achieve a fast and parameter-

free upsampling method. Unlike the current state-of-

the-art deep methods, BOLT does not require any 

parameters, deep learning, fine-tuning, GPU,  or any 

type of training, making it a suitable candidate for real-

time applications. We evaluate BOLT on various point 

clouds, compare it with the current state-of-the-art 

methods, and show competitive results. In future work, 

we plan to implement BOLT in C++ and add 

concurrency to reduce the overhead and improve the 

execution time. 
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