
© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1707250 ICONIC RESEARCH AND ENGINEERING JOURNALS 684

Efficient Sampling Techniques for Point Clouds

HYACINTHE HAMON

Hamon FZCO Research and Development

Abstract—This paper introduces BOLT (Bilateral

filtering and Octree Lightweight Technique), a

novel, fast, and parameter-free method for up-

sampling point clouds. We leverage the structural

efficiency of the octree data structure and detail-

preserving properties of the bilateral filter to

achieve a fast and parameter-free sampling method.

Unlike the current state-of-the-art techniques, BOLT

does not require any parameters, deep learning, fine-

tuning, or any type of training, making it a suitable

candidate for real-time applications. BOLT

understands the underlying structure of the point

cloud by dividing the point cloud into a hierarchical

octree structure. Empty children are filled in the

octree, and outliers are smoothed using a bilateral

filter.

I. INTRODUCTION

A point cloud is an unordered 3D representation of

a set of points in space. It is commonly used in

computer graphics, computer vision, and robotics.

Point clouds are often generated using 3D scanners,

LIDAR, and 3D applications. In this work, we wish

to upsample a point cloud. Given a set of point

clouds, we wish to find a new set of more dense

points that still represent the same underlying surface.

Further, while preserving the underlying structure, the

new points should not introduce any new artifacts,

should be informative, and should not cluster around

the original points. The unstructured and unordered

nature of point clouds makes this a challenging

problem. Further, existing point cloud upsampling

methods are often computationally expensive and

require extensive training and parameter tuning.

To address the above challenges, we present a data-

structure-driven method for point cloud upsampling

that is fast and parameter-free. Our method utilizes an

octree data structure without a depth limit to

understand the underlying structure and initially add

points to the empty children of the octree. The lack of

a depth limit allows tighter fitting bounding cubes

around points and allows for a more accurate

representation of the underlying structure. This

representation is often noisy and coarse but captures

the underlying structure of the point cloud. To smooth

the point cloud, we use a bilateral filter in a point

cloud application

Point cloud upsampling can be used as a downstream

task for various applications, such as 3D

reconstruction, 3D object recognition, and 3D

rendering. It can improve the quality of surface

reconstruction, enhance object detection, extract

features more accurately, and more.

Our method, BOLT, learns the geometry and structure

of the point cloud, upsamples it, and smooths it

without any parameters, deep learning, or fine-tuning.

II. RELATED WORK

Many non-deep learning-based methods for point

cloud upsampling have been proposed in the past, such

as moving least squares interpolation (MLS

interpolation) in 2002 [2], Locally Optimal Projection

(LOP) in 2007 [3], Edge-Aware Sampling (EAR) in

2013 [4], and graph total variation in 2019 [5].

MLS works by fitting a continuous surface to a set of

local points using a weighted least squares fit of a

polynomial surface to the points. Points are added by

computing the Voronoi cells on the local surface and

adding points to the vertices of the diagram.

LOP, unlike MLS, does not require fitting a local

surface. Instead, it uses a projection operator to

project points onto a surface in a way that minimizes

the sum of the weighted distances between the original

and projected points. Improvements to LOP, such as

weighted LOP [6], were proposed that make LOP

more robust to noise and outliers.

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1707250 ICONIC RESEARCH AND ENGINEERING JOURNALS 685

MLS and LOP have demonstrated promising results,

but a common problem with these methods is that they

do not perform well on sharp edges and corners, as the

model often assumes a smooth surface.

EAR was designed to work well on edges [4]. It works

by first computing the normals and relative curvature

of each point. Then, if the curvature is above a certain

threshold, the point is considered to be on an edge, and

it is projected onto the tangent plane of the edge. If a

point is considered a surface, it is projected onto the

tangent plane of the surface.

Graph total variation is a method that uses a graph to

represent the point cloud. First, a triangular mesh is

constructed, and points are inserted at the centroids of

the triangles. Assuming the point cloud is piecewise

smooth, a weighted average of the L1 norms of

normals between points is minimized.

Many deep learning-based approaches also exist, such

as PU-Net [7], PU-GAN [8], and PU-GCN [9].

Although these point cloud upsampling methods

tackle a different problem, they are still used as a point

of comparison. These methods solve different

problems because they are large networks trained on

large datasets and require a lot of computational power

to train and run. This paper proposes a fast and

parameter-free parameter-free method for point cloud

upsampling.

III. BACKGROUND

A. Octree

An octree is a tree data structure with eight children in

each internal node. It is often used to partition 3D

space and in various applications, such as computer

graphics, computer vision, and robotics.

Fig. 1: An example of an octree. Each cube gets

recursively divided into eight equal octants. The

points are stored in the leaf nodes. Image from [10]

In point clouds, an octree is used to partition the 3D

space and store the points in the leaf nodes. The

octree is a hierarchical data structure that recursively

divides 3D space into eight equal octants. Each node

in the octree represents a rectangular prism in 3D

space with a particular center, width, length, and

depth. Nodes, not leaf nodes, have exactly eight

children; leaf nodes store the points in the point cloud.

The octree's root node represents the point cloud's

bounding box. An octree has O (log n) complexity for

insertion and search operations, where n is the

number of points in the point cloud. The bounding

cube's nearest points are much finer and tighter fitting

than those further away, allowing for a more accurate

representation of the underlying structure of the point

cloud.

Further, these tighter bounding boxes hint at where to

add new points to the point cloud. Adding points to

the tighter bounding boxes will result in more

informative points that are not clustered around the

original points, will not introduce any new artifacts,

and will preserve the underlying structure of the point

cloud.

Most octrees have a depth limit, which means that the

octree. will not divide the space beyond a certain depth

to avoid a problem of infinite recursion. However, our

method has no depth limit, and we allow the octree to

divide the space as much as possible. Since the

starting point clouds. They are often sparse and noisy,

and the lack of a depth limit allows for a more accurate

representation of the underlying structure of the point

cloud. Other stops, such as checking if an existing

close points a r e already in the node a n d are used

to avoid infinite recursion.

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1707250 ICONIC RESEARCH AND ENGINEERING JOURNALS 686

Fig. 2: An example of an octree with its point cloud

and cubed representation. The figure was from a blog

post [11] and generated using the Open3D library

[12] with a max depth of 4.

B. Bilateral Filter

The non-linear bilateral filter smoothes images and

reduces noise while preserving edges. It is a

generalization of the Gaussian filter and is used in

various applications such as image processing,

computer graphics, and computer vision. It is defined

as follows:

Our paper uses the bilateral filter to smooth the point

cloud. Similar to the image case, the bilateral filter

smooths the point cloud while preserving the edges

and the underlying structure of the point cloud. It

works by shifting points along a normal vector, and

the shift amount is a weighted average distance to its

neighbors. We follow Digne et al. [1] and use the

following definition of the bilateral filter for point

clouds:

p′ = p + δp · np (1)

Where np is the normal to the regression plane of

some k nearest neighbors of p. Following Dinge et

al. [1], our implementation computes the normal with

PCA. PCA will find the regression plane that fits the

data best, and the corresponding found eigenvectors

will be orthogonal to said plane, which is simple to

compute compared to an iterative least squares

method. δp is the displacement of the point p. The

displacement is computed as follows: let Np be the set

of k nearest neighbors of p:

In our implementation, wd and we are the Gaussian

functions defined as follows:

In our implementation, we set σd = 0.1 and σn = 0.1.

IV. METHODOLOGY

We aim to upscale and smooth a sparse point cloud

using an octree with a significant depth and bilateral

filing on a point cloud. We start with a sparse point

cloud P = {p1, . . . , pn}, and generate an octree T by

iterating through and inserting one at a time. To

generate the initial upsampling of the points, we find

the parent of each for point pi in T, then add a new

point to an empty child of the parent in T. One such

iteration will double the number of points in the point

cloud; then another will quadruple, and so on. This

process gets repeated the number of times necessary to

get the desired final number of points. Then, we

extract all points from T to get our new upsampled

point cloud P′. We then smooth P′ with bilateral

filtering. Bilateral filtering requires hyperparameters

σd, σn, and k. k indicates the number of neighbors used

to find the normal of the regression plane, and σd and

σn are the standard deviations for the Gaussians used

in (3).

Algorithm 1 Main upsampling algorithm

Require: sparse point cloud P with n points, nup

number of iterations required to get the desired

number of points functions UPSAMPLE(P)

T ← CONSTRUCTOCTREE(P) Pn ←

EMPTYPOINTCLOUD

 i ≤ nup

for p ∈ P do

parent ← p.parent child ←

RANDOMEMPTYCHILD(parent)

p′ ← RANDOMPOINTINSIDE(child. Dimensions)

 end for

 P ← CONVERTTOPOINTCLOUD(T)

end function

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1707250 ICONIC RESEARCH AND ENGINEERING JOURNALS 687

V. EXPERIMENTS

Experiments were done mainly with the ShapeNet

dataset [13], a large dataset of 3D models. A random

set of 1024-point clouds was sampled and then

upscaled to double or 2048 points. We then compared

some evaluation metrics with the ground truth to see

how well our method performs quantitatively. In the

appendix, we highlight the qualitative results of our

method compared to other methods used in this paper.

A. Evaluation

We will eventually evaluate our model using the

Chamfer and Hausdorff distances, as they are standard

metrics used in point cloud upsampling. We will

compare it to other parameter-free works and deep

learning-based methods.

Algorithm 2 Bilateral smoothing algorithm, borrowed

heavily from [1]

Require: point cloud P with n points, Pn new

points, k neighbours, σd, σn

function BILATERALSMOOTH (P, Pn)

for p ∈ Pn do

 Np ← FINDNEIGHBOURS(P, k, p)

 np ← COMPUTEUNITNORMALTOPLANE(N)

S W ← 0 δp ← 0

q ∈ Np

w ←wd(p − q) · wn(⟨np, p − q⟩) ▷ From (3)

S W ←sw + w

δp ←δp + w · ⟨np, p − q⟩

end for

p′ ←p + δp

end function

The Chamfer distance is a measure of how different

two shapes are and is defined as the following:

The Hausdorff distance is a measure of how similar

two sets are. It is defined as the following:

H(A, B) = max(h(A, B), h(B, A))

Where:

In terms of comparisons, we perform comparisons

with MLS as a baseline for another non-deep learning-

based BILATEmReAthLoSdM,

OasOTwHe(lPl,aPsn)with PU-GCN as a deep

learning-based method. We also see how our method

performs compared to

B. Comparison with Non-Deep Methods

Other smoothing methods, such as KNN and no

smoothing, and different sampling methods, such as

random sampling and octree sampling, are also used to

show that our choices in smoothing and sampling are

the best in this context.

We compared our results with MLS, a non-deep

learning-based method of upsampling point clouds

using local surface fitting.

Chamfer distance ×103

class MLS Ours

plane 14.8 15.8

helmets 26.7 29

cap 22.4 24.4

car 28.6 31

headset 25.3 23.8

TABLE I: Comparison of our method with MLS with

chamfer distance ×103. Note that lower is better

 Hausdorff distance×103

class MLS Ours

plane 282.9 80.5

helmets 454.8 182.2

cap 150.2 156.3

car 75.3 73.5

headset 171.3 166.5

TABLE II: Comparison of our method with MLS

with Haus- Dorff distance ×103. Note that lower is

better.

Our method generally performed better than MLS

regarding the Hausdorff distance but worse in the

Chamfer distance. In some cases, our method

performed better in both metrics, such as the headset

class. In terms of execution time, our method was also

slower than MLS, taking 0.5 seconds to run compared

to 0.2 seconds for MLS. Note, however, that the MLS

implementation was written entirely in C++. Our

method only implements the bilateral filter in C++; the

rest are implemented in Python. This difference in

overhead may account for the difference in execution

time.

sw ·np

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1707250 ICONIC RESEARCH AND ENGINEERING JOURNALS 688

A worse Chamfer distance but better Hausdorff

distance indicates that our method is better at

preserving the global shape but worse at preserving the

local shape. It also implies that our method is better at

preserving the overall structure of the point cloud but

worse at preserving the details. It also implies that our

method is less sensitive to outliers than MLS. This

sensitivity to outliers for MLS can be reflected in the

car example in the appendix, where the MLS method

has a few points very far from the shape, whereas our

method does not have this issue.

Depending on the task, one may use MLS or our

method. Our method is better if the task requires

preserving the overall structure of the point cloud,

while MLS is better if the task requires preserving the

details of the point cloud.

C. Comparison of Other Smoothing Methods

We compared our method with other smoothing

methods, such as the bilateral filter and a K-nearest

neighbors-based method, as well as no smoothing and

just the octree sampling.

Chamfer distance ×103

class KNN Bilateral None

plane 16.2 15.8 16

helmets 29.3 29 29.8

cap 24.5 24.4 25.5

car 31.3 31 31

headset 24.4 23.8 24.2

TABLE III: Comparison of our method with MLS

with cham- fer distance ×103. Note that lower is

better

In general, our method performed better than the KNN

method in terms of both the Chamfer and Hausdorff

distance, except in the cap and car classes. Bilateral

also performed better than no smoothing regarding the

Chamfer distance but worse in the Hausdorff distance.

Hausdorff distance x103

class MLS Ours None

plane 81.3 80.5 78.4

helmets 186.2 182.2 182.1

cap 149.4 156.3 155.6

car 72.1 73.5 74

headset 168.3 166.5 166.5

TABLE IV: Comparison of our method with MLS

with Hausdorff distance ×103. Note that lower is

better.

D. Comparison of Different Sampling Methods

In this subsection, we compare our octree sampling

method with random sampling, and both cases use

bilateral smoothing.

Chamfer distance ×103

class Random Octree

plane 49.1 15.8

helmets 40 29

cap 38.7 24.4

car 36.7 31

headset 46 23.8

TABLE V: Comparison of our method with random

sampling with chamfer distance ×103. Note that

lower is better.

Hausdorff distance ×103

Class Random Octree

plane 86.2 80.5

helmets 172.4 182.2

cap 153.4 156.3

car 74.6 73.5

headset 178.3 166.5

TABLE VI: Comparison of our method with random

sampling with Hausdorff distance ×103. Note that

lower is better

The octree sampling method outperforms the random

sampling method in terms of Chamfer distance but is

slightly better regarding the Hausdorff distance. This

shows that using an octree to voxelize and add points

nearby points is a better method than randomly

sampling points.

E. Comparison with Deep Methods

We will compare our method with the deep learning-

based method PU-GCN[9]. First, the computational

cost of using PU-GCN will be analyzed. When

experimenting with an Nvidia 4090, we found that the

PU-GCN took 10GB of memory during training. We

trained the PU-GCN model for 10 epochs, which took

2 hours. The original paper trained the model for 100

epochs. This is a significant amount of time and

memory and is a disadvantage of the PU-GCN

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1707250 ICONIC RESEARCH AND ENGINEERING JOURNALS 689

method. In the PU-GCN paper, the authors claimed a

chamfer distance of ∼ 0.5×103 and a Hausdorff

distance of ∼ 1×103. This is much lower than our

method, but the computational cost is much higher.

This is also much lower than what we found in our

experiments but is likely because we only trained for

10 epochs. This comparison was done with the PU1K

dataset. Each point cloud was a sample of 256 points

and was upsampled to 1024 points.

Hausdorff ×103

Class PU-GCN Ours

eight 96.1 221.3

elephant 74.1 122.6

elk 94.6 52

Sandisk 86 169.3

genus3 127.1 378.6

TABLE VII: Comparison of our method with PU-

GCN with chamfer distance ×103. Note that lower is

better

Our method performs much worse in terms of the

Hausdorff distance. However, its computational cost is

much lower than that of PU-GCN.

VI. FUTURE WORK

Since this method does not require any parameters and

is very light, it is suitable for real-time applications.

One issue, however, is that it is slower than methods

such as MLS. This is due to the overhead in Python

and the lack of concurrency. Thus, one potential future

work is to implement this method in C++ to reduce the

overhead since, in this work, the bilateral filter was

already implemented in C++. Further, this method can

benefit significantly from concurrency. Numerous

works parallelize the creation of octree structures [14].

One can also parallelize the bilateral filter u s i n g

a n o c t r e e , as shown in [1]. The method can be

made faster and more suitable for real-time

applications with both optimizations.

CONCLUSION

In conclusion, this paper presents BOLT, a fast and

parameter-free method for upsampling point clouds.

Our method leverages the octree data structure's

structural efficiency and the bilateral filter's detail-

preserving properties to achieve a fast and parameter-

free upsampling method. Unlike the current state-of-

the-art deep methods, BOLT does not require any

parameters, deep learning, fine-tuning, GPU, or any

type of training, making it a suitable candidate for real-

time applications. We evaluate BOLT on various point

clouds, compare it with the current state-of-the-art

methods, and show competitive results. In future work,

we plan to implement BOLT in C++ and add

concurrency to reduce the overhead and improve the

execution time.

REFERENCES

[1] J. Digne and C. de Franchis, “The Bilateral Filter

for Point Clouds,” Image Processing On Line,

vol. 7, pp. 278–287, 2017, https://doi.org/

10.5201/ipol.2017.179.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,

D. Levin, and C. T. Silva, “Computing and

rendering point set surfaces,” IEEE Trans. Vis.

Comput. Graph., vol. 9, pp. 3–15, 2003.

[Online]. Available:

https://api.semanticscholar.org/CorpusID:792977

[3] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-

Ezer, “Parameterization- free projection for

geometry reconstruction,” ACM Trans. Graph.,

vol. 26, no. 3, p. 22–es, Jul 2007. [Online].

Available:

https://doi.org/10.1145/1276377.1276405

[4] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U.

Ascher, and H. R. Zhang, “Edge-aware point set

resampling,” ACM Trans. Graph., vol. 32, no. 1,

Feb 2013. [Online]. Available:

https://doi.org/10.1145/2421636.2421645

[5] C. Dinesh, G. Cheung, and I. V. Bajic, “3d point

cloud super-resolution via graph total variation

on surface normals,” 2019.

[6] H. Huang, D. Li, H. Zhang, U. Ascher, and D.

Cohen-Or, “Consolidation of unorganized point

clouds for surface reconstruction,” ACM Trans.

Graph., vol. 28, no. 5, p. 1–7, Dec 2009.

[Online]. Available:

https://doi.org/10.1145/1618452.1618522

[7] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A.

Heng, “Pu-net: Point cloud upsampling

network,” 2018.

https://doi.org/10.5201/ipol.2017.179
https://doi.org/10.5201/ipol.2017.179
https://api.semanticscholar.org/CorpusID:792977
https://doi.org/10.1145/1276377.1276405
https://doi.org/10.1145/2421636.2421645
https://doi.org/10.1145/1618452.1618522

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1707250 ICONIC RESEARCH AND ENGINEERING JOURNALS 690

[8] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A.

Heng, “Pu-gan: a point cloud upsampling

adversarial network,” 2019.

[9] G. Qian, A. Abualshour, G. Li, A. Thabet, and B.

Ghanem, “Pu-gcn: Point cloud upsampling using

graph convolutional networks,” 2019.

[10] “Octree,” https://en.wikipedia.org/wiki/Octree.

[11] “Open3d octree ,”

https://blog.csdn.net/qq_41068877/article/detail

s/ 124242265.

[12] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A

modern library for 3D data processing,”

arXiv:1801.09847, 2018.

[13] A. X. Chang, T. Funkhouser, L. Guibas, P.

Hanrahan, Q. Huang, Z. Li,

[14] S. Savarese, M. Savva, S. Song, H. Su, J. Xiao,

L. Yi, and F. Yu, “Shapenet: An information-

rich 3d model repository,” 2015.

[15] C. V., K. K., A. P., and A. J. K., “Parallel

manipulations of octrees and quadtrees,” 1992.

https://en.wikipedia.org/wiki/Octree
https://blog.csdn.net/qq_41068877/article/details/124242265
https://blog.csdn.net/qq_41068877/article/details/124242265
https://blog.csdn.net/qq_41068877/article/details/124242265

