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Abstract—This paper examines different choice 

issues connected with the nonemptiness of Non-

Deterministic Limited Hyperautomata (NFH). I 

show that while the nonemptiness issue for NFH is 

for the most part undecidable, it becomes decidable 

for explicit pieces. I give a decrease from the Post 

Correspondence Issue (PCP) to demonstrate the 

undecidability of the nonemptiness issue for NFH, 

delineating how encoded arrangements of PCP can 

address legitimate hyperwords. Furthermore, I lay 

out that the nonemptiness issue for both NFH with 

existential and widespread evaluation (NFH∃ and 

NFH∀) is NL-finished. At last, I present a choice 

methodology for the nonemptiness issue of NFH with 

blended evaluation (NFH∃∀), demonstrating that it 

very well may be settled in polynomial space 

compared with the machine size. Our outcomes add 

to a more profound comprehension of 

hyperlanguage choice issues and their 

computational intricacy 

 

I. INTRODUCTION 

 

The study of automata and formal languages has long 

served as a cornerstone of theoretical computer 

science, providing a framework for understanding 

computation and complexity [1]. Among these, the 

extension to hyperlanguages, which generalize 

traditional languages to sets of words, introduces a 

layer of abstraction that poses unique decision 

problems [2]. Hyperautomata, operating over 

hyperwords, extend classical automata theory and 

challenge existing paradigms with their inherent 

computational intricacies. 

 

Central to the discourse is the nonemptiness problem 

for hyperlanguages, which interrogates whether any 

hyperwords can be accepted under specific conditions 

[3]. This problem, intertwined with undecidability in 

some contexts and bounded by complexity classes in 

others, bridges automata theory with decision 

problems such as the Post Correspondence Problem. 

Recent advances in hyper automata have also 

underscored their relevance in fields like data security, 

where hyperregular ex- pressions formalize intricate 

properties such as noninterference and observational 

determinism [4]. 

 

This paper delves into the nonemptiness decision 

problems for non-deterministic finite hyper automata 

(NFH), unveiling undecidability results, 

computational bounds, and polynomial- space 

solvability under specific configurations. By 

leveraging reductions and canonical constructions, 

this work contributes to the broader understanding of 

hyperlanguage decision- making and its practical 

applications. 

 

II. PRELIMINARIES 

 

An alphabet is a nonempty restricted set Σ of letters. 

A word more than Σ is a restricted progression of 

letters from Σ. The void word is meant by ϵ, and the 

game plan of all restricted words is Σ∗. A 

nondeterministic restricted automaton (NFA) is a 

tuple: 

A = Σ, Q, Q0, δ, F , 

where: 

Σ is the letters all together, Q is a restricted game plan 

of states, Q0 ⊆ Q is the game plan of start states, F 

⊆ Q is the game plan of enduring states, δ ⊆ Q × 

Σ × Q is the progress relation. 

 

A word w = α1α2 · · · αm over an alphabet Σ induces 

a computation trace of an automaton A, which is a 

sequence of states s0s1 · · · sm such that s0 ∈ S0 (the 

set of initial states) and (si−1, αi, si) ∈ δ for 1 ≤ i ≤ 

m. A trace is accepting if the final state sm ∈ F , the 

set of accepting states. The automaton A accepts w if 

there exists an accepting trace corresponding to w. 

The language L(A) of the automaton A is the set of 

all words w for which there exists an accepting 
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trace. 

 

An NFA is deterministic (DFA) if, for each state s ∈ S 

and symbol α ∈ Σ, there exists exactly one state s′ 

∈ S such that (s, α, s′) ∈ δ. Every NFA can be 

deterministically converted into an equivalent DFA. 

Given a word w = α1α2 · · · αm, the automaton’s 

transition function can be represented as: 

δ : S × Σ → S 

where for each s ∈ S and α ∈ Σ, there is a unique 

state s′ such that (s, α, s′) ∈ δ. The language of a DFA 

is then defined as: 

L(A) = {w | ∃ an accepting trace for w} 

For an NFA, multiple transitions may exist for a given 

state and symbol, which is the key distinction from 

DFAs. Nonetheless, any NFA can be converted into a 

DFA that recognizes the same language, though 

potentially at the cost of an exponential blow-up in the 

number of states. 

 

III. HYPERAUTOMATA 

 

A hyperword more than Σ is a lot of words, and a 

hyper- language is a lot of hyperwords. 

 

A. The General Approach 

A hyperautomaton A operates on hyperwords W using 

word variables Y = {y1, y2, . . . , yp}. Each variable 

yi ∈ Y is as- signed a component from W , forming a 

mapping v : Y → W , denoted as a p-tuple (v(y1), 

v(y2), . . . , v(yp)). The order of the tuple is fixed. 

 

The tuple (v(y1), v(y2), . . . , v(yp)) is represented 

as a word u, where each letter in u corresponds 

to a tuple of corresponding letters from v(y1), v(y2), 

. . . , v(yp)). Words of different lengths are padded 

with the symbol #. For instance, if v(y1) = xy and 

v(y2) = xz, the tuple (xy, xz) is encoded as (x, x)(y, 

z), where the second tuple is padded if necessary. This 

encoding process, known as zipping, is done 

without directly referencing the individual 

components, while maintaining the structure intact. 

 

Given a zipped word w, the i-th component of the 

tuple can be extracted by combining all the i-th 

elements from the tuples in w. This reversibility 

enables an unzip function, which reconstructs the 

original mapping by separating the components back 

into their respective positions. 

 

Formally, for a zipped word w = (w1, w2, . . . , wl), 

the unzip function unzip(w) generates the original 

tuple: 

 

where wij represents the j-th element from the i-th 

tuple in w 

 

B. Hyperautomata on Constrained Words 

Let t = (v1, v2, . . . , vm) be a tuple of constrained 

words over Σ, and let length(t) denote the length of 

the longest word in t. The function combine(t) 

produces a word over (Σ ∪ 

{#})m of length length(t), where the i-th letter of 

combine(t) contains the i-th letters of v1, v2, . . . , vm, 

with shorter words padded with #. For example: 

combine (xyz, abc, pq) = (x, a, p)(y, b, q)(z, #, #). 

Given t, the word formed by the i-th letters of t is 

denoted as t[i]. The separate function reconstructs the 

original tuple: 

separate(t) = (t[1], t[2], . . . , t[m]). 

A nondeterministic restricted automaton over 

hyperwords (NRH) is a tuple B = Λ, Y, P, P0, G, γ, 

B⌉⊔⊣, where: 

• Λ, P, P0, G 

• Y = {y1, . . . , ym} is a restricted set of word 

variables, 

• γ ⊆ P × (Λ ∪ {#})m × P is the transition 

relation, 

• B⌉⊔⊣ = λ1y1.λ2y2. . . . .λmym is an evaluation 

condi- tion, where λi ∈ {∀, ∃} for each 1 ≤ i 

≤ m. 

 

The tuple (Λ ∪ {#})m, P, P0, γ, G defines the 

auxiliary NFA Bˆ of B, with the alphabet Λ̂ = (Λ 

∪ {#})m. 

 

Let T be a hyperword, and v : Y → T be a variable 

assignment in B. We define v[y → t] to denote the 

assignment where y maps to t ∈ T . The assignment 

v is represented by the zipped word (v) = (v(y1), . 

. . , v(ym)). 

 

Consider the NFH B1 over Λ = {b} with variables 

z1, z2. The corresponding NFA Bˆ1 accepts words 
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for z1 and z2 if the word for z2 is longer than 

that for z1. With the evaluation condition ∀z1∃z2, 

B1 requires that for each word in a hyperword T , 

there exists a longer word. This condition holds for 

infinite hyperwords T , so the hyperlanguage of B1 

is the set of all infinite hyperwords over Λ = {b}. 

 

Consider NFH B3 over Λ = {b, c} with variables z1 

and z2. In Bˆ3, if the word for z2 contains a b at any 

position, the word for z1 must also have a b at the 

same position. The reverse holds in the other 

directions: if z1 has a b, z2 must have a b as well. 

With the evaluation condition ∀z1∀z2, any hyperword 

recognized by B3 ensures that the positions of b in one 

word are a subset of the positions of b in the other 

word. Thus, the hyperlanguage of B3 includes 

hyperwords where the positions of b are aligned. 

 

 
Fig. 1. NFHs B1 (left) and B2 (right) 

 

 
Fig. 2. NFH B3 

 

IV. HYPER REGULAR EXPRESSIONS AND 

SECURITY APPLICATIONS 

 

The NFM of a NFH defines a regular expression over 

hyperwords. This expression, along with the NFH’s 

evaluation, is referred to as a hyper regular expression 

(HRE). For instance, consider NFH B1. Its HRE is: 

∀z1∀z2 (b, b) | (c, c)
 ∗ 

(#, c)∗ | (c, #)∗
 

I now explore the use of Hyper Regular Expressions 

(HREs) in formalizing security properties of data 

streams. Noninterference [5] ensures that high-security 

operations do not influence low-security data: 

φni = ∀z1.∃z2.(h, hλ)∗ 

 

where h represents a high-security state and hλ 

signifies a high-security state with additional 

characteristics for the output. 

 

Observational Determinism [6] ensures that if two 

executions start in equivalent low-security states, they 

will remain equivalent: 

 

where h is a high-security state, h̄ ∈ Λ − {h}, and 

$ ∈ Λ. Similar results to Boudol and Castellani’s 

noninterference [7] can be framed in almost the same 

way. 

 

Generalized Noninterference (GNI) [8] permits 

nondeterminism in low-security operations, but 

ensures that high- security inputs do not affect low-

security outputs: 

 
where h denotes high-security information, l 

indicates low- security output, ¯l ∈ Λ − {l}, and h̄  

∈ Λ − {h}. 

Declassification [9] relaxes certain security policies to 

allow information leakage when necessary. 

φdc = ∀z1.∀z2. (hi, hi)(pw, pw)(lo, lo)+ 

where hi represents high-input states, pw denotes a 

secret key, and lo stands for low-output states. 

 

Termination-Tolerant Noninterference ensures no 

information leakage from terminal operations in 

executions that begin from low-security states: 

φtsni = ∀z1.∀z2.(l, l)($, $) (l, l) 

+ ( l̄, ̄l)($, $)∗ 

+ (l, ̄l)($, $)∗ 

+ ( l̄ ,  l)($, $)∗ 

where l is a low-security state and $ ∈ Λ. 

 

V. PROPERTIES OF HYPERAUTOMATA 

AND HYPER REGULAR EXPRESSIONS 

 

This section examines key operations and decision 

prob- lems for NFH. Let B = Λ, Z, Q, Q0, δ, F, 

D where Z = {z1, . . . , zm}. NFH are closed under 



© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880 

 

IRE 1707244          ICONIC RESEARCH AND ENGINEERING JOURNALS 678 

1 1 

complementation. 

Proof. Let B be a NFH.  The NFA Bˆ can be extended 

over its language on Λ̂ to form Bˆ. For  any mapping 

w : Y → T , Bˆ recognizes λ(w) if and only if Bˆ 

does not recognize it. 

 

Let Bα represent the evaluation condition obtained 

by swapping ∃ with ∀, and vice versa. By 

construction, B, a NFH with underlying automaton Bˆ 

and evaluation condition Bα, recognizes B. The size of 

B grows exponentially with n, based on the 

complementation of Bˆ. NFH are closed under union. 

Proof. Given two NFHs B = Λ, Z, Q, Q0, δ, F, 

Bα and B′ = Λ′, Z′, Q′, Q′ , δ′, F ′, B′ , I construct 

a new NFH B′′ =Λ′′, Z′′, Q′′, Q′′, δ′′, F ′′, B′′ that 

accepts B ∪ B′. Define: 

For transitions; 

This guarantees that B′′ accepts all hyperwords in 

B or B′. NFH are closed under intersection. 

 

Proof. The proof utilizes closure under union and 

complementation. To construct the intersection of 

two NFHs, consider B1 =Λ, Z1, Q1, Q0, δ1, F1, Bα 

and B2 = Λ, Z2, Q2, Q0, δ2, F2, Bα, and define: 

Bα = Bα · Bα 

δ includes transitions for all pairs, 

 with additional 

transitions to handle # when one machine halts. This 

construction ensures that the resulting NFH 

recognizes the intersection of the languages of A1 

and A2.  The nonemptiness problem for NFHs is 

undecidable. 

 

Proof. Let A be an NFH. We show that A 

recognizes a hyperword (w, w) if and only if both 

Aˆ and Aˆ recognize their respective parts. The 

construction of such an NFH is polynomial in the 

size of A1 and A2 

The class of NFHs is closed under union 

For transitions: 

 
 

This guarantees that A3 recognizes all hyperwords 

in L(A1) or L(A2) The class of NFHs is closed under 

intersection  

 

Proof. The proof uses closure under union and 

complementation. To build the intersection  

of two NFHs, con- sider 

 A1=  

and A2   =  

Define: 

 

• The transition relation δ3 includes transitions for 

each pair with 

extra transition to handle the # symbol when 

one machine halts. 

This construction ensures that the resulting NFH 

recognizes the intersection of the languages of A1 and 

A2. 

 

The nonemptiness problem for NFHs is undecidable.  

Proof. We reduce from the Post Correspondence 

Problem (PCP), which is undecidable. Given a set 

of dominos where  the PCP asks 

whether there exists a set of dominos such that the 

upper and lower strings match. This problem can be 

encoded into an NFH, showing that the nonemptiness 

problem for NFHs is undecidable.  

 

Given an instance C of the PCP, we encode a 

solution a word wsol over the alphabet  

A pcp =   

For a word , the upper part is σ1 ...σn 

and the lower part is . Dotted letters σ˙ mark 
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the start of a new tile, and $ marks the end of a 

sequence. A solution wsol is valid if: 

1) Each σσ
′ in wsol has matching domino letters (a or b), 

2) The number of dotted letters in the upper and lower 

parts is the same, 

3) wsol starts with two dotted letters, and for each pair 

of dotted letters, the subwords ui and vi between the 

i-th and (i + 1)-th dotted letters satisfy . 

 

We define a partial solution wsol,k by removing the first 

k tiles from wsol, with $ used to pad the shorter part. 

 

Next, we construct an NFH A that recognizes a 

hyperword S, which consists of wsol and all its suffixes 

formed by removing prefixes of tiles. For each wsol,k in 

S, wsol,k+1 must also be in S. For example, given the 

tiles: 

 
a solution is  

,  

and a matching hyperword S recognized by A is: 

 
The NFH A has a state space Aα = ∀x1∃x2∃x3, where 

x1 corresponds to a partial solution wsol,k, x2 relates to 

wsol,k+1, and x3 corresponds to the full solution wsol. 

During execution, A ensures that the upper and lower 

parts of wsol match and that v(x2) is derived from v(x1) 

by removing the first tile. 

 

Let A be an NFH with an evaluation condition Aα = 

∃x1,...,∃xm∀xm+1,...,∀xk, where 1 ≤ m < k. Then, A is 

nonempty if and only if it recognizes a hyperword of 

size m. 

 

Proof. Let S ∈ L(A). By the quantifier semantics, there 

exist words w1,...,wm ∈ S, such that for each assignment 

v : X → S with v(xi) = wi, Aˆ recognizes (v). For each 

permutation ζ = (1,2,...,m,i1,...,ik−m), it holds that 

{v(x1),...,v(xm)} ∈ L(A). The argument follows.  

Using Lemma V, we can formulate a decision 

procedure for the nonemptiness of NFHs. The 

nonemptiness problem for an NFH A can be decided 

in space polynomial in the size of Aˆ. 

 

Proof. By Lemma V, A is nonempty if and only if 

there exists a word w ∈ L(Aˆ) such that Aˆ recognizes 

wζ for all permutations ζ = (1,2,...,m,i1,...,ik−m), where 1 

≤ ij ≤ m. This means A recognizes 

{w[1],w[2],...,w[m]}.  

For the membership problem for NFH, given a NFH B 

and a hyperword S, the question is whether S ∈ B. For 

bounded S, the arrangement of operations from Z to S 

is constrained, making the problem decidable. This is 

known as the bounded membership problem. 

 

Let B be a NFH and S be a bounded hyperword over 

Σ. Then, determining whether S ∈ B is solvable in 

space polynomial in n, and logarithmic in |B|ˆ ,|S|. 

 

Proof. As in Theorem V, the size of Σˆ increases 

mainly with the number of ∀ quantifiers in B, making 

the problem complex in n. We can conclude 

membership by iterating over all functions u : Z → S, 

constructing (u), and evaluating Bˆ on-the-fly.

  
If the number of ∀ quantifiers is fixed, Σˆ may not grow 

with n, improving the problem. For NFH with a fixed 

number of ∀ quantifiers, the bounded membership 

problem is NP-complete. 

 

Proof. We iterate over all assignments to the ∀ 

variables, guessing assignments for the ∃ variables. 

Since the number of ∀ variables is fixed, the number 

of iterations is polynomial in n and |S|. Checking if (u) 

∈ L(Bˆ) is feasible on-the-fly. The problem is in NP 

because Σˆ does not grow significantly. 

 

For NP-hardness, we reduce from the Hamiltonian 

cycle problem. Given a graph H = (V,E), we construct 

a NFH B over {0,1} with n states and n variables. The 

hyperword S = {s1,...,sn}, where each si is a word in 

{0,1}n with only the i-th bit set to 1, encodes a 

Hamiltonian cycle. We show that B accepts S if and 

only if there is a Hamiltonian cycle in H. 

 

For unbounded S, we still have a bounded 

representation. We now address the general 

membership problem for NFH, which is decidable for 

all NFHs. The general membership problem for NFH 

is decidable. 

 

Proof. Let B=⟨Σ,Q,q0,δ,F⟩ be a NFA, and B
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=⟨Σ,{z1,...,zk},Q,Q0,δ,F,B⌉⊔⊣⟩ be a NFH. 

 

We expand the alphabet in B to Σ ∪ {#}, adding a final 

state qf  and transitions labeled with #. The language of 

the modified NFA, B′, will be L(B) · #∗. We then 

recursively determine if L(B) ∈ B. 

 

For k = 1, if B⌉⊔⊣ = ∃z1, then L(B) ∈ B if and only if 

L(B)∩B ̸ˆ = ∅. If B⌉⊔⊣ = ∀z1, then L(B) ∈ B if and 

only if L(B) ∈/ B, where B is the NFH for B. 

 

For k > 1, we construct a sequence of NFHs B1,...,Bk, 

starting with B1 = B. At each step, we update the 

quantifiers and check for membership in Bi for ∃ and 

non-membership for ∀, using the complementary 

NFH. This recursive process ensures that the general 

membership problem is decidable. 

 

The time complexity is O(n|Q|k) when the number of 

∀ quantifiers is fixed, with a significant factor 

depending on the number of quantifiers if unbounded. 

 
The membership problems for NFHE and NFHF, as 

well as for NFHE in NFHE and NFHF, are PSPACE-

complete. 

 

Proof. The lower bound follows from the membership 

problems of NFAs. 

For the upper bound, note that taking the complement 

of a NFH yields another NFH, and similarly for 

intersection. Given two NFHs B1 and B2, we check if 

L(B1) ⊆ L(B2) by testing if L(B1) ∩ L(B2) = ∅. Using 

results from Theorems V and V, we construct a NFH 

B = B1 ∩ B2 and check its non-emptiness. The 

complementation is exponential in B2’s states and the 

intersection is polynomial in the sizes of B1 and B2. 

 

If B1 ∈ NFHE and B2 ∈ NFHF, or vice versa, we 

construct another NFH whose non-emptiness can be 

decided in logarithmic space. If both B1 and B2 are 

either NFHE or NFHF, by Theorem V, the result is 

also a NFH, whose non-emptiness is decidable in 

PSPACE. Thus, the membership problem is PSPACE-

complete.  

 

VI. LEARNING NFH 

 

In this section, we present learning algorithms for the 

classes NFHE and NFHF based on Angluin’s L∗ 

algorithm [10]. 

1) The L∗ Algorithm: The L∗ algorithm consists of two 

components: a learner, who aims to learn a DFA B for 

an unknown target language L, and a teacher, who 

knows L. The learner asks two types of queries: 

membership queries (”Is w ∈ L?”) and equivalence 

queries (”Is B a DFA for L?”). 

 

The learner maintains a table T of truth values, where 

rows D and columns E are sets of words over Σ. 

Initially, D = E = {ϵ}, and for each d ∈ D and e ∈ E, 

the entry T(d,e) is if d · e ∈ L. The entries are filled via 

interaction queries. The learner updates the table until 

it is both closed and consistent. 

 

A table is closed if for each d ∈ D and σ ∈ Σ, there 

exists d′ ∈ D such that (d′) = (d · σ). The table is 

consistent if for each d1,d2 ∈ D and σ ∈ Σ, if (d1) = (d2), 

then (d1 · σ) = (d2 · σ). 

 

When the table is closed and consistent, the learner 

constructs the DFA. If the learner’s hypothesis DFA B 

is incorrect, the teacher provides a counterexample, 

which the learner adds to E and continues the 

interaction. 

 

The correctness of L∗ guarantees that the learner will 

converge to an equivalent DFA for the target language 

L. 

 

A. Canonical Constructions for NFHF and NFHE, We 

describe canonical constructions for the classes NFHF 

and NFHE, which are essential for applying L∗. 

1) Canonical Construction for NFHF: A NFHF 

is strategy complete if for every word w, Bˆ accepts w 

if and only if it accepts all concatenations of w. Let B 

be a NFHF. Then, B has an equivalent strategy 

complete NFHF. 

 

Proof. Foster a progression complete MFJM by 

overriding the secret NFA with a set union greater than 

all groupings of (1,2,...k). This yields a trivial 

deterministic gathering complete design.  

2) Canonical Construction for MFJD: A MFJD 

is change complete if for each word w, Bˆ recognizes 

w iff it recognizes all phases of w. Permit B to be a 
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MFJD. Then, at that point, B has an indistinguishable 

change complete MFJD. 

Proof. For the principal heading, in case Bˆ recognizes 

a word, 

it perceives all periods of the word by the semantics of 

the ∀ quantifier. As such, L(B) = L(B′). article 

amsmath Each MFJD has an indistinguishable change 

complete MFJD over comparable plan of variables. 

Proof. I foster B′ from B by describing Bζ for each 

change ζ of (1,2,...,k). The MFJD B′ is gained by 

displacing the major NFA with S
ζ∈Γ Bζ, where Γ is the 

plan of phases of (1,2,...,k). Permit B1 and B2 to be 

change completed MFJD over comparative game plan 

of elements X. Then, L(()B1) = L(()B2) iff L(()Bˆ
1) = 

L(()Bˆ
2). 

 

Proof. For the essential heading, accept w ∈ L(()Bˆ
1). 

Then, at that point, (w) ∈ L(()B1). By the semantics of 

the ∃ quantifier, there exists a change w′ of w so much 

that w′ ∈ L(()Bˆ
2). Since B2 is change gotten done, I 

have w ∈ L(()Bˆ
2). A relative conflict holds for the 

opposite, exhibiting that L(()Bˆ
1) = L(()Bˆ

2).  

I portray a standard design for MFJD as an irrelevant 

deterministic stage complete MFJD with the most un-

number of variables. Each (k,t)-MFJD B has an 

indistinguishable stage plan total (k,t)-MFJD B′. 

Proof. I assemble B′ by first making B′′, the 

combination of all Bζ for game plans ζ = 

(1,...,t,it+1,...,k). Then, I structure B′ as the relationship 

of Bξ
′′ for each stage ξ of (i1,...,it,t + 1,...,k).  

Permit B1 and B2 to be change progression complete 

(k,t)MFJD. Then, L(()B1) = L(()B2) iff L(()Bˆ1) = 

L(()Bˆ2). 

Proof. Acknowledge L(()B1) = L(()B2). Let w ∈ 

L(()Bˆ1). Since B1 is stage progression complete, I 

know that for every plan ζ of the construction 

(1,...,t,it+1,...,k), wζ ∈ L(()B1). By the semantics of the 

quantifiers, (w) ∈ L(()B2). Thus, w ∈ L(()Bˆ
2). The 

inverse continues similarly. Thusly, L(()Bˆ
1) = 

L(()Bˆ
2).  

Permit B to be a (k,t)-MFJD with k being the 

immaterial number of variables expected to impart 

L(()B). Then, Bˆ recognizes a word w where 

w[1],...,w[t] are specific. 

Proof. Expect, for coherent irregularity, that for each 

w ∈ L(()Bˆ), two of the first t words in w are same. By 

the semantics of the ∃ quantifier, this would conflict 

with the inconsequentiality of the number of variables. 

 
Permit B1 and B2 to be stage progression complete 

MFJD for the identical hyperlanguage L, both with a 

unimportant course of action of variables. Then the 

estimation provinces of B1 and B2 are same. 

Proof. Expect B1 is a (t,k)-MFJD and B2 is a (t,m)-

MFJD, with t < m. Expecting B1 recognizes some S ∈ 

L(()B1), this recommends that both B1 and B2 have a 

comparative assessment condition, inciting an 

irregularity with the exception of on the off chance that 

the estimation conditions are undefined.  

 

VII. LEARNING N FHE AND N FHF 

 

In this section, we describe the learning process for 

NFHE and NFHF under the framework of the L-star 

structure. These algorithms aim to learn 

inconsequential deterministic grouping complete (for 

NFHF) or stage complete (for NFHE) NFH with a 

minimal number of variables for a target 

hyperlanguage L. 

 

In the hyperautomaton setting, the teacher provides 

membership queries and counterexamples consisting 

of hyperwords. The teacher responds with minimal 

counterexamples concerning the size of the 

hyperword. 

 

The learner constructs an NFH A using the growing 

number of variables k, along with a representation 

table for Aˆ, over the alphabet Σ = (Σˆ ∪ {#})k, where k 

starts at 1. Once the number of variables increases to 

k′ > k, the alphabet of Aˆ expands to (Σ ∪ {#})k′. 

 

To increase the alphabet, define the function 

 
{#})k → (Σ ∪ {#})k′ that maps each word (σ1,...,σk) to 

(σ1,...,σk,σk). This function is extended to words by 

applying it to each symbol in the word. 

 

When (d · e) ∈ L(()A), then (↑k
k
′ (d · e)) ∈ L(()A). 

Therefore, when the number of variables increases, 

each word in the rows and fragments of the 

representation table is replaced by ↑k
k
′ (w). 

 

1) Learning : For , if the teacher returns a 

counterexample S with |S| > k, S is positive. Assume 

for contradiction that S is negative. For each k-tuple of 
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words w1,...,wk ∈ S, zip(w1,...,wk) ∈ L(()Aˆ), yet S /∈. 

This implies a word w = (w1,...,wk) exists, where wi ∈ 

S for 1 ≤ i ≤ k, and w /∈ L(()Aˆ), contradicting the 

negligibility of S. 

 

When |S| > k, if |S| = k+1, since A recognizes all 

subsets of size k of S, there exists a subset S′ ⊆ S of size 

k +1 that should be accepted but isn’t, making S′ a 

counterexample. 

 

When a counterexample S of size k + 1 is returned, the 

learner increments k ← k+1, updates T by applying 

↑k
k
+1 to all w ∈ D ∪ D · Σˆ ∪ E, selects a phase p of the 

words in S, and adds (S) and its suffixes to E. The 

alphabet Σˆ is updated, and missing entries in D · Σˆ are 

filled. 

 

When |S| ≤ k, if S is positive, the learner finds a phase 

p such that A does not recognize (p) and adds (p) and 

all of its suffixes to T. If S is negative, A recognizes all 

k-length tuples of words in S, but S should not be 

recognized. A phase p of S is found such that A 

recognizes (p), but it does not appear in T. The learner 

adds (p) and its suffixes to T. 

 

The learner’s actions are correct, as a positive 

counterexample guarantees that (p) must be in L(()Aˆ) 

for every superset S′ of S. If S is negative, (p) should 

not be in L(()Aˆ). Upon the development of an 

indistinguishable quality order, A becomes an for . 

However, A may not be fully constructed, as Aˆ could 

recognize w = (w1,...,wk) but not its transitions. If this 

occurs, the learner identifies the missing transition and 

adds it to T. 

 

Variables are introduced only when necessary, 

ensuring that A is an for with the minimal number of 

variables. The correctness of and the minimization of 

the counterexamples ensure that no smaller Aˆ′ for 

exists, as restricting Aˆ′ would lead to a smaller 

automaton for k′ variables, leading to a contradiction. 

 

 
𝑇0 𝜖 

𝜖 1 

(𝑎) 1 

(𝑏) 1 

(#) 1 

 

 
𝑇1 𝜖 (𝑎, 𝑏) 

𝜖 1 1 

(𝑎, 

𝑎) 

1 1 

(𝑏, 

𝑏) 

1 1 

(𝑎, 

𝑏) 

1 1 

(𝑎, 

#) 

1 0 

(𝑏, 

𝑎) 

1 0 

(𝑏, #) 1 0 

(#, 

𝑎) 

1 0 

(#, 𝑏) 1 0 

(#, #) 1 0 

Fig. 3. The initial stages of acquiring L(()A3) from 

Figure 1. 

 

Figure 3 illustrates the initial stages of learning (A3) 

from Figure 1. The initial table, T0, contains D = E = 

{ϵ} and Σ =ˆ {a,b,#}. Since {a},{b},{ϵ} are 

recognized by (A3), the initial NFH A is created over 

a single variable with a single accepting state. 

 

The smallest positive counterexample the teacher can 

return is  is applied, expanding Σˆ to 

{a,b,#}2, and the table is populated with support 

queries. For example, for (b,a) ∈ D · Σˆ and (a,b) ∈ E, 

a query for {ba,ab} results in a ”no” answer from the 

teacher. 

 

2) Learning : The learning process for closely mirrors 

that of , with a few differences. As with , minimal 

counterexamples ensure that when |S| > k, S is a 

positive counterexample. If S were negative, the word 

(w1,...,wk) in L(()Aˆ) would imply S ∈ (A), conflicting 

with S /∈. When S of size k′ > k is returned, the 

alphabet Σˆ is expanded to (Σ ∪ {#})k′ and the table is 

updated by ↑k
k
′, as in . If |S| ≤ k, S can be positive or 

negative. If negative, a phase w of S recognized by Aˆ 

is added to E, as it is not in T. If positive, no phase of 

S is recognized by Aˆ, and the corresponding transition 

is also added to E. 
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In both cases, equivalence queries do not guarantee 

that A is fully constructed. If it isn’t, the learner 

identifies words w and w′ where w ∈ L(()Aˆ) and w′ ∈ 

L/(()Aˆ), and adds w′ to E, ensuring it was not 

previously in T. The learning process then continues. 
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