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Abstract - The Travelling Salesman Problem 

(TSP) is a Combinatorial Optimization Problem 

(COPs) which has gained wide attention of 

computer scientists specifically because it is 

simple to define but very difficult to solve. For 

instance, when traveling (delivering) to seven 

cities, there could be up to 720 possible routes to 

consider, so finding the most efficient and 

feasible route requires evaluating every possible 

route, which is a computationally challenging 

task. TSP is NP - hard and does not have an 

effective polynomial - time solution, so effective 

heuristic methods are needed to solve it. This 

paper presents a comparative analysis of 

complexity of five tour construction algorithms 

for solving the travelling salesman problem. 

 

Indexed Terms- Combinatorial Optimization, 

TSP, NP - hard, Heuristics, NNH, NIH, FIH, 

CIH, RIH, Nodes, Edges. 

 

I. INTRODUCTION 

 

Combinatorial optimization problems are 

optimization problems in the discrete space 

which have different types of solutions 

comparing to the problems in the continuous 

space. Many of these types of problems are NP-

hard and do not have an effective polynomial-

time solution. So, effective methods are needed to 

solve these problems. In the last 30 years, meta-

heuristic approaches have been used extensively 

for solving related problems. Combinatorial 

optimization problems can be encountered in 

many fields such as routing, scheduling, 

planning, decision-making processes, 

transportation and telecommunications, etc.  

 

The Travelling Salesman Problem (TSP) is a 

popular example of combinatorial optimization 

problem. It is an algorithmic and graph 

computational problem where one needs to visit a 

set of cities (nodes in a graph) exactly once and 

the distances (edges in a graph) between all the 

cities are known. The solution that is needed for 

this problem is the shortest route in which one 

visits all the cities and returns to the starting city. 

 

Mathematically, TSP is formulated as a graph G 

= (V, E), where V is a set of nodes or vertices, E 

is a set of edges or arcs and let d = (dij) be a 

distance matrix associated with E.  

 

The objective function for the TSP is to minimize 

the total distance travelled, which can be 

represented as:  

n 

 ∑      dij xij                     (1)  

i,j=1 

 

Subject to constraints that ensure: 

 

i. Each city is visited exactly once 

ii. The salesman returns to the  starting city   

iii. There are no sub tours  

 

Many researchers have tried to solve TSP using 

different algorithms such as branch & bound, 

dynamic programming, artificial bee colony 

(ABC), ant colony optimization (ACO), etc. 

 

This paper gives a comparative analysis of time 

complexity of five tour construction algorithms in 

solving the travelling salesman problem. These 

heuristics are; Nearest Neighbor Heuristic 

(NNH), Nearest Insertion Heuristic (NIH), 

Farthest Insertion Heuristic (FIH), Cheapest 

Insertion Heuristic (CIH) and Random Insertion 

Heuristic (RIH). 

 

https://www.sciencedirect.com/topics/computer-science/optimization-problem
https://www.sciencedirect.com/topics/engineering/discrete-space
https://www.sciencedirect.com/topics/mathematics/combinatorial-optimization-problem
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II. RESEARCH MOTIVATION 

 

The following are some of the motivations for this 

research study; 

i. While there are numerous formulated 

Combinatorial Optimization Problems, the 

TSP is perhaps the most central to the field of 

combinatorial optimization. 

ii. Work on the TSP has been a driving force for 

the emergence and advancement of many 

important research areas, such as integer 

programming, as well as for the  development 

of complexity theory.  

iii. Additionally, the TSP has also become a 

standard test bed for new algorithmic 

 ideas; many of the most important 

techniques for solving combinatorial 

optimization problems were developed using 

the TSP as an example application.  

 

III. RESEARCH PROBLEM 

 

i. Given a set of nodes and edges between every 

pair of nodes, the problem is to find the 

shortest possible route (path) that passes every 

node exactly once and returns to the starting 

node. In theory, solving the Traveling 

Salesman Problem (TSP) is simple as it 

involves finding the shortest route for every 

trip within a city. However, as the number of 

cities increase, manually solving TSP 

becomes increasingly difficult. With just n 

cities, the permutations and combinations are 

already numerous. Adding just one more 

cities can exponentially increase the number 

of possible solutions.  

ii.  Notwithstanding, the numbers of 

computational heuristics, many real life 

problems of great significant remain largely 

unsolvable within the constraints of 

polynomial time due to limitations of exact 

algorithms in solving Combinatorial 

Optimization Problems. 

 

IV. THE GOAL OF THE STUDY 

 

The goal of this study is to consider some 

combinatorial optimization heuristics with 

special focus on tour construction approximation 

heuristics, with the following specific objectives: 

 

i. To evaluate the time complexity of nearest 

neighbor, nearest insertion, farthest insertion, 

cheapest insertion and random insertion 

algorithms. 

  

ii. To compare the complexities obtained in (i) 

above 

  

V. RELATED WORKS 

 

The travelling salesman problem has been 

extensively studied in the field of combinatorial 

optimization due to its relevance in various real – 

world applications. This literature review focuses 

on the complexity analysis of algorithms in the 

context of the travelling salesman problem. 

 

Rahman, et al (2024). Presented the improvement 

of the Nearest Neighbor Heuristic Search 

Algorithm for travelling salesman problem. The 

improved NNA sorts all edges and then it takes a 

short edge with two vertices. The improved NNA 

began its route with a short distance and 

repeatedly sorts all edges and takes the shortest 

routes. 

 

Farid, et al (2022).  In their study stated that the 

first step in implementing the Cheapest Insertion 

Algorithm in determining shortest delivery route 

is to collect address data for which the route of 

delivery of the goods will be searched. The 

second step is to create a graph representation of 

the data that has been obtained. After that, 

compute the total distance for shipping goods 

from the route used by SiCepat Express 

Baleendah. The next step is to find the route and 

total distance for shipping goods using the 

Asymmetric Travelling Salesman- Cheapest 

Insertion Heuristic (ATSP CIH) application. The 

result obtained are then compared with the route 

used by SiCepat Express Baleendah to determine 

the efficiency of using the Cheapest Insertion 

Algorithm (CIH) in the ATSP CIH application. 

 

Lity, et al (2022). Modelled the product ordering 

process of the incremental Software Product Line 

(SPL) analysis as a Travelling Salesman Problem 

(TSP). The aim was to optimize product orders 

and improve the overall SPL analysis. Products 

were modelled as a node in a graph, and the 

solution-space information defined edge weights 

between products nodes. Existing graph route-
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finding heuristics were used to obtain the path 

with minimal cost. The first heuristic deployed 

was the nearest neighbor heuristic. The nodes 

were analyzed according to their similarity, so the 

nearest neighbor heuristic path was built by 

adding the product (node) most similar to the last 

node. However, it was observed that the 

approximation quality was poor because it first 

greedily added all the similar nodes and later 

suffered the curse of dimensionality when not-so-

similar nodes were to be added. To overcome this, 

a lookup was introduced to examine the next node 

to be added to the computed path. Thereafter, two 

insertion heuristics, namely Nearest Insertion and 

Farthest Insertion were deployed to insert the 

remaining product into the existing path created 

by the Nearest Neighbor Heuristic. The proposed 

method was simulated on a prototype and 

evaluated for applicability and performance; a 

significantly more optimized SPL process was 

reported. 

 

Nemani, et al. 2021). Tested and evaluated the 

performance of three algorithms: Simulated 

Annealing, Ant Colony Optimization, and 

Genetic Algorithm by setting up analogous 

environments of n cities. The traveling salesman 

problem (TSP) is one of the most extensively 

studied optimization problems in the computer 

science and computational mathematics field 

given that there is yet an optimal solution for it to 

be discovered. This algorithmic issue requests the 

shortest possible route that visits each city 

precisely once and returns to its initial starting 

point if a list of n places and the distances 

between each pair are given. This paper conducts 

a comparative study to test and evaluate the 

performance of three algorithms: Simulated 

Annealing, Ant Colony Optimization, and 

Genetic Algorithm. With the traveling salesman 

problem classifying under NP-hard 

computational complexity, the proposed research 

work will examine the runtime as well as the 

shortest distance computed by each of these 

algorithms by setting up analogous environments 

of n cities. 

 

Ono, et al (2020). Stated that Travelling Salesman 

Problem can be summarized by the following: a 

list of destinations and the distances between each 

pair of destinations, determine the shortest path 

that visits each destination only once. TSP is an 

obvious application of a minimum cost network 

flow. 

 

Sundar, & Rathinam, (2016). Investigated the 

generalized multiple depots traveling salesmen 

problem (GMDTSP). They were motivated by 

several applications in network design, health-

care logistics and scheduling. The problem was 

defined as follows. Given a set of customers 

divided into a predefined number of clusters and 

a set of 𝐾 depots, search for a collection of at most 

𝐾 cycles having the following properties. Each 

cycle begins and ends at a certain depot, at least 

one customer from each cluster is visited by some 

cycle, and the total costs of the collection of 

cycles are minimized. 

 

Amarbir, (2016). Undertakes the review of 

algorithms used to solve Multiple Travelling 

Salesman Problem. The techniques are 

categorized into heuristic, meta-heuristics and 

exact algorithms and out of these the exact 

approaches are used for relatively small 

problems.  

 

Yulianto, (2018). Stated that the Cheapest 

Insertion Heuristic method builds a tour from 

small cycles with minimal weight and 

successively adds new points. The selection of the 

new point is carried out simultaneously with the 

selection of the edge so that the minimum 

insertion value is obtained. Then the new point is 

inserted between the two points that make up the 

side that has been selected. 

 

Fadhillah, (2017). Opined that Travelling 

Salesman Problem (TSP) is one of the distribution 

problems that been discussed for a long time in 

optimization studies that usually occur in 

everyday life. The TSP problem is about someone 

who has to visit all cities exactly once and return 

to the initial city with minimum distance. 

 

Hoel, (2015). Offered a greedy algorithm-based 

solution to the travelling salesman problem. The 

greedy algorithm is like the Nearest Neighbor 

Algorithm and the route starts from that particular 

sub-route with two cities, which has the shortest 

distance among all such feasible sub-routes. 

 

Asani, et al (2024), in their research work titled A 

Novel Insertion Solution for the Travelling 
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Salesman Problem proposed an insertion method 

referred to as the Half Max Insertion Heuristic 

(HMIH). Their motivation was to explore some 

strategies with the possibility of improving tour 

accuracy. The design of HMIH was based on two 

observations, namely; 

i. The superior solution quality of insertion 

techniques based on the use of polygon as an 

initial tour 

ii. The limitation of FIH’s accuracy due to the 

distance between its initial circuits and the 

next node to be inserted. Huang et al (n.d.) 

argued that although FIH performs relatively 

well, the distance between its circuit and new 

nodes to be inserted impedes accuracy. 

Anitha, & Sandeep (2015). In their paper titled 

“Literature survey on travelling salesman 

problem using genetic algorithms.” In the 

introduction of the paper stated that optimization 

is the process of making something better. An 

optimization problem is a problem which boosts 

the solution of finds the better solution from all 

available solution spaces. The terminology:” 

best” solution implied that there is more than one 

solution. The travelling salesman problem also 

results in more one solution, but the aim is to find 

the best solution in a reduced time and the 

performance is also increased. 

 

Kumar, et al (2012). Stated that genetic algorithm 

is one of the best methods which is used to solve 

various NP-hard problem such as TSP. The 

natural evolution process is always used by 

genetic Algorithm to solve the problems. They 

presented a critical survey to solve TSP problem 

using genetic algorithm methods that are 

proposed by researchers. They observed that 

there is requirement to design new genetic 

operators that can enhance the performance of the 

GA used to solve TSP. There is lot of scope for 

the researcher to do work in this field in future.  

 

Krari, & Benani, (2019). In their pre-processing 

technique selects from every cluster the closest 

vertices to the other clusters and removes the 

vertices that have never been chosen to reduce the 

solution search space size. The proposed method 

had very small running times, while the rate of the 

reduction is up to 98%, therefore being very 

competitive against the reduction algorithms 

proposed by Gutin & Karapetyan (2009). 

Different GTSP solvers were applied to the 

reduced instances in order to assess their 

performance. The results showed that reduced 

instances helped the solvers find good feasible 

solutions in very short computational times, but 

are not guaranteed to find optimal solutions. 

 

Bernardino, & Paias (2018). Presented several 

compact and non-compact models of the 

problem, while Pop, Matei, and Pintea (2018) 

described an innovative technique to solve the 

FTSP. They split the problem into two smaller 

sub problems operating at the macro and micro 

levels, and solved them individually. The macro 

level sub problem is aimed at providing a 

collection of tours visiting the families while 

employing a classical genetic algorithm (GA) and 

a diploid GA (i.e., GA with individuals consisting 

of two coupled chromosomes Petrovan, Matei, & 

Pop, 2023a). The micro level sub problem is 

aimed at finding the minimum-cost tour, 

associated with each generated tour at the macro 

level that visits a given number of vertices 

belonging to each family. 

 

Yuan, et al (2020). Motivated by applications in 

the field of delivery services. The GTSP-TW is 

defined on directed graphs with the set of vertices 

divided into clusters with the following 

properties. One cluster includes only the depot 

and for every vertex we associate a time window, 

during which the visit must take place if the 

corresponding vertex is visited. The goal of the 

GTSP-TW is to find the shortest Hamiltonian tour 

beginning and ending at the depot so that each 

cluster is visited exactly once and the time 

constraints are fulfilled, i.e., for each cluster the 

selected vertex is visited within its time window. 

 

VI. RESEARCH METHODOLOGY 

 

We have examined the complexities of five (5) 

approximation algorithms with  emphasis on tour 

construction algorithms focusing on solving the 

travelling salesman problem (TSP).  our primary 

objective was to conduct a comparative analysis 

to determine the efficiency of these algorithms 

when utilized in the context of the travelling 

salesman problem. To achieve this , we 

synthesized the complexities and subjected them 

to experimental runs in the same programming 

environment. 

 

file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0032
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0044
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0011
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0090
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file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0081
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0119
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0119
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Python programming language is the language 

used to code the algorithms. All the algorithms 

were tested using arrays (nodes) of different sizes. 

Ten (10) datasets were used in the testing in the 

range of 4 - 50 nodes.  The experiments were run 

on Intel core15 Hp laptop with 12 GB memory 

and Windows 10 (64 bits) operating system. 

 

The basic process of tour construction heuristics 

can be summarized as follows; 

i. Sub-tour establishment rule 

ii. Selection rule 

iii. Expansion rule 

iv. Repeated application of steps (ii)      

and (iii) until a complete tour is        obtained. 

 

The expansion rules can be categorized into two 

(2) types; insertion and addition. An insertion - 

based expansion rule chooses where in the 

permutation to place the new city on the basis of 

the cost of the resulting sub-tour, whereas an 

addition - based expansion rule bases this 

decision on next - hop distance. 

 

 
Figure 1: Conceptual framework 

 

The Heuristics for solving the Travelling 

Salesman Problem (TSP): 

 

The five (5) tour construction approximation 

algorithms used in this research study are; 

i. Nearest Neighbor Heuristic (NNH) 

ii. Nearest Insertion Heuristic (NIH) 

iii. Farthest Insertion Heuristic (FIH) 

iv. Cheapest Insertion Heuristic (CIH) 

v. Random Insertion Heuristic (RIH) 

 

Nearest Neighbor Heuristic (NNH)  

Nearest Neighbor Algorithm is a simple and 

intuitive approximation for the TSP. This is a 

greedy approach and the greedy criterion is in 

selecting the nearest city. It starts at an arbitrary 

city and repeatedly selects the nearest unvisited 

city until all cities have been visited. 

 

Algorithm 1: Nearest-Neighbor Algorithm 

(NNH)  

i.  

ii. Start at any node  

Select the  nearest unvisited neighbor and add it 

to end of tour.  

Repeat step (ii) until all nodes are  added to the 

tour.  

iii. Time complexity = O(n2) 

 

NNH - code 

import NumPy as np 

 def nearest_neighbor (points, current_point): 

distances = np.linalg.norm (points - 

current_point, axis=1) 

return points [np.argmin (distances)] 

  

def tsp_nn(points): num_points = len(points) 

solution = [points [0]] # Start at the first 

point 

current_point = points [0] 

for _ in range (num_points - 1): 

next_point = nearest_neighbor 

         (points, current_point) 

solution.append (next_point) 

current_point = next_point 

return solution 

points = np.array ([(15, 0), (20, 0), (35, 0), (30, 

0)]) 

solution = tsp_nn(points) 

 

Nearest Insertion Heuristic (NIH) 

Nearest Insertion Algorithm is still greedy but not 

as greedy as nearest neighbor. It allows partial 

tour to be modified 

  

Algorithm 2: Nearest Insertion Algorithm (NIH) 

I. Start the tour  at any node 



© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880 
 

 
 
IRE 1706800     ICONIC RESEARCH AND ENGINEERING JOURNAL 548 

II. Pick the nearest unvisited - neighbor of the 

selected node in the tour 

III. Insert it into the tour T = t1, …..,tk so that the 

total tour distance (cost) is  minimized. 

i.e., find (i,j,k)    =     w( i, k) + w(k, j) -  w( i, 

j) is minimize 

IV. Repeat steps (ii) and (iii) until all nodes are 

added to the tour. 

V. Time complexity = O(n2) 

 

NIH - code 

import NumPy as np 

 

def nearest_point (points, point): 

distances = np.linalg.norm (points - point, 

axis=1) 

return points [np.argmin (distances)] 

  

def insert_point (solution, point): 

nearest = nearest_point (solution, point) 

index = np.where (solution == nearest) 

[0][0] 

solution = np.insert (solution, index + 1, 

point, axis=0) 

return solution 

  

def tsp_ni(points): 

num_points = len(points) 

solution = [points [0]] # Start with the first 

point 

for i in range (1, num_points): 

solution = insert_point (solution, points[i]) 

return solution 

points = np.array ([(30, 0), (15, 0), (20, 0), (35, 

0)]) 

solution = tsp_ni (points) 

print(solution) # Output: [(30, 0), (15, 0), (20, 0), 

(35, 0)] 

 

Farthest Insertion Heuristic (FIH) 

Farthest - Insertion Algorithm  Start with a tour 

consisting of the two cities that are farthest apart. 

Repeat the following: Among all cities not in the 

tour, choose the one that is farthest from any city 

already in the tour. Insert it into the tour in the 

position where it causes the smallest increases in 

the tour distance. 

 

Algorithm 3: Farthest Insertion Algorithm (FIH) 

i. Start the tour  at any node 

ii. Pick the nearest farthest unvisited neighbor of 

the selected node.  

iii. Insert it into the tour T  = t1, ….., tk so that the 

total tour distance (cost) is            

minimized.  i.e., find  (i,j,k) =     w( i, 

k) + w( k, j) -  w( i, j) is minimized 

iv. Repeat steps (ii) and (iii) until all nodes are added 

to the tour. 

v. Time complexity = O(n2) 

FIH - code 

import NumPy as np 

def farthest_point (solution, points): 

max_distance = 0 

farthest = None 

for point in points: 

distance = np.min (np.linalg.norm 

(solution -        point, 

axis=1)) 

if distance >max_distance: 

max_distance = distance 

farthest = point 

return farthest 

 

def insert_point (solution, point): 

solution = np.append (solution, point, axis=0) 

return solution 

  

def tsp_fi(points): 

num_points = len(points) 

solution = [points[0]]  # Start with the first 

point 

remaining_points = points[1:] 

for i in range(1, num_points): 

farthest = farthest_point(solution, 

 remaining_points) 

solution = insert_point(solution, farthest 

remaining_points = np.delete(remaining_points, 

np.where(remaining_points == farthest)[0][0], 

axis=0) 

return solution 

  

points = np.array([(30, 0), (15, 0), (20, 0), (35, 

0)]) 

solution = tsp_fi(points) 

print(solution)  # Output: [(30, 0), (15, 0), (20, 0), 

(35, 0)] 

 

Cheapest Insertion Heuristic(CIH): 

The cheapest insertion algorithm is a heuristic 

method that build a tour from small cycles with 

minimal weight and successively adds new 

nodes. 
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Algorithm 4: Cheapest Insertion Algorithm 

(CIH): 

I. Start with a partial tour from a node 

II. Create a sub tour relationship; a sub tour link 

is created between two (2) places. It is a 

journey from the first place and ends in the 

first place. 

III. Change the direction of the relationship 

(insertion) . One of the directions of  the  

relationship (arc) of two places with a 

combination of two arcs, namely arc (i,j) is 

change to arc (i,k) and arc ( k,j) where k is the 

insertion point with the smallest additional 

distance which is obtained from (i,j,k) =  

w( i,k) + w( k,j) - w(i,j). 

IV. Repeat steps (ii) and (iii) until all nodes are 

added to the tour. 

V. Time complexity = O(n2 log n) 

 

CIH - code 

import NumPy as np 

def cheapest_point (solution, points): 

min_cost = float('inf') 

cheapest = None 

for point in points: 

cost = np.min (np.linalg.norm (solution 

                        - point, axis=1)) 

if cost <min_cost: 

min_cost = cost 

cheapest = point 

return cheapest 

  

def insert_point (solution, point): 

solution = np.append (solution, point, axis=0) 

return solution 

   

def tsp_ci (points): 

num_points = len(points) 

solution = [points [0]] # Start with the first 

point 

remaining_points = points [1:] 

for i in range (1, num_points): 

cheapest = cheapest_point (solution, 

 remaining_points) 

solution = insert_point (solution, cheapest) 

remaining_points = np. 

delete(remaining_points, np. where 

(remaining_points == cheapest) [0][0], axis=0) 

 return solution 

  

points = np.array([(30, 0), (35, 0), (20, 0), (15, 

0)]) 

solution = tsp_ci (points) 

print(solution)  # Output: [(30, 0), (35, 0), (20, 0), 

(15, 0)] 

 

Random Insertion Heuristic (RIH) 

The random insertion algorithm is a heuristic 

method used to construct an approximate solution 

for the Traveling Salesman Problem (TSP) by 

randomly selecting the start node as an initial tour 

and continue selecting randomly until all nodes 

are added to the tour. 

 

Algorithm 5: Random Insertion Algorithm (RIH) 

i. Select a random node (or a pre-specified 

node) as the initial tour.  

ii. Choose the next node to join the tour 

randomly from the remaining nodes (not yet 

connected to the tour). 

iii. Calculate the cost of inserting a node between 

two existing nodes in the           tour. 

The cost is defined as: (i,j,k) =     w( i, k) + 

w( k, j) -  w( i, j) is minimize Insert the 

selected node at the location that minimizes 

the insertion cost. 

iv. Repeat steps (ii) and (iii) until all nodes have 

been added into the tour. 

v. Time complexity =  O(n2). 

RIH - code 

import NumPy as np 

def insert_point (solution, points): 

random_index = np.random.choice(len(points)) 

solution = np.insert (solution, np. 

 random.randint (0, len(solution)),   

points[random_index], axis=0) 

return solution 

  

def tsp_ri(points): 

num_points = len(points) 

solution = [points [0]] # Start with the first 

point 

remaining_points = points [1:] 

for i in range (1, num_points): 

solution = insert_point (solution, 

 remaining_points) 

remaining_points = np. delete 

(remaining_points, np. random.randint (0, 

len(remaining_points)), axis=0) 

return solution 

  

points = np.array ([(30, 0), (15, 0), (20, 0), (35, 

0)]) 

solution = tsp_ri(points) 
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print(solution) # Output: a random permutation of 

the points 

 

Tour path visualization: 

 
Figure 2: A graph showing 50 nodes tsp 

 

VI. RESULTS AND FINDINGS 

 

We provide details comparative analysis of the 

five (5) tour construction algorithms using time 

complexity measurement in seconds. 

 

Table 1: Computational speed analysis of 5 tour 

construction algorithms 

N

o 

of 

N

od

es 

Neare

st 

Neigh

bor 

Heuri

stic 

Neare

st 

Insert

ion 

Heuri

stic 

Farth

est 

Insert

ion 

Heuri

stic 

Chea

pest 

Insert

ion 

Heuri

stic 

Rand

om 

Insert

ion 

Heuri

stic 

4 0.042

633 

0.011

111 

0.012

018 

0.010

111 

0.011

903 

10 0.053

338 

0.009

997 

0.021

974 

0.007

988 

0.011

569 

15 0.034

997 

0.015

641 

0.024

966 

0.017

999 

0.021

841 

20 0.055

915 

0.010

123 

0.032

691 

0.010

079 

0.011

972 

25 0.015

972 

0.012

519 

0.014

222 

0.011

270 

0.013

977 

30 0.035

949 

0.021

966 

0.035

849 

0.011

790 

0.028

748 

35 0.047

920 

0.032

047 

0.040

691 

0.021

418 

0.033

952 

40 0.116

592 

0.031

172 

0.111

411 

0.022

115 

0.101

003 

45 0.120

016 

0.071

123 

0.100

100 

0.024

671 

0.100

129 

50 0.123

849 

0.100

866 

0.122

849 

0.028

968 

0.112

811 

  

 
Figure 3: A graph showing time complexities of 

NNH, NIH, FIH, CIH and RIH 

 

 
Figure 4: A graph showing time complexity 

between NNH, NIH, FIH, CIH and RIH 
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Table 2: Total time complexity of individual 

algorithms. 

 

 
Figure 5: A graph showing total time complexity 

of the five algorithms 

 

 
Figure 6: Comparison of  total time complexity 

 

VII. THE FINDINGS 

 

The research study compares the time complexity 

and execution speed of  five tour construction 

heuristics namely; Nearest Neighbor Heuristic 

(NNH), Nearest Insertion Heuristic (NIH), 

Farthest Insertion Heuristic (FIH), Cheapest 

Insertion Heuristic (CIH)  and Random Insertion 

Heuristics RIH). 

 

i. Figures 3 and 4 shows clearly that Nearest 

Neighbor Heuristic (NNH) had the fastest 

computational speed followed by Farthest 

Insertion Heuristic (FIH), Random Insertion 

Heuristic (RIH), Nearest Insertion Heuristic 

(NIH) and Cheapest Insertion Heuristic 

(CIH). This is consistent with literature 

findings that insertion techniques requires 

more computational time than the addition 

techniques to complete a tour..(Laha, et al 

2016, Babel 2020) 

ii. According to (Lity, et al 2017, Babel 2020) 

computational speed is affected by the 

insertion criteria for computation 

iii. Farthest Insertion Heuristic ( FIH) generally 

performs best in the community of insertion 

heuristics of O(n2) or low time complexity. 

iv. Figures 5 and 6 using the total execution time 

and speed also demonstrate that the Nearest 

Neighbor Heuristic (NNH) out-performed the 

four other heuristics in this research study. 
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