
© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 543

Towards Comparative Analysis of The Complexity

of Tour Construction Heuristics for Solving the

Travelling Salesman Problem

OGBULOKO VINCENT ECHE1, ADEREMI ELISHA OKEYINKA2, IBRAHIM

ABDULLAHI3, ABDULGANIYU ABDULRAHMAN4

1, 2, 3, 4Department of Computer Science, Faculty of Natural Sciences, Ibrahim Badamasi

Babangida University, Lapai, Niger State, Nigeria.

Abstract - The Travelling Salesman Problem

(TSP) is a Combinatorial Optimization Problem

(COPs) which has gained wide attention of

computer scientists specifically because it is

simple to define but very difficult to solve. For

instance, when traveling (delivering) to seven

cities, there could be up to 720 possible routes to

consider, so finding the most efficient and

feasible route requires evaluating every possible

route, which is a computationally challenging

task. TSP is NP - hard and does not have an

effective polynomial - time solution, so effective

heuristic methods are needed to solve it. This

paper presents a comparative analysis of

complexity of five tour construction algorithms

for solving the travelling salesman problem.

Indexed Terms- Combinatorial Optimization,

TSP, NP - hard, Heuristics, NNH, NIH, FIH,

CIH, RIH, Nodes, Edges.

I. INTRODUCTION

Combinatorial optimization problems are

optimization problems in the discrete space

which have different types of solutions

comparing to the problems in the continuous

space. Many of these types of problems are NP-

hard and do not have an effective polynomial-

time solution. So, effective methods are needed to

solve these problems. In the last 30 years, meta-

heuristic approaches have been used extensively

for solving related problems. Combinatorial

optimization problems can be encountered in

many fields such as routing, scheduling,

planning, decision-making processes,

transportation and telecommunications, etc.

The Travelling Salesman Problem (TSP) is a

popular example of combinatorial optimization

problem. It is an algorithmic and graph

computational problem where one needs to visit a

set of cities (nodes in a graph) exactly once and

the distances (edges in a graph) between all the

cities are known. The solution that is needed for

this problem is the shortest route in which one

visits all the cities and returns to the starting city.

Mathematically, TSP is formulated as a graph G

= (V, E), where V is a set of nodes or vertices, E

is a set of edges or arcs and let d = (dij) be a

distance matrix associated with E.

The objective function for the TSP is to minimize

the total distance travelled, which can be

represented as:

n

 ∑ dij xij (1)

i,j=1

Subject to constraints that ensure:

i. Each city is visited exactly once

ii. The salesman returns to the starting city

iii. There are no sub tours

Many researchers have tried to solve TSP using

different algorithms such as branch & bound,

dynamic programming, artificial bee colony

(ABC), ant colony optimization (ACO), etc.

This paper gives a comparative analysis of time

complexity of five tour construction algorithms in

solving the travelling salesman problem. These

heuristics are; Nearest Neighbor Heuristic

(NNH), Nearest Insertion Heuristic (NIH),

Farthest Insertion Heuristic (FIH), Cheapest

Insertion Heuristic (CIH) and Random Insertion

Heuristic (RIH).

https://www.sciencedirect.com/topics/computer-science/optimization-problem
https://www.sciencedirect.com/topics/engineering/discrete-space
https://www.sciencedirect.com/topics/mathematics/combinatorial-optimization-problem

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 544

II. RESEARCH MOTIVATION

The following are some of the motivations for this

research study;

i. While there are numerous formulated

Combinatorial Optimization Problems, the

TSP is perhaps the most central to the field of

combinatorial optimization.

ii. Work on the TSP has been a driving force for

the emergence and advancement of many

important research areas, such as integer

programming, as well as for the development

of complexity theory.

iii. Additionally, the TSP has also become a

standard test bed for new algorithmic

 ideas; many of the most important

techniques for solving combinatorial

optimization problems were developed using

the TSP as an example application.

III. RESEARCH PROBLEM

i. Given a set of nodes and edges between every

pair of nodes, the problem is to find the

shortest possible route (path) that passes every

node exactly once and returns to the starting

node. In theory, solving the Traveling

Salesman Problem (TSP) is simple as it

involves finding the shortest route for every

trip within a city. However, as the number of

cities increase, manually solving TSP

becomes increasingly difficult. With just n

cities, the permutations and combinations are

already numerous. Adding just one more

cities can exponentially increase the number

of possible solutions.

ii. Notwithstanding, the numbers of

computational heuristics, many real life

problems of great significant remain largely

unsolvable within the constraints of

polynomial time due to limitations of exact

algorithms in solving Combinatorial

Optimization Problems.

IV. THE GOAL OF THE STUDY

The goal of this study is to consider some

combinatorial optimization heuristics with

special focus on tour construction approximation

heuristics, with the following specific objectives:

i. To evaluate the time complexity of nearest

neighbor, nearest insertion, farthest insertion,

cheapest insertion and random insertion

algorithms.

ii. To compare the complexities obtained in (i)

above

V. RELATED WORKS

The travelling salesman problem has been

extensively studied in the field of combinatorial

optimization due to its relevance in various real –

world applications. This literature review focuses

on the complexity analysis of algorithms in the

context of the travelling salesman problem.

Rahman, et al (2024). Presented the improvement

of the Nearest Neighbor Heuristic Search

Algorithm for travelling salesman problem. The

improved NNA sorts all edges and then it takes a

short edge with two vertices. The improved NNA

began its route with a short distance and

repeatedly sorts all edges and takes the shortest

routes.

Farid, et al (2022). In their study stated that the

first step in implementing the Cheapest Insertion

Algorithm in determining shortest delivery route

is to collect address data for which the route of

delivery of the goods will be searched. The

second step is to create a graph representation of

the data that has been obtained. After that,

compute the total distance for shipping goods

from the route used by SiCepat Express

Baleendah. The next step is to find the route and

total distance for shipping goods using the

Asymmetric Travelling Salesman- Cheapest

Insertion Heuristic (ATSP CIH) application. The

result obtained are then compared with the route

used by SiCepat Express Baleendah to determine

the efficiency of using the Cheapest Insertion

Algorithm (CIH) in the ATSP CIH application.

Lity, et al (2022). Modelled the product ordering

process of the incremental Software Product Line

(SPL) analysis as a Travelling Salesman Problem

(TSP). The aim was to optimize product orders

and improve the overall SPL analysis. Products

were modelled as a node in a graph, and the

solution-space information defined edge weights

between products nodes. Existing graph route-

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 545

finding heuristics were used to obtain the path

with minimal cost. The first heuristic deployed

was the nearest neighbor heuristic. The nodes

were analyzed according to their similarity, so the

nearest neighbor heuristic path was built by

adding the product (node) most similar to the last

node. However, it was observed that the

approximation quality was poor because it first

greedily added all the similar nodes and later

suffered the curse of dimensionality when not-so-

similar nodes were to be added. To overcome this,

a lookup was introduced to examine the next node

to be added to the computed path. Thereafter, two

insertion heuristics, namely Nearest Insertion and

Farthest Insertion were deployed to insert the

remaining product into the existing path created

by the Nearest Neighbor Heuristic. The proposed

method was simulated on a prototype and

evaluated for applicability and performance; a

significantly more optimized SPL process was

reported.

Nemani, et al. 2021). Tested and evaluated the

performance of three algorithms: Simulated

Annealing, Ant Colony Optimization, and

Genetic Algorithm by setting up analogous

environments of n cities. The traveling salesman

problem (TSP) is one of the most extensively

studied optimization problems in the computer

science and computational mathematics field

given that there is yet an optimal solution for it to

be discovered. This algorithmic issue requests the

shortest possible route that visits each city

precisely once and returns to its initial starting

point if a list of n places and the distances

between each pair are given. This paper conducts

a comparative study to test and evaluate the

performance of three algorithms: Simulated

Annealing, Ant Colony Optimization, and

Genetic Algorithm. With the traveling salesman

problem classifying under NP-hard

computational complexity, the proposed research

work will examine the runtime as well as the

shortest distance computed by each of these

algorithms by setting up analogous environments

of n cities.

Ono, et al (2020). Stated that Travelling Salesman

Problem can be summarized by the following: a

list of destinations and the distances between each

pair of destinations, determine the shortest path

that visits each destination only once. TSP is an

obvious application of a minimum cost network

flow.

Sundar, & Rathinam, (2016). Investigated the

generalized multiple depots traveling salesmen

problem (GMDTSP). They were motivated by

several applications in network design, health-

care logistics and scheduling. The problem was

defined as follows. Given a set of customers

divided into a predefined number of clusters and

a set of 𝐾 depots, search for a collection of at most

𝐾 cycles having the following properties. Each

cycle begins and ends at a certain depot, at least

one customer from each cluster is visited by some

cycle, and the total costs of the collection of

cycles are minimized.

Amarbir, (2016). Undertakes the review of

algorithms used to solve Multiple Travelling

Salesman Problem. The techniques are

categorized into heuristic, meta-heuristics and

exact algorithms and out of these the exact

approaches are used for relatively small

problems.

Yulianto, (2018). Stated that the Cheapest

Insertion Heuristic method builds a tour from

small cycles with minimal weight and

successively adds new points. The selection of the

new point is carried out simultaneously with the

selection of the edge so that the minimum

insertion value is obtained. Then the new point is

inserted between the two points that make up the

side that has been selected.

Fadhillah, (2017). Opined that Travelling

Salesman Problem (TSP) is one of the distribution

problems that been discussed for a long time in

optimization studies that usually occur in

everyday life. The TSP problem is about someone

who has to visit all cities exactly once and return

to the initial city with minimum distance.

Hoel, (2015). Offered a greedy algorithm-based

solution to the travelling salesman problem. The

greedy algorithm is like the Nearest Neighbor

Algorithm and the route starts from that particular

sub-route with two cities, which has the shortest

distance among all such feasible sub-routes.

Asani, et al (2024), in their research work titled A

Novel Insertion Solution for the Travelling

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 546

Salesman Problem proposed an insertion method

referred to as the Half Max Insertion Heuristic

(HMIH). Their motivation was to explore some

strategies with the possibility of improving tour

accuracy. The design of HMIH was based on two

observations, namely;

i. The superior solution quality of insertion

techniques based on the use of polygon as an

initial tour

ii. The limitation of FIH’s accuracy due to the

distance between its initial circuits and the

next node to be inserted. Huang et al (n.d.)

argued that although FIH performs relatively

well, the distance between its circuit and new

nodes to be inserted impedes accuracy.

Anitha, & Sandeep (2015). In their paper titled

“Literature survey on travelling salesman

problem using genetic algorithms.” In the

introduction of the paper stated that optimization

is the process of making something better. An

optimization problem is a problem which boosts

the solution of finds the better solution from all

available solution spaces. The terminology:”

best” solution implied that there is more than one

solution. The travelling salesman problem also

results in more one solution, but the aim is to find

the best solution in a reduced time and the

performance is also increased.

Kumar, et al (2012). Stated that genetic algorithm

is one of the best methods which is used to solve

various NP-hard problem such as TSP. The

natural evolution process is always used by

genetic Algorithm to solve the problems. They

presented a critical survey to solve TSP problem

using genetic algorithm methods that are

proposed by researchers. They observed that

there is requirement to design new genetic

operators that can enhance the performance of the

GA used to solve TSP. There is lot of scope for

the researcher to do work in this field in future.

Krari, & Benani, (2019). In their pre-processing

technique selects from every cluster the closest

vertices to the other clusters and removes the

vertices that have never been chosen to reduce the

solution search space size. The proposed method

had very small running times, while the rate of the

reduction is up to 98%, therefore being very

competitive against the reduction algorithms

proposed by Gutin & Karapetyan (2009).

Different GTSP solvers were applied to the

reduced instances in order to assess their

performance. The results showed that reduced

instances helped the solvers find good feasible

solutions in very short computational times, but

are not guaranteed to find optimal solutions.

Bernardino, & Paias (2018). Presented several

compact and non-compact models of the

problem, while Pop, Matei, and Pintea (2018)

described an innovative technique to solve the

FTSP. They split the problem into two smaller

sub problems operating at the macro and micro

levels, and solved them individually. The macro

level sub problem is aimed at providing a

collection of tours visiting the families while

employing a classical genetic algorithm (GA) and

a diploid GA (i.e., GA with individuals consisting

of two coupled chromosomes Petrovan, Matei, &

Pop, 2023a). The micro level sub problem is

aimed at finding the minimum-cost tour,

associated with each generated tour at the macro

level that visits a given number of vertices

belonging to each family.

Yuan, et al (2020). Motivated by applications in

the field of delivery services. The GTSP-TW is

defined on directed graphs with the set of vertices

divided into clusters with the following

properties. One cluster includes only the depot

and for every vertex we associate a time window,

during which the visit must take place if the

corresponding vertex is visited. The goal of the

GTSP-TW is to find the shortest Hamiltonian tour

beginning and ending at the depot so that each

cluster is visited exactly once and the time

constraints are fulfilled, i.e., for each cluster the

selected vertex is visited within its time window.

VI. RESEARCH METHODOLOGY

We have examined the complexities of five (5)

approximation algorithms with emphasis on tour

construction algorithms focusing on solving the

travelling salesman problem (TSP). our primary

objective was to conduct a comparative analysis

to determine the efficiency of these algorithms

when utilized in the context of the travelling

salesman problem. To achieve this , we

synthesized the complexities and subjected them

to experimental runs in the same programming

environment.

file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0032
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0044
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0011
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0090
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0081
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0081
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0119
file:///C:/Users/USER/Documents/A%20HEURISTICS%20-%20CENTRIC%20COMPLEXITY%20MEASUREMENT%20METRIC%20FOR%20SOLVING%20COMBINATORIAL%20PROBLEMS2%20(2).docx%23bib0119

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 547

Python programming language is the language

used to code the algorithms. All the algorithms

were tested using arrays (nodes) of different sizes.

Ten (10) datasets were used in the testing in the

range of 4 - 50 nodes. The experiments were run

on Intel core15 Hp laptop with 12 GB memory

and Windows 10 (64 bits) operating system.

The basic process of tour construction heuristics

can be summarized as follows;

i. Sub-tour establishment rule

ii. Selection rule

iii. Expansion rule

iv. Repeated application of steps (ii)

and (iii) until a complete tour is obtained.

The expansion rules can be categorized into two

(2) types; insertion and addition. An insertion -

based expansion rule chooses where in the

permutation to place the new city on the basis of

the cost of the resulting sub-tour, whereas an

addition - based expansion rule bases this

decision on next - hop distance.

Figure 1: Conceptual framework

The Heuristics for solving the Travelling

Salesman Problem (TSP):

The five (5) tour construction approximation

algorithms used in this research study are;

i. Nearest Neighbor Heuristic (NNH)

ii. Nearest Insertion Heuristic (NIH)

iii. Farthest Insertion Heuristic (FIH)

iv. Cheapest Insertion Heuristic (CIH)

v. Random Insertion Heuristic (RIH)

Nearest Neighbor Heuristic (NNH)

Nearest Neighbor Algorithm is a simple and

intuitive approximation for the TSP. This is a

greedy approach and the greedy criterion is in

selecting the nearest city. It starts at an arbitrary

city and repeatedly selects the nearest unvisited

city until all cities have been visited.

Algorithm 1: Nearest-Neighbor Algorithm

(NNH)

i.

ii. Start at any node

Select the nearest unvisited neighbor and add it

to end of tour.

Repeat step (ii) until all nodes are added to the

tour.

iii. Time complexity = O(n2)

NNH - code

import NumPy as np

 def nearest_neighbor (points, current_point):

distances = np.linalg.norm (points -

current_point, axis=1)

return points [np.argmin (distances)]

def tsp_nn(points): num_points = len(points)

solution = [points [0]] # Start at the first

point

current_point = points [0]

for _ in range (num_points - 1):

next_point = nearest_neighbor

 (points, current_point)

solution.append (next_point)

current_point = next_point

return solution

points = np.array ([(15, 0), (20, 0), (35, 0), (30,

0)])

solution = tsp_nn(points)

Nearest Insertion Heuristic (NIH)

Nearest Insertion Algorithm is still greedy but not

as greedy as nearest neighbor. It allows partial

tour to be modified

Algorithm 2: Nearest Insertion Algorithm (NIH)

I. Start the tour at any node

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 548

II. Pick the nearest unvisited - neighbor of the

selected node in the tour

III. Insert it into the tour T = t1, …..,tk so that the

total tour distance (cost) is minimized.

i.e., find (i,j,k) = w(i, k) + w(k, j) - w(i,

j) is minimize

IV. Repeat steps (ii) and (iii) until all nodes are

added to the tour.

V. Time complexity = O(n2)

NIH - code

import NumPy as np

def nearest_point (points, point):

distances = np.linalg.norm (points - point,

axis=1)

return points [np.argmin (distances)]

def insert_point (solution, point):

nearest = nearest_point (solution, point)

index = np.where (solution == nearest)

[0][0]

solution = np.insert (solution, index + 1,

point, axis=0)

return solution

def tsp_ni(points):

num_points = len(points)

solution = [points [0]] # Start with the first

point

for i in range (1, num_points):

solution = insert_point (solution, points[i])

return solution

points = np.array ([(30, 0), (15, 0), (20, 0), (35,

0)])

solution = tsp_ni (points)

print(solution) # Output: [(30, 0), (15, 0), (20, 0),

(35, 0)]

Farthest Insertion Heuristic (FIH)

Farthest - Insertion Algorithm Start with a tour

consisting of the two cities that are farthest apart.

Repeat the following: Among all cities not in the

tour, choose the one that is farthest from any city

already in the tour. Insert it into the tour in the

position where it causes the smallest increases in

the tour distance.

Algorithm 3: Farthest Insertion Algorithm (FIH)

i. Start the tour at any node

ii. Pick the nearest farthest unvisited neighbor of

the selected node.

iii. Insert it into the tour T = t1, ….., tk so that the

total tour distance (cost) is

minimized. i.e., find (i,j,k) = w(i,

k) + w(k, j) - w(i, j) is minimized

iv. Repeat steps (ii) and (iii) until all nodes are added

to the tour.

v. Time complexity = O(n2)

FIH - code

import NumPy as np

def farthest_point (solution, points):

max_distance = 0

farthest = None

for point in points:

distance = np.min (np.linalg.norm

(solution - point,

axis=1))

if distance >max_distance:

max_distance = distance

farthest = point

return farthest

def insert_point (solution, point):

solution = np.append (solution, point, axis=0)

return solution

def tsp_fi(points):

num_points = len(points)

solution = [points[0]] # Start with the first

point

remaining_points = points[1:]

for i in range(1, num_points):

farthest = farthest_point(solution,

 remaining_points)

solution = insert_point(solution, farthest

remaining_points = np.delete(remaining_points,

np.where(remaining_points == farthest)[0][0],

axis=0)

return solution

points = np.array([(30, 0), (15, 0), (20, 0), (35,

0)])

solution = tsp_fi(points)

print(solution) # Output: [(30, 0), (15, 0), (20, 0),

(35, 0)]

Cheapest Insertion Heuristic(CIH):

The cheapest insertion algorithm is a heuristic

method that build a tour from small cycles with

minimal weight and successively adds new

nodes.

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 549

Algorithm 4: Cheapest Insertion Algorithm

(CIH):

I. Start with a partial tour from a node

II. Create a sub tour relationship; a sub tour link

is created between two (2) places. It is a

journey from the first place and ends in the

first place.

III. Change the direction of the relationship

(insertion) . One of the directions of the

relationship (arc) of two places with a

combination of two arcs, namely arc (i,j) is

change to arc (i,k) and arc (k,j) where k is the

insertion point with the smallest additional

distance which is obtained from (i,j,k) =

w(i,k) + w(k,j) - w(i,j).

IV. Repeat steps (ii) and (iii) until all nodes are

added to the tour.

V. Time complexity = O(n2 log n)

CIH - code

import NumPy as np

def cheapest_point (solution, points):

min_cost = float('inf')

cheapest = None

for point in points:

cost = np.min (np.linalg.norm (solution

 - point, axis=1))

if cost <min_cost:

min_cost = cost

cheapest = point

return cheapest

def insert_point (solution, point):

solution = np.append (solution, point, axis=0)

return solution

def tsp_ci (points):

num_points = len(points)

solution = [points [0]] # Start with the first

point

remaining_points = points [1:]

for i in range (1, num_points):

cheapest = cheapest_point (solution,

 remaining_points)

solution = insert_point (solution, cheapest)

remaining_points = np.

delete(remaining_points, np. where

(remaining_points == cheapest) [0][0], axis=0)

 return solution

points = np.array([(30, 0), (35, 0), (20, 0), (15,

0)])

solution = tsp_ci (points)

print(solution) # Output: [(30, 0), (35, 0), (20, 0),

(15, 0)]

Random Insertion Heuristic (RIH)

The random insertion algorithm is a heuristic

method used to construct an approximate solution

for the Traveling Salesman Problem (TSP) by

randomly selecting the start node as an initial tour

and continue selecting randomly until all nodes

are added to the tour.

Algorithm 5: Random Insertion Algorithm (RIH)

i. Select a random node (or a pre-specified

node) as the initial tour.

ii. Choose the next node to join the tour

randomly from the remaining nodes (not yet

connected to the tour).

iii. Calculate the cost of inserting a node between

two existing nodes in the tour.

The cost is defined as: (i,j,k) = w(i, k) +

w(k, j) - w(i, j) is minimize Insert the

selected node at the location that minimizes

the insertion cost.

iv. Repeat steps (ii) and (iii) until all nodes have

been added into the tour.

v. Time complexity = O(n2).

RIH - code

import NumPy as np

def insert_point (solution, points):

random_index = np.random.choice(len(points))

solution = np.insert (solution, np.

 random.randint (0, len(solution)),

points[random_index], axis=0)

return solution

def tsp_ri(points):

num_points = len(points)

solution = [points [0]] # Start with the first

point

remaining_points = points [1:]

for i in range (1, num_points):

solution = insert_point (solution,

 remaining_points)

remaining_points = np. delete

(remaining_points, np. random.randint (0,

len(remaining_points)), axis=0)

return solution

points = np.array ([(30, 0), (15, 0), (20, 0), (35,

0)])

solution = tsp_ri(points)

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 550

print(solution) # Output: a random permutation of

the points

Tour path visualization:

Figure 2: A graph showing 50 nodes tsp

VI. RESULTS AND FINDINGS

We provide details comparative analysis of the

five (5) tour construction algorithms using time

complexity measurement in seconds.

Table 1: Computational speed analysis of 5 tour

construction algorithms

N

o

of

N

od

es

Neare

st

Neigh

bor

Heuri

stic

Neare

st

Insert

ion

Heuri

stic

Farth

est

Insert

ion

Heuri

stic

Chea

pest

Insert

ion

Heuri

stic

Rand

om

Insert

ion

Heuri

stic

4 0.042

633

0.011

111

0.012

018

0.010

111

0.011

903

10 0.053

338

0.009

997

0.021

974

0.007

988

0.011

569

15 0.034

997

0.015

641

0.024

966

0.017

999

0.021

841

20 0.055

915

0.010

123

0.032

691

0.010

079

0.011

972

25 0.015

972

0.012

519

0.014

222

0.011

270

0.013

977

30 0.035

949

0.021

966

0.035

849

0.011

790

0.028

748

35 0.047

920

0.032

047

0.040

691

0.021

418

0.033

952

40 0.116

592

0.031

172

0.111

411

0.022

115

0.101

003

45 0.120

016

0.071

123

0.100

100

0.024

671

0.100

129

50 0.123

849

0.100

866

0.122

849

0.028

968

0.112

811

Figure 3: A graph showing time complexities of

NNH, NIH, FIH, CIH and RIH

Figure 4: A graph showing time complexity

between NNH, NIH, FIH, CIH and RIH

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 551

Table 2: Total time complexity of individual

algorithms.

Figure 5: A graph showing total time complexity

of the five algorithms

Figure 6: Comparison of total time complexity

VII. THE FINDINGS

The research study compares the time complexity

and execution speed of five tour construction

heuristics namely; Nearest Neighbor Heuristic

(NNH), Nearest Insertion Heuristic (NIH),

Farthest Insertion Heuristic (FIH), Cheapest

Insertion Heuristic (CIH) and Random Insertion

Heuristics RIH).

i. Figures 3 and 4 shows clearly that Nearest

Neighbor Heuristic (NNH) had the fastest

computational speed followed by Farthest

Insertion Heuristic (FIH), Random Insertion

Heuristic (RIH), Nearest Insertion Heuristic

(NIH) and Cheapest Insertion Heuristic

(CIH). This is consistent with literature

findings that insertion techniques requires

more computational time than the addition

techniques to complete a tour..(Laha, et al

2016, Babel 2020)

ii. According to (Lity, et al 2017, Babel 2020)

computational speed is affected by the

insertion criteria for computation

iii. Farthest Insertion Heuristic (FIH) generally

performs best in the community of insertion

heuristics of O(n2) or low time complexity.

iv. Figures 5 and 6 using the total execution time

and speed also demonstrate that the Nearest

Neighbor Heuristic (NNH) out-performed the

four other heuristics in this research study.

REFERENCES

[1] Amarbir, (2016). A Review on Algorithms

used to solve Multiple Travelling Salesman

Problem. International Research Journal of

Engineering and Technology (IRJET), 3(4),

598–603.

[2] Anitha, and Sandeep, (2015). Literature

Survey om Travelling Salesman Problem

Using Genetic Algorithms. International

Journal of Advanced Research in Education

Technology (IJARET), 2(1).

[3] Asani, et al (2020). A construction tour

technique for solving the travelling

salesman problem based on convex hull and

nearest neighbor heuristics. International

Conference on Mathematics, Computer

Engineering and Computer Science, 1–4.

[4] Asani, et al (2024). A Novel Insertion

Solution for the Travelling Salesman

Problem. Computers, Materials &

Continua.

S/N ALGORITHM TOTAL TIME

COMPLEXITY

(TTC)

1 Nearest Neighbor

Heuristic

0.647181

2 Nearest Insertion

Heuristic

0.332096

3 Farthest Insertion

Heuristic

0.516781

4 Cheapest Insertion

Heuristic

0.166409

5 Random Insertion

Heuristic

0.447899

© FEB 2025 | IRE Journals | Volume 8 Issue 8 | ISSN: 2456-8880

IRE 1706800 ICONIC RESEARCH AND ENGINEERING JOURNAL 552

[5] Babel, (2020). New heuristic algorithms for

the Dublin traveling salesman problem.

Journal of Heuristics

[6] Bernardino and Paias (2018). Solving the

family traveling salesman problem.

European Journal of Operational Research.

267 (2).

[7] Fadhillah, et al (2017). Solving travelling

salesman problem using heuristics

approaches. Journal of Global Research in

Computer Science/

[8] Farid, et al (2022). Implementation of

Cheapest Insertion Heuristic Algorithm in

Determining Shortest Delivery Route.

International Journal of Global Research,

3(2), 37–45.

[9] Krari, et al (2021). A pre – processing

reduction method for the generalized

travelling salesman problem. European

Journal of Operation Research. 21(11)

[10] Kumar, et al (2012). A Genetic Algorithm

Approach to study travelling salesman

problem. Journal of Global Research in

Computer Science. 3(3):33-8

[11] Laha, et al (2016). Nature – Inspired

Metaheuristics for optimizing Information

Dissemination in Vehicular Networks.

TECNALIA Research and Innovation,

Derio, Spain.

[12] Lity, et al (2022). Travelling salesman

problem. An overview of Application.

International Journal of Advanced Research

in Education Technology.

[13] Malik and Muhammad (2015). Heuristic

Approaches to solve travelling salesman

problem. TELKOMNIKA Indonesian

Journal of Electrical Engineering. 15(2). Pp.

390-396

[14] Nemani, et al (2021). Algorithms and

Optimization techniques for solving

traveling salesman problem

[15] Ono, et al (2020). A criteria – based

approach to the travelling salesman

problem. Western Decision Science Journal.

Librarian Publications and Presentations.

143.

[16] Rahman, et al (2024). Improvement of the

Nearest Neighbor Heuristic Search

Algorithm for Travelling Salesman

Problem. Journal of Engineering

Advancements, 5(1), 19–26.

[17] Rao, et al (2024). Literature survey on

travelling salesman problem using genetic

algorithms/ International Journal of

Advanced Research in Education

Technology. 26, pp. 503 – 530.

[18] Sathya and Muthukumaravel (2015). A

review of the optimization algorithms on

travelling salesman problem. Indian journal

of science and technology. 8(29)

[19] Sharma and Dutta (2015). Review of

Algorithms to solve travelling salesman

problem. Journal of Basic and Applied

Engineering Research. 2(18), pp. 1612-

1616.

[20] Sundar and Rathinam (2016). Generalized

multiple depots traveling salesman problem.

Computers and Operation Research. 70

[21] Yuan, et al (2020). A branch and Cut

algorithms for the generalized travelling

salesman problem. European Journal of

Operational Research. 286(3)

