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Abstract- The structure of phenyl-2-pyridyl ketoxime 

(herein PPKO) with formula C12H10N2O extracted 

from literature and its CH3, OH, NH2 and  NO2 

modified forms were built with GUASS VIEW 6.0 

and  optimized at ground state with GAUSSIAN 09 

using B3LYP (Beckes’ 3-parameter exchange with 

Lee-Yang-Parr correlation energy) functional and 6-

311+ G(d,p) basis set. Their structural, spectroscopic, 

optoelectronic and molecular properties were  

investigated at same molecular level. The HOMO - 

LUMO energy was used to calculate the quantum 

descriptors to gain insight into their  band gap, 

reactivity and  stability.  From our result, we observed 

a narrowing of the energy gap of PPKO (0.184 eV) 

to 0.180 eV, 0.176 eV, 0.166 eV and 0.149 eV in CH3-

PPKO, OH - PPKO, NH2-PPKO and NO2-PPKO 

respectively. The optical performance was calculated 

with Time dependent Self Consistent Field (TD - 

SCF) and Integral equation formalism polarizable 

continuum model (IEF - PCM) which is useful in 

studying vibrational circular dichroism and 

molecular properties in solution. From our result, 

the absorption wavelength of  PPKO (283 nm) was 

extended to 284 nm, 307 nm and 356 nm in OH - 

PPKO, NH2-PPKO and NO2-PPKO respectively. 

This observed red shift in absorption wavelength is 

attributed to π-π* transitions. The simulated FT-IR 

and Raman spectroscopic information have been 

reported. The O-H stretch was observed at 3600 cm-

1 , 3603 cm-1, 3605 cm-1, 3609 cm-1 and 3585 cm-1 

for PPKO, CH3-PPKO, OH - PPKO, NH2-PPKO 

and NO2-PPKO respectively. The perturbation 

energy which gives insight into intramolecular and 

inter molecular interactions between donor and 

acceptor orbitals was calculated with respect to the 

second-order Fock matrix perturbation theory.  

NO2-PPKO showed the greatest perturbation energy 

(250.92 K/cal/mol) from transitions between π*C1-

N6 and π*C4-C5 (donor and acceptor orbitals 

respectively).  

 

Indexed Terms- Bandgap, Stability, Perturbation 

energy, HOMO-LUMO, Absorption wavelength. 

 

I. INTRODUCTION 

 

Phenyl-2-pyridyl ketoxime belongs to the family of 

oximes which are chemical compounds with the 

general molecular formula RRꞌC=NCH where R is an 

organic group, and Rꞌ hydrogen or an organic group. 

Phenyl -2- pyridyl ketoxime has the general formula 

RRC=NOH where R is a phenyl group and Rꞌ is a 

pyridyl group [1]. Phenyl-2-pyridyl ketoxime has a 

unique bonding capability and is able to form terminal, 

chelating and bridging bonds with most transition 

metals forming metal complexes with Cu2+, Fe2+, 

Mn2+, Ni2+, Ag2+, Co2+ amongst others [2-11]. 

Chemists have also found interest in oximes as ligands 

because they are able to form mono-, di-, tri- and 

polynuclear copper complexes many of which are 

important magnetic and redox active materials [3]. 

Copper oximes possess biological active sites which 

enable them to bind covalently or non-covalently to 

Deoxyribonucleic acid (DNA) [5]. Since the discovery 

of MOFs by Omar Yaghi [12], there has been a lot of 

research going on in the area of metal-organic 

frameworks (MOFs) [13-18]. Scientists have found 

MOFs to be interesting materials because of their 

attractive properties which make them useful in many 

areas such as adsorption [19], catalysis [20], 

magnetism [21], storage [22], drug delivery [23], 

sensors [24] amongst others. MOFs are formed from 

inorganic metal cations and organic linkers (ligands) 

which act as antennas through which MOFs could 

absorb light. The properties of MOFs are highly 

dependent on the properties of the organic linkers 
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which makes the choice of ligand very important. A 

number of linkers have been reported in the synthesis 

of MOFs especially the carboxylates [25-28], pyridine 

[29-31], oximes [32-34] and many others. Improving 

or modifying the properties of MOFs could be 

achieved in various ways which includes mixing of 

ligands [35], grafting of active sites [36], impregnation 

of composite materials [37] and functionalization of 

ligands [38]. Millios et al reported the magnetic 

properties of mononuclear, trinuclear and octanuclear 

complexes of phenyl-2- pyridyl ketoxime [4], Li et al 

reported the DNA-binding properties of four copper 

complexes based on a phenyl-2- pyridyl ketoxime 

ligand [39], Wong et al reported the reactivity of 

triosmium carbonyl clusters containing oxime ligands 

[10], Cheng et al reported a Luminescent Metal-

Organic Framework with Lewis Basic pyridyl sites for 

the sensing of Metal ions [40]. Adjusting the 

properties of phenyl-2-pyridyl ketoxime in the 

synthesis of these metal complexes could be an 

efficient technique in adjusting the properties of the 

metal complexes. Moulin and co-workers reported the 

effect of ligand functionalization on the acid-base 

properties of flexible MOFs [41]. Hendon et al 

reported engineering the optical properties of the Ti-

MIL125 MOF through ligand functionalization [42], 

Gregory et al reported tuning the adsorption properties 

of UiO-66 via Ligand Functionalization [43]. Zubair 

et al reported tuning the optoelectronic properties of 

indacenodithiophene based derivatives for efficient 

photovoltaic  applications: A DFT approach.[44]. 

Abd-Elmageed and co-workers reported synthesis, 

DFT studies, fabrication, optical characterization of 

the (ZnCMC)TF polymer (organic/inorganic) as an 

optoelectronic device [45]. Afzai and Naqib reported 

a DFT based first - principles investigation of 

optoelectronic and structural properties of Bi2TeSe 

[46]. Babu and Vuai reported theoretical studies of 

optoelectronic and photovoltaic properties of D-A 

polymer monomers by density functional theory [47]. 

Tun-ability of MOFs with organic linkers is of obvious 

importance because it offers unlimited possibility to 

design functional or multifunctional organic linkers as 

well as unique chemical properties of organic groups. 

The purpose of this work is to investigate theoretically 

the possibility of adjusting the structure, band gap, 

optoelectronic and reactivity of PPKO directed 

towards the design of linker molecules which could 

form part of new complexes and MOF materials with 

enhanced properties. In this work, we present a 

detailed systematic investigation on the geometries, 

electronic structure, molecular properties, 

spectroscopic, optical absorption and reactivity of 

phenyl-2-pyridyl ketoxime (PPKO) functionalized 

with CH3, OH, NH2, and NO2. 

 

II. COMPUTATIONAL DETAILS 

 

The structure of phenyl-2-pyridyl ketoxime (herein 

PPKO) with formula C12H10N2O was extracted from 

literature, modified with CH3, OH, NH2 and  NO2. and 

their structures were built with GAUSS VIEW 6.0 

[48]. The entire calculations were performed using 

GAUSSIAN 09W [49] package and the geometry 

optimizations were performed at ground state using 

density functional theory (DFT) with Becke's three 

parameter exchange-functional combined with 

corrected correlation Lee, Yang and Parr functional 

(B3LYP) [50] functional with 6-311+G (d,p) basis set. 

The optical performance of the compounds in water, 

dimethylsulfoxide (DMSO) and chloroform was 

investigated with Time-dependent Self Consistent 

Field (TD -  SCF) and Integral Equation Formalism 

Polarized Continuum Model (IEF - PCM) which is 

very useful in studying vibrational circular dichroism 

and molecular properties in solution..  Natural bond 

orbital (NBO) version 3.1 was used to study inter-

molecular and intra - molecular charge transfer (ICT), 

conjugative interactions and electron density 

delocalization. 

 

III. RESULTS AND DISCUSSION 

 

3.1 Geometrical Parameters 

The optimized structures, values of bond lengths, bond 

angles and dihedral angles calculated using Gaussian 

O9 and B3LYP 6-311 + G (d, p) are presented in 

Figure 1 and Tables 1, 2 and 3.  From the result 

obtained, changes in all three parameters were 

observed which could be attributed to the presence of 

the groups in the PPKO framework. C1-C2 which was 

1.395Å for PPKO was observed as 1.400 Å, 1.399 Å, 

1.409 Å and 1.396 Å in CH3-PPKO, OH - PPKO, 

NH2-PPKO and NO2-PPKO respectively.  C2-C3 was 

1.390 Å, 1.395 Å, 1.391 Å, 1.397 Å and 1.388 Å for 

PPKO, CH3-PPKO, OH - PPKO, NH2-PPKO and 

NO2-PPKO respectively. C1-C2-C3 was observed as 

117.9, 116.2, 118.1, 116.5 and 120.0 for PPKO, CH3-
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PPKO, OH - PPKO, NH2-PPKO and NO2-PPKO 

respectively. C1-N6-C5 was 118.1, 118.8, 118.7, 

118.3 and 119.0 respectively for PPKO, CH3-PPKO, 

OH - PPKO, NH2-PPKO and NO2-PPKO. C2-C3-C4 

was 118.8, 119.8, 118.3, 119.2 and 117.5 for PPKO, 

CH3-PPKO, OH - PPKO, NH2-PPKO and NO2-PPKO 

respectively. There were also changes in the dihedral 

angles, C11-C10-C21-N22 was -109.1, -108.5, -108.4, 

-105.9 and -106.1 in PPKO, CH3-PPKO, OH - PPKO, 

NH2-PPKO and NO2-PPKO respectively. C4-C5-

C22-N23 was -155.8, -157.2, -157.9, -161.0 and -

161.7 respectively for PPKO, CH3-PPKO, OH - 

PPKO, NH2-PPKO and NO2-PPKO. 

 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

FIG 1. Optimized structures of PPKO (a), CH3-

PPKO (b), OH - PPKO (c), NH2-PPKO (d) and 

NO2-PPKO (e). 

 

Table 1: Selected Bond Length of Studied 

Compounds 

BOND LENGTH       PPKO          CH3- PPKO              

OH- lPPKO              NH2- PPKO              NO2- PPKO 

C1-C2                         1.395                1.400                         

1.399                         1.409                         1.396 

C1-N6                         1.331                1.330                         

1.325                         1.322                         1.326 

C2-C3                         1.390                1.395                         

1.391                         1.397                         1.388                       

C3-C4                         1.390                1.389                         

1.388                         1.388                         1.386 

C4-C5                         1.402                1.402                         

1.403                         1.401                         1.405 

C5-N6                         1.341                1.339                         

1.340                         1.343                        1.344 

C5-C21                       1.491                1.490                         

1.489                         1.487                        1.478 

C11-C12                     1.401                1.392                         

1.392                         1.392                        1.392 

C12-C13                     1.392                1.394                         

1.395                         1.304                        1.394 

C13-C14                     1.394                1.393                         

1.393                         1.393                        1.393 
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C14-C15                     1.393                1.394                         

1.395                         1.394                        1.394 

 

 

Table 2: Selected Bond Angles of Studied 

Compounds. 

BOND ANGLES     PPKO          CH3- PPKO              

OH- PPKO              NH2- PPKO              NO2- PPKO 

C1-C2-C3                  117.9                 116.2                          

118.1                         116.5                       120.0 

C1-N6-C5                  118.1                 118.3                          

118.8                         119.0                       118.7          

C2-C3-C4                  118.8                 119.8                          

118.3                         119.2                        117.5 

C3-C4-C5                  119.0                 119.1                          

119.7                         119.8                        119.2 

C4-C5-N6                  122.1                 121.6                         

121.3                         120.9                        122.1 

N6-C5-C22                117.8                 118.1                         

118.2                          118.3                        117.8 

C10-C11-C12             120.4                120.4                          

120.4                         120.5                         120.3 

C11-C12-C13            120.4                 120.1                         

121.1                         120.2                        120.1 

C12-C13-C14            119.8                 119.8                          

119.8                         119.8                        119.9 

C13-C14-C15            119.9                 120.0                          

120.1                         120.1                        120.0 

 

Table 3: Selected Dihedral Angles of Studied 

Compounds. 

DIHEDRAL ANGLES        PPKO         CH3-PPKO         

OH-lPPKO              NH2-PPKO              NO2-PPKO 

C1-N6-C5-C22                    -178.5                    -178.5                  

-178.3                        -178.6                  -178.9 

C3-C4-C5-C22                     178.6                     178.5                    

178.4                         178.6                    179.0                       

C4-C5-C22-N23                  -155.8                    -157.2                  

-157.9                       -161.0                  -161.7                        

C5-C22-C11-C16                 -109.2                   -108.5                   

-108.4                       -106.9                 -106.0 

C5-C22-N23-O24                -178.5                    -178.4                  

-178.2                        -178.3                 -179.2 

C11-C22-C5-N6                   -156.6                   -158.0                   

-158.9                        -161.8               -162.5                  

C12-C11-C22-N23               -109.2                   -108.5                      

-108.4                    -106.8                 -106.2 

C13-C12-C11-C22                179.6                    179.7                        

179.8                      179.7                 179.8 

C15-C16-C11-C22               -179.8                   -179.9                       

-179.9                     -179.9                -179.9 

           

3.2 FRONTIER MOLECULAR ORBITALS (FMOs)  

The highest occupied molecular orbital (HOMO) and 

the lowest unoccupied molecular orbital (LUMO) are 

referred to as frontier molecular orbitals (FMOs). The 

frontier orbital gap helps to characterize the chemical 

reactivity and the kinetic stability of the molecule [51]. 

A molecule with a small energy gap termed a soft 

molecule is generally associated with a high chemical 

reactivity and low kinetic stability [52]. The HOMO 

and LUMO structures and the orbitals for the studied 

molecules are shown in Figure 2. From our result the 

HOMO and LUMO of PPKO are the 52th and 53th 

orbital, the HOMO and LUMO of CH3-PPKO, OH - 

PPKO and NH2-PPKO are the 56th and 57th orbital, the 

HOMO and LUMO of NO2-PPKO are the 63th and 64th 

orbital. The HOMO of PPKO is located over the C1-

C2 and C4-C5-N6 bonds of the pyridyl ring and C=N 

and O atom of the ketoxime while the LUMO is 

delocalized over C2, C4, C5-C22 bond and N- atom of 

the pyridyl ring, the phenyl carbon atoms and the N- 

atom of the ketoxime.  The HOMO of CH3-PPKO is 

located over C1-C2 bond, C4-C5-N6 bond, CH3 

group, C=N and O atom while LUMO is located over 

C2, C3, C5, N6, C5-C22 bond, N atom of ketoxime 

and the phenyl carbon atoms. The HOMO of OH - 

PPKO is located over C1-C2-C3 and C4-C5-N6 bond 

of the pyridyl ring, C=N, O atom of ketoxime and OH 

group while the LUMO is localized over C1-C2 and 

C5-C22 bonds, C3, N6, phenyl carbon atoms and N- 

atom of ketoxime. The HOMO of NH2-PPKO is 

located over C1-C2-C3 and C4-C5-N6 bonds, NH2 

group, C=N and O atom of the ketoxime while the 

LUMO is located over C1-C2 and C5-C22, N- atom of 

the ketoxime and phenyl carbon atoms. The HOMO of 

NO2-PPKO is located over C1-C2 and C4-C5-N6 

bonds, C=N, O atom of ketoxime, C10-C15 and C13-

C14 bonds of the phenyl ring while LUMO is located 

over the NO2 group, C1, C2, C3, C5 and N6 of the 

pyridyl group and the N atom of the ketoxime. These 

(HOMO→LUMO) transitions suggest that electron 

density transfer was generally from the pyridyl ring to 

the phenyl ring. It also suggests that CH3, OH and NH2 

are electron rich while NO2 is electron deficient. From 

these HOMO-LIMO transitions, we also observe that 
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the ketoxime O atom is highly electron rich and so 

suggests that it could serve as coordination site for 

highly electron deficient metal cations. 

 

3.3 Quantum Chemical Descriptors 

 The quantum chemical descriptors calculated with the 

famous Koopmans approximation [53] are presented 

in Table 4. On the basis of Koopmans approximation, 

the Ionization Potential (IP) and Electron Affinity 

(EA) are approximately equal to negative HOMO (- 

HOMO) and negative LUMO (-LUMO) respectively. 

IP    =  -EHOMO                                                                                                                     

(1) 

EA   =   -ELUMO                                                                                                                   

(2) 

Using equations (3) – (7) the global reactivity 

descriptors can be calculated as is reported in literature 

[16, 25].  

The hardness ofthe molecule is η=(IP-EA)/2.                                                                        

(3) 

 The chemical potential of the molecule is μ=-

(IP+EA)/2.                                                    (4) 

The softness(σ) of the molecule= 1/2η.                                                                                  

(5) 

 The electronegativity of the molecule is χ = 

(IP+EA)/2.                                                      (6) 

 The electrophilicity index of the molecule is ω = 

μ/2η2.                                                      (7) 

 

A molecule with lower value of ionization potential is 

a better electron donor while a molecule with higher 

value of electron affinity is a better electron acceptor. 

A molecule with higher softness and lower hardness 

value is more reactive, less stable and more 

polarizable. From our result, NH2-PPKO with the 

lowest ionization potential value (0.217 eV) is the best 

donor while NO2-PPKO with the highest electron 

affinity value of 0.119 eV is the best acceptor. We can 

also deduce from our result that the energy gap of 

PPKO (0.184 eV) was narrowed down to 0.180 eV, 

0.176 eV, 0.166 eV and 0.149 eV in CH3-PPKO, OH 

- PPKO, NH2-PPKO and NO2-PPKO respectively 

which is in good agreement with the softness values of 

5.425, 5.528, 5.761, 6.023 and 6.673 for PPKO, CH3-

PPKO, OH - PPKO, NH2-PPKO and NO2-PPKO 

respectively. The lower the energy gap, the more 

reactive a molecule and so NO2-PPKO with the lowest 

energy gap (0.149 eV) is the most reactive with the 

highest softness value of 6.673 which suggests it is 

less stable and most polarizable. These results show 

that functionalization of PPKO with these chemical 

groups narrowed the band gap of PPKO thereby 

increasing its reactivity. These properties which can be 

transferred from the linkers (PPKO, CH3-PPKO, OH - 

PPKO, NH2-PPKO, NO2-PPKO) to the metal 

complexes and MOFs during syntheses could enhance 

or modify their catalytic, semi-conductor, reactivity 

and optoelectronic properties. 

 

Table 4:                Quantum Chemical Descriptors of 

Studied Compounds 

 

                                PPKO      CH3-PPKO        OH - 

PPKO         NH2-PPKO        NO2-PPKO 

 EHOMO (eV)            - 0.2467         - 0.2402          - 0.2341             

- 0.2170                - 0.2697 

 ELUMO (eV)             -0.0624          - 0.0593         - 0.0578             

-0.0510                 - 0.1199            

 ∆Egap (eV)                0.1843            0.1808            0.1763              

0.1660                    0.1498  

 IP (eV)                     0.2467            0.2402            0.2341              

0.2170                    0.2697 

 EA (eV)                   0.0624            0.0593            0.0578              

0.0510                    0.1199 

 µ (eV)                     -0.1545           -0.1498           -

0.1460           -0.1346                    -0.1948      

 χ (eV)                      0.1545             0.1240            0.1460             

0.1346                     0.1948 

 ɳ (eV)                      0.0921             0.0904            0.0881             

0.0830                     0.0749 

 σ (eV)                      5.4256             5.5282            5.6711             

6.0233                     6.6737 

 ɷ (ev)                       0.1296             0.1214            0.1208            

0.1092                     0.2534 

 

3.4 Vibrational Analysis 

Vibrational analysis enables us to determine the 

vibrational modes associated with relevant and 

specific molecular structures of the calculated 

molecules studied. The maximum number of 

potentially active observable fundamentals of a non-

linear molecule which contains N atoms is equal to 

(3N-6) normal modes of vibration [54]. Hence, PPKO 

molecule has 25 atoms with 69 vibrations, CH3--

PPKO has 28 atoms with 69 vibrations, OH - PPKO 

has 26 atoms with 72 vibrations, NH2-PPKO and NO2-

PPKO have 27 atoms each with 75 vibrations. The IR 
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spectra of the studied molecules are presented in 

Figure 2 while the frequencies, intensities and 

vibrational assignments are presented in S9. C-C 

vibration was observed at 1288 cm-1, 1284 cm-1, 1281 

cm-1, 1288 cm-1 and 1302 cm-1 for PPKO, CH3-PPKO, 

OH - PKO, NH2-PPKO and NO2-PPKO respectively. 

C=C stretching vibrations was observed at 1596 cm-1, 

1588 cm-1 and 1508 cm-1, 1596 cm-1 and 1625 cm-1 for 

PPKO, CH3-PPKO, OH - PKO, NH2-PPKO and NO2-

PPKO respectively.  C=N vibrations was observed at 

1619 cm-1, 1642 cm-1, 1616 cm-1  and 1595 cm-1  for 

CH3-PPKO, OH - PKO, NH2-PPKO and NO2-PPKO 

respectively. C-H stretching vibrations for PPKO was 

observed at 3145 cm-1 while for CH3-PPKO, OH - 

PPKO, NH2-PPKO and NO2-PPKO it was observed at 

3130 cm-1, 3106 cm-1 3115 cm-1 and 3194 cm-1 

respectively while the O-H stretch is observed at 3600 

cm-1, 3603 cm-1, 3605 cm-1, 3609 cm-1 and 3585 cm-1 

for PPKO, CH3-PPKO, OH - PKO, NH2-PPKO and 

NO2-PPKO respectively. NH2 symmetric, asymmetric 

and bending vibrations were observed at 3573 cm-1, 

3673 cm-1 and 1662 cm-1respectively for NH2-PPKO 

while the CH3 vibrations for CH3-PPKO was observed 

at 3024 cm-1. 

 

 

 
Figure 2. Simulated IR and Raman spectra of studied 

compounds. 

 

3.5 UV - vis Spectroscopic Analysis 

The electronic activities of the molecules have been 

estimated by TD-SCF/IEF -PCM/B3LYP 6-311 + G 

(d,p). The UV-visible spectra of the molecules in 

water, dimethyl sulfoxide and chloroform are 

presented in Figure 3 while the wave lengths (λmax), 

excitation energy (E) and oscillator strengths are 

presented in S7, S8 and S9. From our result, the 

spectra of the studied compounds show one peak each 

at wavelengths 283 nm for PPKO and CH3-PPKO, 284 

nm, 307 nm and 356 nm (λmax) for OH - PPKO, NH2-

PPKO and NO2-PPKO in water, In DMSO 283 nm 

was observed for PPKO and CH3-PPKO, 285 nm, 308 

nm and 356 nm for OH-PPKO, NH2-PPKO and NO2-

PPKO while 286 nm for PPKO and CH3-PPKO, 285 

nm, 307 nm and 356 nm were observed for  OH - 

PPKO, NH2-PPKO and NO2-PPKO respectively in 

chloroform. These transitions corresponding to π→π* 

transition is governed by HOMO →LUMO excitation. 

From our result, we observe that absorption 

wavelength of PPKO was extended remarkably from 

283 nm to 307 nm and 356 nm in NH2-PPKO and 

NO2-PPKO respectively. This red shift observed 

shows that the optical property of PPKO was enhanced 

by functionalizing it with the chemical groups. These 

extensions increase as band gap decrease thus 

suggesting that the optoelectronic property of PPKO 

was adjusted. 
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(a)                                             (b)                                            

( c) 

Figure 3. Simulated UV - Vis spectra of studied 

compounds in water (a), DMSO (b), and chloroform 

(c) calculated with B3LYP/6-311 +G (d,p) basis sets.     

 

3.6 Natural Bonding Orbital (NBO) Analysis. 

Natural bond orbital (NBO) analysis provides an 

effective technique for studying intra- and inter 

molecular bonding interactions between bonds and 

also presents a suitable basis for investigating charge 

transfer or conjugative interactions in molecules [55]. 

The greater the perturbation energy value, the stronger 

the interaction between the electron donors and the 

more the conjugation of the system [56-57]. The 

second-order perturbation energy values of PPKO, 

CH3-PPKO, OH - PKO, NH2-PPKO and NO2-PPKO 

were calculated with respect to the second-order Fock 

matrix perturbation theory using DFT/B3LYP/6-

311+G (d, p) functional. The most interacting NBOs 

are presented in S1, S2, S3, and S4 for PPKO, CH3-

PPKO, OH - PKO, NH2-PPKO and NO2-PPKO 

respectively. From our result, molecular interactions 

in the studied molecules is observed by a π-π*, π*-π* 

transition between C–C orbitals and π-LP, π-LP*, LP-

π*, LP-LP*, LP*-π* transition between C-C, O-C, N-

C and O-N orbitals. Hyper intra-molecular conjugative 

interactions in the molecules is formed by the orbital 

overlap between π*C1-N6 and π*C4-C5 for PPKO, 

LP(1)C2 and π*C1-N6 for CH3-PPKO, π*C1-N6  and 

π*C4-C5 for OH - PPKO,  LP(1)C5 and π*C1-C6  for 

NH2-PPKO, π*C5-N6 and π*C3-C4 for NO2-PPKO  

producing stabilization energies 250.92 K/cal/mol, 

89.04 K/cal/mol, 170.08 K/cal/mol, 75.72K/cal/mol 

and 228 K/cal/mol for PPKO, CH3-PPKO, OH - PKO, 

NH2-PPKO and NO2-PPKO respectively. The greater 

the perturbation energy, the more stable and 

conjugated a system. The more the conjugation, the 

less the reactivity of a molecule. From our result, 

PPKO has highest perturbation energy which  suggests 

that it is more stable and less reactive which agrees 

with the fact that it had the highest energy (∆Egap) 

value. 

 

3.7 Charge Analysis  

Mulliken charges is one of the population analyses 

which emanates from the Mulliken population 

analysis (MPA) and is required for the evaluation of 

partial atomic charges from  calculations using the 

methods of computational chemistry on the basis of 

linear combination of atomic orbitals [58]. MPA 

analysis is highly effective in determining the size, 

structure and electronic distribution of the HOMO - 

LUMO orbitals, which is key in predicting the 

concentration of electrons in the studied molecules. A 

plot of Mulliken charge distribution with number of 

atoms for the molecules is presented in Figure 4. From 

our result, the most electropositive atom (most 

susceptible to nucleophillic attack) in PPKO is C11 

(1.588 a. u.) while the most electronegative atom 

(most susceptible to electrophillic attack is C22 (-

0.959 a. u.). The most electropositive atom (most 

susceptible to nucleophillic attack) in CH3-PPKO is 

C10 (1.261a. u.) while the most electronegative atom 

(most susceptible to electrophillic attack) is C5 (-0.870 

a. u.). The most electropositive atom (most susceptible 

to nucleophillic attack) in OH-PPKO is C10 (0.929 a. 

u.) while the most electronegative atom (most 

susceptible to electrophillic attack is C5 (-0.780 a. u.). 

The most electropositive atom (most susceptible to 

nucleophillic attack) in NH2-PPKO is C10 (1.160 a. u.) 

while the most electronegative atom (most susceptible 

to electrophillic attack) is C5 (-0.760 a. u.). The most 
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electropositive atom (most susceptible to nucleophillic 

attack) in NO2-PPKO is C10 (1.400 a. u.) and the most 

electronegative atom (most susceptible to 

electrophillic attack) is C5 (-0.602 a. u.). Our result 

suggests more interaction within the pyridyl ring (C5 

and C10) in the functionalized PPKO molecules which 

is attributed to the presence of the chemical groups. 

Also from our result, C2 (point of attachment of 

chemical groups) atomic charge was positive for 

PPKO and CH3-PPKO (0.062 a. u. and 0.784 a. u. 

respectively) while for OH - PPKO, NH2-PPKO and 

NO2-PPKO it was negative (-0.128 a. u., -0.025 a. u. 

and -0.068 a. u. respectively). This also suggests 

changes in electron density caused by the presence of 

the chemical groups on the C2 atom.  

 
 

 
(a) (b)                                            (c ) 

 
(d)                                               (e) 

Figure 4. A plot of Mulliken Atomic Charge 

Distributions with Number of Atoms for PPKO (a), 

CH3-PPKO (b), OH - PPKO (c) and NH2-BTC (d) and 

NO2-PPKOrespectively. 

 

CONCLUSION 

 

This research was carried out to adjust the structure, 

band gap, optoelectronic properties and reactivity of 

phenyl 2- pyridyl ketoxime. From the result obtained 

changes in all three geometrical parameters were 

observed which can be attributed to the presence of the 

groups in the PPKO framework. For instance, C1-C2 

which was 1.395Å for PPKO was observed as 1.400 

Å, 1.399 Å, 1.409 Å and 1.396 Å in CH3-PPKO, OH - 

PPKO, NH2-PPKO and NO2-PPKO respectively. 

From our result, the energy gap of PPKO (0.184 eV) 

was narrowed down to 0.180 eV, 0.176 eV, 0.166 eV 

and 0.149 eV in CH3-PPKO, OH - PPKO, NH2-PPKO 

and NO2-PPKO respectively which is in good 

agreement with their softness values of 5.425, 5.528, 

5.761, 6.023 and 6.673 for PPKO, CH3-PPKO, OH - 

PPKO, NH2-PPKO and NO2-PPKO respectively. The 

lower the energy gap, the more reactive a molecule and 

so NO2-PPKO with the lowest energy gap (0.149 eV) 

is the most reactive with the highest softness value of 

6.673. This result shows that functionalization of 

PPKO with these chemical groups narrowed the band 

gap of PPKO thereby increasing its reactivity. From 

our result, we observed that absorption wavelength of 

PPKO was extended remarkably from 283 nm to 307 
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nm and 356 nm in NH2-PPKO and NO2-PPKO 

respectively. This red shift observed suggest that the 

optical property of PPKO was enhanced by 

functionalizing it with the chemical groups. These 

extensions increase as band gap decrease thus also 

suggesting  that the optoelectronic property of PPKO 

was adjusted. These properties which could be 

transferred from the linkers (PPKO, CH3-PPKO, OH - 

PPKO, NH2-PPKO, NO2-PPKO) to the metal 

complexes and MOFs during syntheses could enhance 

or modify their band gap, reactivity, optoelectronic, 

catalytic and semi-conductor properties thereby giving 

a wide array of unique hybrid materials that could be 

useful in relevant areas. 
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