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Abstract- This paper presents a comprehensive guide 

to Software Failure Mode and Effects Analysis (SW 

FMEA), a critical technique for identifying and 

mitigating risks in complex software systems.  We 

detail methodologies for conducting SW FMEA 

based on both software functions and architecture, 

emphasizing the calculation of Risk Priority 

Numbers (RPNs) for prioritizing failure modes.  The 

benefits of integrating SW FMEA with Hazard and 

Operability studies (HAZOP) for enhanced safety 

analysis, particularly within the context of ISO 

26262 compliance, are explored.  Case studies 

illustrate the application of SW FMEA to an 

embedded LiDAR system and discuss Karma 

Automotive's successful transition from RPN to a 

Risk Priority Matrix (RPM) for improved risk 

assessment of Advanced Driver Assistance Systems 

(ADAS).  Finally, we examine the future of SW 

FMEA and HAZOP, including integration with 

advanced technologies, enhanced collaboration, and 

a stronger focus on cybersecurity. Our analysis 

reveals the limitations of traditional RPN methods in 

accurately prioritizing high-severity risks within 

complex software, particularly highlighting the need 

for more sophisticated approaches like RPM.  The 

presented methodologies offer a structured approach 

to identifying potential software failures, assessing 

their impact, and developing effective mitigation 

strategies.  This comprehensive framework aims to 

improve the reliability, safety, and overall quality of 

software systems, particularly within safety-critical 

applications. 

Indexed Terms- FMEA, FTA, LiDAR, Functional 

Safety, ISO 26262, Automotive Cybersecurity, ISO 

21434, Autonomous Driving, Pedestrian Safety, 

LiDAR, Software FMEA, HAZOP, Digital Twins 

 

I. INTRODUCTION 

 

The FMEA process is mainly focused on ranking risks 

based on failure modes and providing a priority order 

for containing these risks.[1] IEC 60182 emphasizes 

the impact of failures and malfunction [2] of 

components that can adversely affect the external 

environment/system.[3] FMEA analysis starts in the 

late phase of the product design phase as it takes more 

time to develop and test different sub-systems and 

analyze failure modes. ISO 14971 differentiates risk 

management and FMEA [4] as FMEA helps with 

ranking and prioritizing risks[5] whereas risk 

management includes hazard identification, risk 

assessment, and containing risks for product safe 

launch.[6] 

 

Software Failure Mode and Effect Analysis performed 

to address underlying and unnoticed risks with 

complex software architecture. Software architect or 

system engineer analyses system functions and 

develops architecture with building blocks for various 

functionalities. New advanced features and future 

development are considered while building software 

architecture. Software architecture complexity 

significantly influences the effectiveness of a Software 

Failure Mode and Effects Analysis (SW FMEA). A 
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complex architecture can make it challenging to 

identify and assess all risks by introducing numerous 

potential failure modes and interactions. 

 

II. SW FMEA BASED ON SOFTWARE 

FUNCTIONS 

 

Failure and Effects Analysis (FMEA) is a systematic 

method for evaluating processes to identify where and 

how they might fail and assessing the relative impact 

of different failures. When applied to embedded 

software, FMEA focuses on the software functions to 

ensure that potential failures in the software do not lead 

to safety, performance, or operational issues in the 

overall system. Here’s a structured approach to 

conducting an FMEA for embedded software based on 

its functions: 

 

Steps for Conducting Software FMEA based on 

Software Functions 

• Define the Scope: 

Determine the boundaries of the analysis, including 

which software functions and components will be 

included. 

• Identify Software Functions: 

List all the critical software functions. This could 

include tasks such as data acquisition, signal 

processing, control algorithms, communication 

protocols, etc. 

• Identify Potential Failure Modes: 

For each function, brainstorm all possible failure 

modes. Consider errors like incorrect calculations, 

resource exhaustion, timing issues, or incorrect 

communication handling. 

• Assess Effects of Failures: 

Evaluate the impact of each failure mode on the 

system. Discuss how it affects functionality, safety, 

performance, or user experience. Classify effects as 

minor, moderate, or severe. 

• Determine Causes of Failures: 

Identify root causes for each failure mode. This may 

include software bugs, hardware issues, environmental 

factors, or improper inputs. 

• Assign Severity, Occurrence, and Detection 

Ratings: 

Rate each failure mode based on: 

 

Severity (S): Impact of the failure on the system 

(usually on a scale from 1 to 10). 

Occurrence (O): Likelihood of the failure occurring (1 

to 10). 

Detection (D): Likelihood that the failure will be 

detected before it affects the system (1 to 10). 

Calculate Risk Priority Number (RPN): 

Calculate the RPN by multiplying the severity, 

occurrence, and detection ratings: 

[ RPN = S \times O \times D ] 

 

This helps prioritize the failure modes that require 

immediate attention. 

• Develop Action Plans: 

For failure modes with high RPNs, brainstorm and 

document potential corrective actions to mitigate risks. 

This could involve additional testing, code reviews, or 

design changes. 

• Implement Changes and Track Effectiveness: 

Implement the identified corrective actions. Monitor 

their effectiveness in reducing the identified risks. 

• Review and Update Regularly: 

FMEA should be a living document; regularly review 

and update it as the software evolves or when new 

failure modes are identified. 
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By systematically applying FMEA to embedded 

software, you can identify critical areas for 

improvement, mitigate risks, and enhance the 

reliability and safety of your software systems. This 

proactive approach will help in addressing issues 

before they lead to significant impacts on system 

performance. 

 

III. SW FMEA BASED ON SOFTWARE 

ARCHITECTURE 

 

Steps for Conducting Software Architecture FMEA 

• Define Scope: 

Clearly define the boundaries of the FMEA, including 

which software architecture components and 

interactions will be analyzed. 

• Understand the Architecture: 

Map out the software architecture, identifying all 

components, modules, layers, and their interactions. 

This could include components such as user interfaces, 

business logic, data access layers, communication 

interfaces, and external systems. 

• Identify Potential Failure Modes: 

For each architectural component and interaction, 

brainstorm potential failure modes. Common types of 

failures may include: 

o Component failures (software crashes, hangs, etc.) 

o Interface failures (mismatched data types, broken 

API calls) 

o Performance failures (bottlenecks, slow responses) 

o Resource contention (deadlocks, memory leaks) 

• Assess Effects of Failures: 

Evaluate the impact of each failure mode on the overall 

system. Consider how failures can affect functionality, 

user experience, system performance, and safety. 

Classify effects as minor, moderate, or severe. 

• Determine Causes of Failures: 

Identify root causes for each potential failure mode. 

This may include design flaws, coding errors, improper 

resource management, or environmental factors. 

• Rate Failure Modes: 

Assign severity, occurrence, and detection ratings for 

each failure mode: 

 

Severity (S): Impact on the system (1 being negligible 

and 10 being catastrophic). 

 

Occurrence (O): Likelihood of failure occurring (1 

being rare and 10 being frequent). 

 

Detection (D): Likelihood of failure detection before it 

impacts the system (1 being very likely and 10 being 

unlikely). 

 

Calculate the Risk Priority Number (RPN): 

Compute RPN using the formula: 

[ RPN = S \times O \times D ] 

 

This helps prioritize which failure modes need 

immediate attention or mitigation. 

• Develop Mitigation Strategies: 

For failure modes with high RPN, propose action plans 

to mitigate risks. This could involve design changes, 

adding redundancy, improving error handling, or 

enhancing testing practices. 

• Implement Changes and Monitor: 

Implement the recommended actions and monitor to 

ensure these changes effectively reduce the identified 

risks. 

• Review and Update Regularly: 

Regularly review the FMEA as the architecture evolves 

or when new components are introduced or modified. 
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Performing FMEA based on software architecture 

enables teams to proactively identify and address 

potential failures in the design and interaction of 

software components. This systematic approach 

enhances the reliability, maintainability, and safety of 

embedded software systems, ensuring better 

performance and user experience. Regular updates to 

the FMEA can help adapt to changes and improve 

overall software quality. 

 

Software Failure Mode and Effects Analysis (FMEA) 

process applied to a new embedded LiDAR (Light 

Detection and Ranging) system, designed for 

applications such as autonomous vehicles, robotics, 

and smart infrastructure. 

 

IV. INTEGRATING HAZOP AND SW FMEA 

FOR ENHANCED ISO 26262 

COMPLIANCE 

 

By integrating HAZOP and SW FMEA, organizations 

can achieve a more comprehensive and effective 

approach to safety analysis, particularly in the context 

of ISO 26262. 

 

Key Benefits of Integration: 

• Early Identification of Risks: By combining the 

strengths of both techniques, potential hazards and 

failures can be identified early in the development 

process. 

• Enhanced Risk Assessment: A more detailed and 

rigorous risk assessment can be performed, 

considering both hardware and software aspects. 

• Improved Mitigation Strategies: More effective 

mitigation strategies can be developed, addressing 

both hardware and software failures. 

• Stronger Compliance with ISO 26262: The 

combined approach helps ensure compliance with 

the specific requirements of ISO 26262, 

particularly in terms of safety analysis and risk 

management.[12] 

Practical Steps for Integration: 

• Define the System: Clearly define the system 

boundaries and identify the key components, 

including both hardware and software. 

• Identify Potential Failure Modes: Use HAZOP 

guide words to identify potential deviations from 

intended behavior for hardware components and 

software functions. 

• Assess Risk: Evaluate the severity, occurrence, and 

detection probability of each identified failure 

mode using a risk matrix. 

• Develop Mitigation Strategies: Implement 

appropriate mitigation strategies, such as 

redundancy, fault tolerance, error detection, and 

recovery mechanisms. 

• Document the Analysis: Create a comprehensive 

FMEA document [13] that includes all identified 

failure modes, their potential effects, and mitigation 

strategies.[14] 
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• Review and Update: Regularly review and update 

the FMEA to account for changes in the system 

design, requirements, or technology.[15] 

 

Example: Autonomous Vehicle System 

HAZOP: Identify potential deviations in sensor inputs, 

actuator outputs, and control algorithms. 

SW FMEA: Analyze software failures in perception, 

planning, and control modules. 

 

Combined Approach: 

• Sensor Failure: Identify potential sensor failures 

(e.g., incorrect readings, noise) and their impact on 

perception and control. 

• Software Bug: Analyze the impact of software bugs 

in the perception module, such as incorrect object 

classification or distance estimation. 

• Hardware-Software Interaction: Consider failures 

at the interface between hardware and software, 

such as incorrect data transfer or timing issues. 

 

Challenges and Considerations: 

• Complexity: Complex systems require a thorough 

understanding of both hardware and software 

components. 

• Interdisciplinary Collaboration: Effective 

collaboration between hardware and software 

engineers is essential. 

• Tool Support: Specialized tools can help automate 

parts of the analysis process. 

• Continuous Improvement: The FMEA process 

should be continuously improved to adapt to 

evolving technologies and standards.[16] 

By effectively integrating HAZOP and SW FMEA, 

organizations can enhance their ability to identify and 

mitigate risks, improve product safety, and achieve 

compliance with ISO 26262.[17] 

 

V. CASE STUDY: DEVELOPING LIDAR SUB-

SYSTEM SOFTWARE FMEA THROUGH 

RISK PRIORITY NUMBER 

 

Step-by-Step SW FMEA Process for an Embedded 

LiDAR System 

• 1. Define Scope and Objectives 

Scope: Include all software components that 

contribute to the LiDAR system's operation, such 

as data acquisition, signal processing, object 

detection, communication interfaces, and user 

interfaces. 

 

Objectives: Identify potential software failures, assess 

their impacts, and develop mitigation strategies to 

enhance software reliability and performance. 

• 2. Understand the Software Architecture 

Create an architectural diagram that illustrates the 

software components: 

o Data Acquisition Module: Interface with LiDAR 

sensors to collect raw data. 

o Signal Processing Module: Process the raw LiDAR 

data to extract meaningful information such as 

distance measurements. 

o Object Detection Module: Identify obstacles based 

on processed data. 

o Communication Module: Interface with external 

systems (e.g., controllers, displays). 

o User Interface: Provide interaction points for users 

to monitor live data and system status. 

• 3. Identify Potential Failure Modes 

 

Brainstorm potential failure modes for each software 

module: 

o Data Acquisition: 

▪ Failure to read data from the LiDAR sensors. 

▪ Incorrect parsing of sensor data formats. 

o Signal Processing: 

▪ Incorrect data transformation leading to erroneous 

distance readings. 

▪ Delays in processing due to performance 

bottlenecks. 

o Object Detection: 

▪ Missed detections of obstacles. 

▪ False positives identifying non-existent objects. 

o Communication: 

▪ Data loss during transmission to external systems. 

▪ Incorrect error codes or status messages. 

o User Interface: 

▪ Crashes or freezes when rendering data. 

• 4. Assess Effects of Failures 

 

Evaluate the impact of each identified failure mode on 

the system: 

o Data Acquisition Failure: May lead to incomplete 

or inaccurate distance measurements, affecting 

object detection. 
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o Signal Processing Delay: Could result in outdated 

information being used for decision-making, 

impacting vehicle safety. 

o Object Detection False Positives: May cause 

unnecessary reactions (e.g., braking) leading to 

inconvenience or danger. 

o Communication Data Loss: Could result in critical 

information not being conveyed to external 

systems, compromising operational safety. 

• 5. Determine Causes of Failures 

Investigate and list potential root causes for each 

failure: 

o Sensor calibration issues (Data Acquisition). 

o Inefficient algorithms or resource exhaustion 

(Signal Processing). 

o Inadequate training data (Object Detection). 

o Network issues or improper error handling 

(Communication). 

o Software bugs or memory leaks (User Interface). 

• 6. Rate Failure Modes 

Assign ratings for each failure mode based on: 

o Severity (S): Impact on safety and performance (1 

to 10). 

o Occurrence (O): Likelihood of occurrence (1 to 

10). 

o Detection (D): Likelihood of detection before 

impact (1 to 10). 

 

Example ratings might look like this: 
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• 7. Calculate Risk Priority Number (RPN) 

Calculate the RPN for each failure mode based on the 

formula: [ RPN = S \times O \times D ] 

• Example RPN ratings might look like this: 

Software 

Component 

Potential 

Failure Mode 

RPN 

Data 

Acquisition 

Failure to read 

data from 

LiDAR 

sensors 

135 

Signal 

Processing 

Incorrect data 

transformation 

120 

Object 

Detection 

False positives 

in obstacle 

detection 

128 

Communication Data loss 

during 

transmission 

135 

User Interface Crashes 

during data 

rendering 

36  

 

VI. CASE STUDY: ENHANCING SYSTEM 

SOFTWARE FMEA THROUGH RISK 

PRIORITY MATRIX IMPLEMENTATION 

AT KARMA AUTOMOTIVE 

 

Traditional Risk Priority Number (RPN) methods pose 

challenges in software FMEA, creating difficulties in 
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accurately prioritizing high-severity risks, particularly 

within intricate systems such as those in automotive 

applications. This case study investigates the 

limitations of RPN within software contexts and 

outlines the adoption of a Risk Priority Matrix (RPM) 

[8] at Karma Automotive to improve risk prioritization 

for Advanced Driver Assistance Systems (ADAS) 

software components. By integrating ISO 26262 

principles and adopting RPM [9], Karma Automotive 

achieved a more precise risk assessment, improving the 

identification and mitigation of critical software failure 

modes. 

 

Software Failure Mode and Effects Analysis (FMEA) 

is essential for identifying potential failures in software 

components. However, traditional software DFMEA 

methods that rely on RPN often fall short in accurately 

capturing risk, particularly with high-severity but low-

frequency software defects. ISO 26262 offers a 

framework through Automotive Safety Integrity 

Levels (ASILs) that better aligns with the complexity 

of software systems.[10] This study explores the 

limitations of RPN and presents how RPM can serve as 

a superior method for DFMEA, demonstrated through 

a case at Karma Automotive.[11] 

 

Software FMEA focuses on evaluating software-

specific risks such as logical errors, communication 

failures, and data corruption. Key components include: 

 

Functionality: The intended operation of software. 

Failure Mode: Ways in which software can fail. 

Severity: Impact level of a software failure. 

Occurrence: Likelihood of failure occurrence within 

software. 

Detection: Ability to detect a software failure before 

impact. 

RPN: Traditionally calculated as Severity x 

Occurrence x Detection, yet often inadequate in 

software applications due to its simplistic risk view. 

• Limitations of RPN in Software Risk Assessment 

o RPN’s limitations are particularly pronounced in 

software, where the equal weighting of severity, 

occurrence, and detection can misrepresent true risk 

levels. For software applications, two failure modes 

may possess identical RPN values but vastly 

different real-world impacts, particularly when 

severity is not adequately addressed. 

 

• ISO 26262 and Enhanced Software Risk  

•  Assessment 

o ISO 26262 provides a structured approach that 

includes targeting software risks through ASIL 

levels, addressing severity, exposure, and 

controllability. This approach ensures that risk 

assessment is comprehensive and reflective of 

actual safety requirements.[10] 

 

• Transition to a Risk Priority Matrix for Software 

o At Karma Automotive, software failures within 

ADAS systems exposed the shortcomings of RPN. 

A critical failure mode involving software 

interoperability challenges highlighted the need for 

a RPM to better prioritize risks. ASIL D 

categorization underscored these risks, demanding 

a method like RPM that assesses risk factors 

independently, ensuring high-severity software 

issues receive the necessary focus. Comprehensive 

training and workshops supported the transition, 

securing team adoption and understanding. 

 

• Results and Benefits 

Implementing RPM for software at Karma Automotive 

showed marked improvements, including: 

o A 40% increase in identifying critical software 

failure modes. 

o A 30% improvement in the effectiveness of 

software mitigation strategies. 

o A 50% decrease in software DFMEA meeting 

durations. 

These enhancements improved system reliability and 

ensured software risk assessments aligned with ISO 

26262 standards, confirming RPM as an effective 

replacement for traditional RPN methods.[7] 

 

• Challenges and Trade-offs 

o Transitioning to Risk Priority Matrix (RPM) 

required upfront investments in team training and 

process revisions. The implementation started with 

existing software projects to minimize disruption 

before applying to new developments. Though 

there were initial costs, the benefits of improved 

software reliability and accurate prioritization made 

the transition worthwhile and sustainable. 
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CONCLUSION 

 

This paper has explored the application of Software 

Failure Mode and Effects Analysis (SW FMEA) to 

address potential risks in complex software 

architectures. By systematically identifying, assessing, 

and mitigating failure modes, organizations can 

enhance the reliability, safety, and overall quality of 

their software systems. 

 

The integration of HAZOP with SW FMEA provides a 

comprehensive approach to risk analysis, considering 

both hardware and software components. This 

combined approach enables the early identification of 

potential hazards and failures, leading to more effective 

mitigation strategies.[18] 

 

The application of SW FMEA to specific software 

systems, such as embedded LiDAR systems, 

demonstrates its practical value in identifying and 

addressing critical issues. By following a structured 

approach and considering factors such as software 

architecture complexity, organizations can 

significantly improve the robustness of their software 

systems. 

 

As technology continues to evolve, the importance of 

rigorous safety analysis techniques like SW FMEA 

will only increase. By investing in robust FMEA 

processes and staying abreast of emerging 

technologies, organizations can ensure the safety and 

reliability of their software systems, ultimately 

safeguarding lives and property. 

 

The inherent limitations of RPN necessitate a more 

robust risk assessment approach in software contexts. 

Aligning software DFMEA with ISO 26262 through a 

Risk Priority Matrix offers a more precise and reliable 

framework for risk prioritization. The Karma 

Automotive case study highlights this transition's 

substantial advantages, including enhanced software 

failure mode identification and increased functional 

safety. This method signifies a progressive approach to 

managing software risks in automotive applications, 

ensuring robust and reliable safety-critical software 

systems. 

 

FUTURE OUTLOOK FOR HAZOP AND SW 

FMEA 

 

The future of HAZOP and SW FMEA is promising, 

with several trends shaping their evolution: 

• Integration with Advanced Technologies 

Model-Based Systems Engineering (MBSE): 

Integrating HAZOP and SW FMEA with MBSE tools 

will enable early identification of risks and the 

development of robust mitigation strategies. 

 

Artificial Intelligence and Machine Learning: AI and 

ML can be used to automate parts of the analysis 

process, such as identifying potential failure modes and 

assessing risks. 

 

Digital Twins: Digital twins can be used to simulate 

system behavior [19] and identify potential failure 

scenarios under various conditions.[20] 

 

• Enhanced Collaboration and Knowledge Sharing 

Collaborative Tools: Advanced collaboration tools can 

facilitate efficient teamwork and knowledge sharing 

among diverse teams. 

 

Knowledge Management Systems: Centralized 

repositories of FMEA and HAZOP results can help 

organizations learn from past experiences and improve 

future analyses. 

 

• Focus on Cybersecurity 

Cybersecurity FMEA: A specialized form of FMEA 

can be used to identify and assess cybersecurity 

risks.[21] 

 

Integration with Threat Modeling: Combining 

HAZOP, SW FMEA, and threat modeling[22] can 

provide a comprehensive view of security risks.[23] 

 

• Increased Emphasis on Safety Culture 

Proactive Safety Mindset: Organizations can foster a 

culture of safety by encouraging employees to report 

potential hazards and near-misses. 

 

Regular Training and Education: Ongoing training and 

education can help employees understand the 

importance of safety and how to apply safety 

techniques. 
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• Challenges and Opportunities 

While the future of HAZOP and SW FMEA is bright, 

there are challenges to overcome: 

 

Complexity of Modern Systems: As systems become 

more complex, it becomes increasingly difficult to 

identify all potential failure modes and interactions. 

 

Subjectivity in Risk Assessment: Risk assessment can 

be subjective, and different analysts may arrive at 

different conclusions. 

• Time and Resource Constraints: Conducting 

thorough HAZOP and SW FMEA analyses can be 

time-consuming and resource-intensive. 

To address these challenges, organizations can adopt 

innovative approaches, such as: 

 

Automation: Using AI and ML to automate parts of the 

analysis process. 

 

Standardization: Developing standardized 

methodologies and templates to streamline the 

analysis. 

 

Continuous Improvement: Regularly reviewing and 

updating the analysis process to improve its 

effectiveness. 

 

By embracing these trends and addressing the 

challenges, organizations can leverage HAZOP and 

SW FMEA to ensure the safety, reliability, and security 

of their complex systems. 
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