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Abstract - Accurate prediction of university 

network traffic is essential for efficient resource 

management, resource optimization, security 

enhancement, and optimal user experience. 

Traditional statistical methods often struggle with 

network traffic data's complex, nonlinear, and 

time-varying nature. These challenges have been 

successfully addressed through recent 

advancements in deep learning, particularly the 

development and application of Long Short-Term 

Memory (LSTM) networks. This paper introduces 

a novel approach to network traffic prediction by 

integrating Long Short-Term Memory (LSTM) 

networks and Restricted Boltzmann Machines 

(RBM). LSTM is a specific architecture within the 

family of recurrent neural networks, and it is 

adapted to predict network traffic Patterns in 

dynamic university environments. Comprehensive 

experiments are carried out utilizing real-world 

network traffic data collected from university 

environments. The findings reveal that the 

proposed LSTM-based model performs robustly 

across all major metrics, achieving low values for 

Test Loss, Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and Root Mean Squared 

Error (RMSE), along with a high R² score, 

signifying outstanding accuracy and 

generalization capabilities. LSTM proves to be 

highly capable of handling time-series data or 

sequence-based tasks.  

Index Terms: Network-Traffic, Prediction, Long 

Short-Term Memory, Restricted Boltzmann 

Machines 

I. INTRODUCTION 

 

In recent years, universities worldwide have 

experienced a significant digital transformation, 

integrating advanced technologies within various 

academic disciplines and administrative activities. 

This transformation has led to an exponential 

increase in network traffic within university 

campuses, driven by a multitude of factors such as 

online learning platforms, research collaborations, 

administrative systems, e-library, e-voting, 

computer-based tests/Exams, and the proliferation 

of internet-enabled devices. 

 

The efficient management of university network 

infrastructure has become paramount to ensure 

seamless operations, optimal resource allocation, 

and enhanced user experience. Network 

administrators face the challenge of accurately 

predicting and managing network traffic behavior to 

meet the evolving needs of students, faculty, staff, 

and other stakeholders. [5]. 

 

Universities, as dynamic hubs of knowledge and 

innovation, increasingly rely on advanced network 

infrastructures to facilitate a wide array of activities, 

ranging from academic research and collaborative 

projects to online learning platforms. With the 

proliferation of digital technologies, the volume and 

complexity of network traffic within university 

environments have surged, presenting challenges for 

effective network management. The need to 

anticipate, understand, and optimize network 

Patterns has become paramount for ensuring 

seamless connectivity, resource allocation, and 

overall operational efficiency. [10].  

 

This research investigates the prediction of network 

traffic patterns within university environments, 

leveraging the synergies between deep learning and 

optimization techniques. As the demand for online 

education, research collaboration, and data-

intensive applications continues to grow, There is an 

urgent need to create advanced predictive models 

that can adapt to the changing dynamics of 

university network traffic Understanding and 

predicting the behavior of university network traffic 

is crucial for network administrators to proactively 

manage resources, optimize bandwidth allocation, 

and ensure a seamless digital learning environment. 

Traditional methods of network traffic analysis and 

management may fall short in handling the 

complexity and dynamic nature of modern 

university network. [3]. This research holds 

significance in the realm of network management 

for educational institutions.  

 

Across several academic institutions, especially in 

Universities, detailed and up-to-date analysis of the 

distribution of network services is critical to 

delivering efficient academic and administrative 

services.  With the development of the Internet and 

advanced web applications, the computer network is 

changing students, staff, and university community 
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lives, the internet makes life easy. Effective internet 

traffic management is essential to support web-

based applications and other internet-dependent 

devices. This can be accomplished by predicting 

university network traffic based on historical traffic 

data. [8]. Predicting network traffic patterns 

becomes crucial for optimizing resource allocation, 

ensuring quality of service, and preventing 

congestion. 

 

[9] examined the properties of network traffic and 

discovered its self-similar nature. This self-

similarity in time series can be quantified using the 

Hurst exponent, which they found to be greater than 

0.5 for network traffic. The self-similar nature of 

network traffic makes it inherently predictable, and 

their research established a foundational basis for 

network traffic prediction. Since then, numerous 

scholars and researchers have conducted extensive 

studies in this area. [14]. 

 

When network traffic is accurately predicted, it can 

provide significant benefits by helping to manage 

network resources to ensure quality of service and 

assisting network administrators in improving 

availability and transmission speeds. Different 

research, designs, and experiments have been 

conducted or proposed for analyzing and predicting 

network traffic. Predicting network traffic patterns 

offers significant advantages across various 

domains, including dynamic bandwidth allocation, 

enhanced network security, optimized network 

planning, proactive congestion control, and efficient 

resource management. [8]. 

 

Deep learning encompasses a suite of machine 

learning techniques capable of autonomously 

extracting meaningful features from raw data 

through the construction of hierarchical feature 

representations. This has been fairly common 

knowledge in the machine-learning community for a 

long time. However, what has made deep learning 

so exciting in recent years is that the learning process 

can be directly applied to finding a useful 

representation of the data, rather than just learning a 

mapping from input to output. [13]. This is useful in 

many real world scenarios, for example an engineer 

might not have a good idea of what features to 

extract from raw sensor data in order to build an 

effective detector for a given event. If the engineer 

knew what features were best to extract, then 

building the detector could just be a simple 

optimization problem with respect to a classification 

function. Deep learning provides a means for the 

optimization to be performed directly on the 

detector, given a simple parameterization of the 

features. [11]. 

 

 

II LITERATURE REVIEW 

There had been numerous researches on network 

traffic prediction, with a specific emphasis on 

utilizing deep learning methodologies for the 

accurate prediction of network traffic behavior. 

Such among them are: 

Xueyan et al., [17] propose a BWCL method for 

network traffic prediction, combining a Butterworth 

filter, CNN, and LSTM. The Butterworth filter 

smooths data, while CNN-LSTM models analyze 

different frequency bands, enhancing prediction 

accuracy by aligning data characteristics with 

suitable models. This method aids in resource 

planning and performance optimization during 

traffic bursts, offering precise insights into time 

series data dynamics. 

Yuantao L. [18] introduced a deep learning model 

for network traffic prediction that integrates CNN, 

LSTM, and Bayesian optimization. The CNN 

extracts spatial features, LSTM captures temporal 

dependencies, and Bayesian optimization improves 

prediction efficiency. The model outperforms 

traditional methods like LSTM and GRU in 

predicting peaks, valleys, trends, and overall traffic 

patterns with greater accuracy. 

Agnieszka et al., [2], uses a regression approach 

based on the Multi-Layer Process (MLP) to predict 

traffic types in an application-aware backbone 

optical network. The model, a simple neural 

network, outperforms a baseline LR algorithm in all 

traffic types, achieving a mean absolute percentage 

error of 2%-10%. 

 

Huaifeng [6] proposed the "AGG: A Novel 

Intelligent Network Traffic Prediction Method 

Based on Joint Attention and GCN-GRU," which 

combines GCN, GRU, and an attention mechanism 

to effectively capture spatial and temporal traffic 

patterns. This approach features an improved 

attention mechanism and an updated weight matrix 

calculation. When applied to the Milan traffic 

network dataset, the AGG model outperformed 

baseline models such as HA, ARIMA, SVR, GRU, 

and GCN-GRU, achieving better results across 

metrics like RMSE, MAE, accuracy, determination 

coefficient, and explained variance score. 

 

Wang et al., [16], presents a Network Traffic 

Prediction Method Based on LSTM, focusing on the 

importance of TCP/IP networks in modern society. 

The model uses real-world network traffic data from 

various sources, including European cities, UK 

educational networks, and China's education 

network. It incorporates autocorrelation coefficients 
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to improve prediction accuracy. The model shows 

promise for real-world applications in network 

traffic prediction, allowing network service 

providers to optimize resources and enhance service 

quality. The study suggests exploring variations of 

recurrent neural networks, such as Gated Recurrent 

Unit, for further improvement. 

 

Abdelhadi and Guy [1] explored a study titled “A 

Long Short-Term Memory Recurrent Neural 

Network Framework for Network Traffic Matrix 

Prediction.” This research introduces an LSTM-

based framework leveraging deep learning 

techniques to accurately predict network traffic 

parameters. The method converts each Traffic 

Matrix into a traffic vector (TV) for prediction, 

training the model on historical data and testing it 

with new inputs. The findings highlight the 

suitability of LSTM RNNs for traffic matrix 

prediction due to their capability to represent 

temporal sequences and capture long-range 

dependencies effectively. 

Sebastian et al., [12]  proposes a Deep Learning-

Based Traffic Prediction for Network  Optimization, 

focusing on the importance of accurate network 

behavior for managing mobile and fixed network 

services. The study uses a dataset of traffic matrices 

from the Abilene network, processed into a vector 

representation, and inputs it into a prediction system. 

The system consists of a classical Artificial Neural 

Network (ANN) based on GRUs and an Evaluation 

Automatic Module (EAM). The model, particularly 

the GRU RNNs, shows high accuracy in predicting 

traffic matrices, enabling proactive resource 

allocation and optimization. 

 

The ST-LSTM method introduced by Bi et al., [4] 

offers a novel real-time network traffic prediction 

approach by integrating the Savitzky–Golay (SG) 

filter, temporal convolutional network (TCN), and 

long short-term memory (LSTM). This end-to-end 

methodology operates in three phases: noise 

removal, short-term local feature extraction, and 

long-term dependency modeling. The SG filter 

improves data quality, TCN identifies immediate 

patterns, and LSTM captures long-term trends. The 

method’s advanced predictive capabilities make it 

ideal for diverse industrial applications. 

 

Tiago et al., [15] conducted a study titled “Computer 

Network Traffic Prediction: A Comparison between 

Traditional and Deep Learning Neural Networks.” 

This research evaluated four prediction techniques 

based on Artificial Neural Networks (ANN), 

specifically the Multilayer Perceptron (MLP), 

Recurrent Neural Network (RNN), and Deep 

Learning Stacked Autoencoder (SAE). The findings 

indicated that simpler models, such as RNN and 

MLP, often outperformed more complex models 

like SAE. The RNN, utilizing the Rprop training 

algorithm, emerged as the most effective method 

due to its ability to use prior observations for 

learning new data. The optimal results were obtained 

with the JNN and SRN models. 

III METHODOLOGY 

 

The methodology used in this research aimed to 

predict the network traffic using deep learning 

modelsFigure 1 illustrates the architecture of the 

predictive model. The research methodology is in 

six steps to achieve the research objectives. The 

steps are:  

a. Data Collection     

b. Data Preprocess  

c. Algorithm selection and model development   

d. Training/Testing  

e. Prediction  

f. Performance evaluation metric 

 

Data Collection 

The first phase of the system architecture is vital, 

since the quality of data gathered during this stage 

influences the overall performance of the system. 

The historical network traffic dataset examined in 

this study was obtained from Elizade University in 

Ilara Mokin Nigeria. 

 

Data Pre-processing  

In the creation of a deep learning model, data pre-

processing serves as the crucial first step that 

initiates the entire process. Real-world data often 

presents challenges such as incompleteness, 

inconsistencies, inaccuracies, and the presence of 

errors or outliers. Data pre-processing involves 

preparing this raw data for analysis by a deep 

learning model, encompassing the necessary steps to 

transform or encode the data for optimal parsing by 

the model. The primary objective is to ensure that 

the algorithm can effectively interpret the features of 

the data, which is essential for achieving accurate 

and precise predictions.  (Olayinka, et al, 2022).  

 

Clean: The collected dataset was cleaned ( e,g 

handle the missing values)   

Normalization: Normalization is a method in which 

the values are adjusted to a range, typically 

between 0 and 1.    
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𝑋𝑖𝑛𝑒𝑤
=   

𝑥𝑖 −𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛
     (1)

  

Equation 1. presents the formula for normalizing all 

features of xx, transforming them to a range 

between the specified min new and max new  

𝑥𝑖𝑛𝑒𝑤 =  normalized value  

𝑥i     =   process value 

x𝑚𝑖𝑛 = minimum value in the dataset  

𝑥𝑚𝑎𝑥 = maximum value in the dataset 

The set of attribute with the highest accuracy is 

returned and selected Kemal and Baha, 2018 

 

 

Figure 1: Framework of the prediction models. 

 

 Algorithm/model selection 

The prediction models proposed for this research 

were as below:  

I Long Short-Term Memory  

ii Restricted Boltzmann Machine  

 

 

 

Long short-term memory (LSTM) 

 

Figure 2:  Department structure within LSTM. 

Jihong and Xiaoyuan (2022) 

Long Short Term Memory (LSTM) is a specific 

architecture of recurrent neural networks (RNNs) 

created to address the challenges traditional RNNs 

face in learning long-term dependencies. This is 

accomplished by employing a sophisticated 

structure featuring gates and memory cells, which 

regulate the information flow.  

 

Components of LSTM 

An LSTM unit consists of the following components  

i. Cell State (Ct) Represent the memory of the 

network. It carries information across 

different time steps  

ii. Hidden State(ht): The output of the LSTM 

unit at each time step, which is also passed 

to the next unit. 

iii. Gates: There are three main gates that 

control the flow of information. 

(a) forget Gate (f): Determines which 

information to eliminate from the 

cell state.  

(b) Input Gate (i): Determines which 

new information to incorporate 

into the cell state. 

(c) Output Gates (o): Determines 

which portion of the cell state to 

output and transmit to the next 

time step 

 

FORGET GATE 
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The forget gate is vital for determining which 

information from the previous cell state should be 

kept or discarded. This gate is key to the LSTM's 

capability to handle long-term dependencies and 

address challenges such as the vanishing gradient 

problem that often arises in traditional recurrent 

neural networks (RNNs). The output of the forget 

gate ranges from 0 to 1, where a value near 0 

indicates that most of the information is discarded, 

while a value closer to 1 suggests that the 

information is largely retained.  The process can be 

expressed as: 

𝐹 =  𝜎(𝑊𝑓 • [𝑚𝑡−1, 𝑥𝑡] + 𝑏𝑓)      (2) 

Where: 

σ  is the sigmoid function 

𝑊𝑓 represents the weight matrix   

𝑚𝑡−1 represents the previous hidden state 

𝑥𝑡 represents the current input   

𝑏𝑓 represents the bias term.  

 

INPUT GATE. 

The input gate in a Long Short-Term Memory 

(LSTM) network is responsible for controlling how 

much of the new information generated at the 

current time step should be added to the cell state.  

The input gate operation in an LSTM in involves two 

main components: the input gate itself and the 

candidate cell state. The process of the input gate 

itself can be expressed as: 

 

a. Input gate 

𝐼 =  𝜎(𝑊𝐼 • [𝑚𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

        (3) 

 

b. The candidate cell state (l’) uses a tanh 

activation function to create a vector of new 

 information with values ranging between -

1 and 1. 

𝐼′ = tanh (𝑊𝐶 • [𝑚𝑡−1, 𝑥𝑡] + 𝑏𝐶       (4) 

Where 

𝜎 represents the sigmoid function 

𝑊𝐼  and 𝑊𝐶  is the weight matrix  

𝑚𝑡−1 represents the previous hidden state 

𝑥𝑡 represents the current input   

𝑏𝑖 represents the bias term  

tanh represents the hyperbolic tangent function 

 

The input gate (I) and the candidate cell state (I’), 

are combined to update the cell state 𝐶𝑡: 

 𝐶𝑡 =   𝑓𝑡 ∗  𝐶𝑡−1 + 𝐼 ∗ 𝐼′   (5) 

Where: 𝑓𝑡  is the forget gate vector, which modulates 

the previous cell state (𝐶𝑡−1). The input gate I 

determines the extent to which the candidate cell 

state should influence the new state.  

 

OUTPUT GATE 

In a long short-term memory (LSTM) network, the 

output gate regulates the information that is 

extracted from the cell state and forwarded to the 

next hidden state. This gate decides which aspects of 

the cell state should be made available to the hidden 

state, thereby affecting the calculations for the 

subsequent time step and ultimately impacting the 

network's output. The process can be expressed as: 

 

𝑂 =  𝜎(𝑊𝑂  • [𝑚𝑡−1, 𝑥𝑡] + 𝑏𝑂)  (6) 

𝑚𝑡 = 𝑂 • 𝑡𝑎𝑛ℎ (𝐶𝑡)   (7) 

𝑌𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑡 • 𝑚𝑡)   (8) 

Where: 

𝑚𝑡 represents the hidden state at the current time 

step 

𝜎  represents the sigmoid activation function 𝜎(𝑥) =

1

1+ 𝑒−𝑥 

tanh represents the hyperbolic tangent activation 

function tanh(𝑥) =  
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥 

𝑊𝑂 represents the weight matrix  

[𝑚𝑡−1, 𝑥𝑡] represents the concatenation of the 

previous hidden state [𝑚𝑡−1] and current input [ 𝑥𝑡] 
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𝑏𝑂 represents the bias vector for the output gate, 

learned during training 

𝐶𝑡 represents the cell state at the current time step 

𝑌𝑡 represents the output of this time. 

 

Restricted Boltzmann machine (RBM) 

A Restricted Boltzmann Machine (RBM) is a 

generative stochastic neural network that learns 

probability distributions from its inputs. It features 

two layers: a visible layer that represents observable 

data, and a hidden layer that captures latent features. 

Notably, there are no connections between the units 

in the same layer, which distinguishes it as a 

restricted variant of the general Boltzmann Machine.  

 

An RBM is composed of the visible units V = (Vj ) 

j∈M with visible state vector v = (v j ) j∈M, the 

hidden units H = (Hi )i∈N with hidden state vector h 

= (hi )i∈N , and the weight state matrix w = (wji ) 

j∈M,i∈N , which connects the visible units and 

hidden units, where M is the number of visible units 

and N is the number of hidden units. The joint 

probability distribution P(v, h) in RBM is defined as 

follows: 

𝑃(𝑣, ℎ) =  
𝑒−ɛ(𝑣,ℎ)

∑ 𝑣 ∑ 𝑒−ɛ(𝑣,ℎ)
ℎ

   `(9) 

 

1. Energy Function: 

The energy function E(v,h) for the visible units v and 

the hidden units h is defined as:   

Ε(𝑣, ℎ) =  − ∑ ⍺𝑖𝑣𝑖𝑖 −  ∑ ℎ𝑗𝑏𝑗𝑗 −  ∑ 𝑣𝑖𝑖,𝑗 ℎ𝑗𝑤𝑖𝑗

                         (10) 

 

Where: 

𝑣𝑖 and ℎ𝑗 are the states of the visible and hidden 

units. (where: v is binary state of visible unit of I, h 

is a binary state of hidden unit at j) 

𝑤𝑖𝑗  is the weight between visible unit 𝑣𝑖 and hidden 

unit ℎ𝑗 

⍺𝑖 and 𝑏𝑗 are the biases of the visible and hidden 

units respectively.  

The structure itself assigns a probability to each 

connection vector between hidden and visible units. 

This probability can be expressed mathematically 

using an energy function. 

 

2. Probability Distribution:  

The joint probability distribution of the visible and 

hidden units is given by:  

𝑝(𝑣, ℎ) =  
1

𝑧
𝑒−𝐸(𝑣,ℎ)                   (11) 

Z here is the partition function is given by summing 

over all possible pairs of visible and hidden vector. 

𝑍 =  ∑ 𝑒−𝐸(𝑣,ℎ)
𝑣,ℎ    

 (12) 

The marginal probability of a visible vector v is : 

𝑝(𝑣) =  
1

𝑧
 ∑ 𝑒−𝐸(𝑣,ℎ)

ℎ    (13) 

 

3. Conditional Distribution. 

The conditional probability of a hidden unit being 

activated, given the observed values of the visible 

units in the model, and vice versa are:  

𝑝 (ℎ𝑗 = 1 | 𝑣) = 𝜎 (𝑏𝑗 +  ∑ 𝑣𝑖𝑤𝑖𝑗𝑖 )  (14) 

𝑝 (𝑣𝑖 = 1 | ℎ) = 𝜎 (𝑎𝑖 + ∑ ℎ𝑗𝑤𝑖𝑗𝑖 )  (15) 

Where: 𝜎(x) =   
1

1+exp (−𝑥)
 is the logistic sigmoid 

function.  

 

4. Training (Contrastive Divergence): 

The training process for an RBM involves iteratively 

adjusting the weights and biases of the model to 

minimize the difference between the distribution of 

the observed data and the probability distribution 

represented by the model. One common training 

algorithm is contrastive Divergence (CD). 

* Positive Phase: Compute the expected 

value of the outer product of the visible and 

hidden vectors given the data.  

 (𝑣𝑖 , ℎ𝑗)𝑑𝑎𝑡𝑎 = 𝑃( ℎ𝑗 − 1|𝑣)𝑣𝑖            (16) 
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* Negative Phase: Sample a reconstruction of 

the visible units from the hidden units and then 

compute the expected value of the outer product of 

the visible vectors given the reconstruction.  

 (𝑣𝑖 , ℎ𝑗) 𝑚𝑜𝑑𝑒𝑙 = 𝑃( ℎ𝑗 − 1|𝑣′)𝑣𝑖′ (17) 

The weights are updated as: 

∆𝑤𝑖𝑗 =  𝛼(𝑣𝑖ℎ𝑗)𝑑𝑎𝑡𝑎 − (𝑣𝑖ℎ𝑗)𝑚𝑜𝑑𝑒𝑙 

 (18)  

Where a is a learning rate, (𝑣𝑖ℎ𝑗) means the 

expectation over the associated distributions  

 

Analysis of experimental results.  

To prepare the data for model training and 

evaluation, the cleaned dataset was divided into a 

training set and a testing set. This split was used 

throughout the training and testing phases for both 

models (LSTM and RBM). Specifically, 80% of the 

data was allocated for training, while the remaining 

20% was reserved for model evaluation. Figures 3 

and 4 illustrate the comparison between the actual 

and predicted curve values derived from the test set 

for the LSTM and RBM models, respectively. This 

section will delve into the results from the training 

and testing processes. 

 

 

 

Figure 3: An evaluation of the LSTM model's 

ability to predict curve values by comparing actual 

and predicted curve data. 

 

 

 

 

 

Figure 4: Assessing the RBM model's performance 

through a comparison of actual curve values with 

the curve values predicted by the model. 

 

Comparison Experiments of Prediction Models 

 

To assess the performance of both LSTM and RBM 

models, four distinct metrics were employed to 

quantify prediction error: Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE), and the 

Coefficient of Determination (R2). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑇(𝑘) − Ṫ(𝑘))2𝑁

𝑘=1      

 (19) 

 

MAE = 
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖| 

𝑛
𝑖=1    (20) 

 

MSE = 
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2 𝑛
𝑖=1    (21) 

𝑅2 =   1 −  
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
    (22) 

 

TABLE 1: Comparison of Performance Metrics 

Evaluation between LSTM and RBM 

Evaluation Traffic Prediction Models 

LSTM RBM 

MAE 0.009475 0.019081 

MSE 0.000584 0.001253 

RMSE 0.024170 0.032781 

R2 0.787276 0.356339 
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Figure 5: Graphical representation of performance 

Metrics comparison between LSTM and 

RBM.(MAE, and RMSE). 

Figure 6: Visual comparison of MSE performance 

metrics for LSTM and RBM. 

Figure 6: A graph illustrating the comparative R2 

Score performance of LSTM and RBM. 

 

Metrics 

Test Loss: The LSTM model shows a clear reduction 

in test loss after optimization, which is crucial for 

better prediction accuracy. LSTM's optimized Test 

Loss is one of the lowest among the models, making 

it a strong performer in terms of minimizing error 

during training. 

Mean Absolute Error (MAE): LSTM achieves a 

very competitive MAE (0.009115 after 

optimization).  

Mean Squared Error (MSE): The LSTM model 

exhibits a strong reduction in MSE, and the LSTM 

model have the ability to capture sequential 

dependencies effectively Facilitates improved 

accuracy in predictive modeling. 

Root Mean Squared Error (RMSE): LSTM 

maintains a very low RMSE after optimization 

(0.024089), close to OGRU. This indicates that 

LSTM has strong predictive power.  

R² Score: The LSTM model shows a solid R² score 

of 0.7887 after optimization, which is a very 

competitive score. This indicates that LSTM is able 

to explain a significant portion of the variance in the 

data, making it a highly reliable model. 

CONCLUSION 

With LSTM having solid performance across all key 

metrics (Test Loss, MAE, MSE, RMSE, and R² 

score), LSTM proves to be highly capable of 

handling time-series data or sequence-based tasks. 

Its ability to model temporal dependencies is 

beneficial for complex predictions. While RBM 

showed improvement in R² score, it lags behind 

LSTM in terms of other key metrics, making it a less 

competitive choice for general prediction tasks. This 

research can further be optimize using any 

optimization technique to get more accurate 

prediction. 

REFERENCES 

[1] Abdelhadi A. and Guy P. (2017). “A Long 

Short-Term Memory Recurrent Neural 

Network Framework for Network Traffic 

Matrix Prediction”. arXiv:1705.05690v3 

[cs.NI] 8. 

[2] Agnieszka G., Bartosz S., Aleksandra K. and 

Krzysztof W. (2022). “Short-Term Network 

Traffic Prediction with Multilayer Perceptron”. 

6th SLAAI International Conference on 

Artificial Intelligence.  DOI: 10.1109/SLAAI-

ICAI56923.2022.1000243 pp. 1- 6.  

[3] Ahmed A. and Sudhakar G. (2020). “Network 

Traffic Prediction using Quantile Regression 

with linear, Tree, and Deep Learning Models”. 

IEEE 45th Conference on Local Computer 

Networks (LCN) Pp. 421- 424. 

[4] Bi J., Xiang Z., Haitao Y., Jia Z., and Mengchu 

Z. (2021). “A Hybrid Prediction Method for 

Realistic Network Traffic with Temporal 

Convolutional Network and LSTM”. IEEE 

Transactions on Automation Science and 

Engineering 2021..  



© JAN 2025 | IRE Journals | Volume 8 Issue 7 | ISSN: 2456-8880 

 

IRE 1706912          ICONIC RESEARCH AND ENGINEERING JOURNALS 262 

[5] Dahunsi, F. M. et al., (2014), Performance 

Evaluation and Modeling of Internet Traffic of 

an Academic Institution: a case study of the 

Federal University of Technology, Akure. 

Nigerian Journal of Technological Research 

Vol. 9 no 2: pg 58-63. 

[6] Huaifeng S., Chengsheng P., Li Y., and 

Xiangxiang G. (2021). “AGG: A Novel 

Intelligent Network Traffic Prediction Method 

Based on Joint Attention and GCN-GRU”. 

Security and Communication Networks, 

Volume 2021, Article ID 7751484,  

https://doi.org/10.1155/2021/7751484.  

[7] Jihong Z., and Xiaoyuan H. (2022). “NTAM-

LSTM models of network traffic prediction”. 

MATEC Web of Conferences 355, 02007, 

https://doi.org/10.1051/matecconf/202235502

007.  

[8] Jihoon L. (2019). “Prediction of University 

Network Traffic Using Deep Learning 

Method”, Journal of Information Technology 

& Software Engineering Vol. 9 Iss. 2 No: 260. 

[9] Legend , G. and Taqqu, M.S. (1994) Stable 

Non-Gaussian Random Processes. Stochastic 

Models with Infinite Variance. Stochastic 

Modeling. Chapman & Hall, New York.  

[10] Oluwadare et al.,(2019)  Network Traffic 

Analysis Using Queuing Model And 

Regression Technique Journal of Information  

2019 Vol. 5, No.1, pp. 16-26. 

[11] Preeti Gulia (2019), Machine Learning and 

Deep Learning, International Journal of 

Innovative Technology and Exploring 

Engineering (IJITEE) ISSN: 2278-3075, 

Volume-8 Issue-12, October 2019.  

[12] Sebastian T., Rodolfo A., Youduo Z., Guido 

M. and Achille P. (2018). “Deep Learning-

based Traffic Prediction for Network 

Optimization.” 2018 DOI: 

10.1109/ICTON.2018.8473978.    

[13] Shyam Srinivasan, Ralph J. Greenspan, 

Charles F. Stevens,  and Dhruv Grover, 2018, 

Deep(er) Learning, The Journal of 

Neuroscience, August 22, 2018 • 38(34):7365–

7374 • 7365. 

[14] Tain ZD, Li SJ. A network traffic prediction 

method based on IFS algorithm optimised 

LSSVM. Int J Eng Syst Model Simul. 

2017;9(4):200-213. 

 

[15] Tiago P. O., Jamil S. B. and Alexsandro S. S. 

(2016). “Computer network traffic prediction: 

a comparison between traditional and deep 

learning neural networks”. Int. J. Big Data 

Intelligence, Vol. 3, No. 1, 2016 Pp. 28 -37. 

[16] Wang S., Zhuo Q., Yan H., LI Q., and QI Y. 

(2019). “A Network Traffic Prediction Method 

Based on LSTM”. Zte Communications Vol. 

17 No. 2 Pp. 19 – 25. 

[17] Xueyan H., Wei L., and Hua H. (2024). “An 

intelligent network traffic prediction method 

based on Butterworth filter and CNN–LSTM”. 

ScienceDirect, Computer Networks, 

DOI:10.1016/j.comnet.2024.110172.  

[18] Yuantao L. (2023). “Deep Learning Network 

Traffic Prediction based on Bayesian 

Algorithm Optimization. Highlights in 

Science, Engineering and Technology” 

CMLAI 2023. 


