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Abstract- This study investigate the application of  

Navier Stokes equation in transport phenomenon, 

specifically examining water flow in horizontal pipe. 

The Navier-Stokes equations, which describe the 

mechanics of fluid motion, primarily control the flow 

behavior when water flows through horizontal pipes.  

These equations offer a mathematical model for 

explaining the motion of incompressible, viscous 

fluids and are derived from the basic ideas of mass, 

momentum, and energy conservation. The equations 

show the forces operating on the fluid, such as 

viscous forces, pressure gradients, and external body 

forces (if any, like gravity). Typically, in a horizontal 

pipe, the considerations are the cylindrical 

coordinates (r,θ,z), where r is the radial distance, θ is 

the angular position, and z is the axial direction 

along the pipe. Velocity profile equation for laminar 

flow was used with  assumed range of radial distance 

of  r  values from 0 (Centre) to R (pipe wall) to 

compute the velocity for each r in which the values 

obtained are tabulated and a plot of the velocity 

against radial distance demonstrating the inverse 

proportionality between them. The pipe radius R was 

used to calculate the volumetric flow rate Q and the 

data obtained was used to plot the graph of flowrate 

against pipe  radius, The curve is steep and 

nonlinear, showcasing the R4 dependence. For a 

fixed pressure gradient and fluid viscosity, the flow 

rate increases exponentially as the pipe radius 

increase. The results highlight the significance of 

Navier Stokes equation in understanding and 

predicting fluid flow behavior in transport 

phenomenon. 

 

 

 

I. INTRODUCTION 

 

The understanding and improvement upon fluid 

systems in engineering requires a comprehension of 

the field of transport phenomena, which include the 

study of the transmission of mass, heat, and 

momentum. (Bird et al., 2007) Chemical reactors,  

Heating, Ventilation, and Air Conditioning (HVAC) 

systems, water distribution networks, and petroleum 

pipelines are just a few of the many industrial and 

environmental applications that depend on these 

processes according to Cengel, Y. A., & Cimbala, J. 

M. (2006). Moreso, the coupled behavior of 

momentum, heat, and mass is complex and essential to 

the design, analysis, and functioning of fluid-based 

systems because in many real life situations, these 

three elements are not conveyed independently but 

rather interact and impact one another. (Cengel, Y. A., 

& Cimbala, J. M. 2006). Therefore, in order to ensure 

system efficiency, optimize performance, minimize 

energy consumption, and maintain safety and 

dependability, it is imperative that these phenomena 

be studied (White, 2011). 

 

The movement of water through pipelines, which are 

the foundation of water supply and distribution 

networks, is one important application of transport 

phenomena. From pump stations, water is frequently 

moved over great distances to holding tanks, 

reservoirs, or other storage facilities. (Romero-Gomez 

et al,. 2008: Peter, & Bala. 2022) There, it is kept until 

it is required for a variety of applications, including 

irrigation, industrial processing, and household 

supply. (White, 2011). In order to maintain ideal flow 

rates, minimise frictional losses, regulate heat 

exchange, and avoid contamination, the dynamic 
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interaction of forces and energy transfers that occurs 

during the movement of water through such systems 

must be properly regulated. Designing efficient and 

long-lasting water distribution systems requires an 

understanding of the basic ideas underlying these 

procedures (White, 2016). 

 

The Navier-Stokes equations, which describe the 

mechanics of fluid motion, primarily control the flow 

behaviour when water flows through horizontal pipes 

(NPTEL 2018, Munson et al, 2012: Panton 2013). 

These equations offer a mathematical model for 

explaining the motion of incompressible, viscous 

fluids and are derived from the basic ideas of mass, 

momentum, and energy conservation. The main 

instrument for examining and forecasting how fluids 

would behave in different scenarios is the Navier-

Stokes equations, which are the cornerstone of fluid 

mechanics (Bird et al., 2007). They show the forces 

operating on the fluid, such as viscous forces, pressure 

gradients, and external body forces (if any, like 

gravity). (White, 2016). 

 

These essential processes of mass transfer, heat 

transfer, and momentum must be taken into account 

simultaneously likewise for water transport systems. 

According to Kays, & Crawford (1993) the fluid’s 

velocity and pressure distribution are controlled by 

momentum transfer, which also establishes the 

pressure drop and pumping needs throughout the 

pipe’s length. When considering energy dissipation 

due to friction and heat transfer between the water and 

the surroundings, factors that can influence both the 

flow rate and water quality, the role of heat transfer 

becomes particularly significant. Although mass 

transfer is frequently linked to the movement of 

suspended or dissolved materials in the water, it is also 

essential for maintaining the water’s quality and purity 

as it passes through the system, especially when it 

comes to contamination or particle deposition (Kays & 

Crawford 1993). 

 

The necessity of efficiently balancing all three 

transport phenomena adds to the difficulties of 

transporting water through horizontal pipes. Munson, 

et al & (2012)  opined that mass balance guarantees 

that the flow is constant and free of unwanted 

impurities, while heat balance takes into account the 

thermal impacts of the pump station’s operation and 

any heat losses to the environment, and momentum 

balance must account for frictional losses and pressure 

drop along the pipe. Therefore, solving these coupled 

equations aids in system design optimisation, 

guaranteeing the most economical energy use, 

reducing infrastructure deterioration, and preserving 

water purity. (Linot, et al, 2022). 

 

In order to investigate these basic transport principles 

on the water flow through a horizontal pipeline from a 

pump station to a holding storage facility the system is 

modelled using the Navier-Stokes equations (Peter, & 

Bala, 2022). The relationship between the mass, heat, 

and momentum transfer mechanisms within the 

system and how it impacts the water transport 

network’s overall performance will be of interest 

(Prandtl, & Tietjens, 2013). So that by exploring the 

fluid dynamics in detail and looking at the underlying 

physical principles, the work could aim to provide 

insights into pipeline design optimisation, energy 

resource management, and water quality protection 

during transportation. The analysis presented in this 

paper will be useful to improve the efficiency and 

sustainability of water distribution networks, 

contributing to better practices in both the planning 

and operation of such infrastructure. (Romero-Gomez, 

2008).   

 

II. NAVIER STROKE EQUATION (NSE) 

 

The Navier-Stokes equation is one of the most crucial 

formulae in fluid mechanics. The equation refers to a 

collection of formulas that compute the unknown 

velocity components (x, y, z) and pressure (p) in fluid 

dynamics by combining the conservation of mass, 

momentum, and heat with body force, pressure force, 

and viscous force (Davidzon., 2017) (White, 2011). It 

is considered as the fluid mechanics equivalent of 

Newton’s well known second law of motion, these 

partial differential equations describe the flow of 

viscous fluids and are expressed as (Fefferman, 2000)  

(Bird et al., 2007): 

𝜌 (
𝜕𝑣

𝜕𝑡
 +  𝑣. 𝛻𝑣)  =  −𝛻𝑝 +  𝜇𝛻2𝑣 +  𝑓   

     1.1 

Where: 

ρ is the density of the fluid, 

V is the velocity field, 

P is the pressure, 
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μ is the dynamic viscosity, 

f represents external body forces (e.g., gravity), 

∇2 is the Laplacian operator, representing viscous 

dissipation. 

 

Two scientists, the Irish physicist and mathematician 

George Gabriel Stokes and the French engineer and 

physicist Claude Louis Navier developed the 

equations. Navier first proposed the equations 

integrating the idea of viscosity into fluid dynamics in 

1833, and Stokes improved upon them considerably 

later, in 1845. The equations take external forces and 

viscosity into consideration while modelling 

momentum conservation. Their use in horizontal pipe 

flow has attracted a lot of interest in the field of 

transport phenomena because of its usefulness in 

engineering flow systems (Dumitrescu. et al, 2023). 

 

2.1 FLOW REGIONS IN THE SOLUTION OF 

THE NAVIER-STOKES EQUATIONS 

Even though the Navier-Stokes equations (NSE) are 

essential to fluid mechanics because they explain how 

viscous fluids move, they are not always easy to solve 

because they rely on flow conditions, which differ 

greatly depending on variables like velocity, viscosity, 

density, and system size. The flow region, which is the 

classification of flow behaviour according to the 

relative importance of various forces (Reynolds 

Number) acting on the fluid, is defined by these 

criteria. Consequently, in order to solve the NSE and 

forecast the fluid’s behaviour, it is essential to 

comprehend and define the proper flow zone. 

 

In addition, the Navier-Stokes equations are generally 

solved by using certain boundary conditions that are 

suited to the specific flow regime (laminar, turbulent, 

or transitional) under study and other simplifying 

assumptions. The flow region aids in defining the 

precise form of the equations, and the approaches that 

would be taken to solve them, as well as the maximum 

degree of approximation that is possible 

(Subramanian, 2020). 

 

 

2.1.1 THE REYNOLDS NUMBER AND FLOW 

REGIONS 

In fluid dynamics, the Reynolds number (Re) is a 

dimensionless parameter that aids in the prediction of 

fluid flow patterns in diverse scenarios by evaluating 

the relationship between inertial and viscous forces 

(Bird et el, 2007). When operating at low Reynolds 

numbers, flows typically exhibit dominance of laminar 

(sheet-like) flow, while at elevated Reynolds numbers, 

flows tend to manifest turbulence. This turbulence 

arises from disparities in the velocity and trajectory of 

the fluid, which can occasionally intersect or even 

oppose the overall flow direction, generating eddy 

currents. 

 

The Reynolds number (Re) is defined as 

mathematically: 

Re =
ρUL

μ
    1.2 

Where: 

ρ is the fluid density, 

U is the characteristic velocity of the flow, 

L is the characteristic length (such as the pipe 

diameter), and 

μ is the dynamic viscosity of the fluid. 

 

The Reynolds number determines the relative 

importance of inertial forces (which are associated 

with fluid motion and momentum) to viscous forces 

(which resist flow and dampen motion) (Bird et el, 

2007). An examination of the Reynolds number 

determines which flow region applies to the system 

and thereby how to approach the solving of the Navier 

Stokes equations. 

 

2.1.2 FLOW REGIMES BASED ON 

REYNOLDS NUMBER 

1. Laminar Flow (Re < 2000): In the flow pattern, 

each fluid layer travels parallel to its neighbouring 

layers with little mixing or disturbance. It is 

defined by a smooth, ordered fluid layer motion. 

The flow is usually constant and predictable as the 

fluid particles follow clearly defined, straight 

trajectories. Laminar flow occurs at lower 

velocities, and is frequently found in micro-fluidic 

systems, with small diameter pipelines, and 

circumstances where the fluid has a high viscosity; 

solving the Navier-Stokes equations for laminar 

flow involves relatively simple techniques (Peter, 

& Bala, 2022). For example, the velocity 

distribution in laminar flow within a pipe exhibits 

a parabolic shape, and either analytical or 

numerical methodologies can be employed to 

ascertain solutions to the Navier-Stokes Equations 
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(NSE).  The nonlinear term v.∇v, representing the 

fluid's convective acceleration, diminishes in 

importance during the resolution of the NSE for 

laminar flow, as viscous forces prevail while 

inertial forces (linked to fluid velocity and 

acceleration) become negligible.  

2. Transitional Flow (2000 < Re < 4000): In this 

region, both laminar and turbulent flow 

characteristics are present here therefore the flow 

is less stable, with even little disturbances that can 

turn the flow into turbulence (Subramanian, 2020). 

Depending on variations or disturbances, the 

system in transitional flow can alternate between 

laminar and turbulent regimes because of these 

unstable situations there is the need for extra 

modelling to account for the development of 

turbulence, solving the NSE in this region can be a 

bit more challenging as the instability must be 

managed, therefore bifherefurcation theory or 

more intricate numerical simulations that can 

account for the fluid’s propensity to transition 

between flow modes may be used. 

3. Turbulent Flow (Reynolds Number > 4000):  At 

elevated Reynolds numbers, inertial forces 

predominate, leading to tumultuous, irregular fluid 

motion. Turbulent flow is characterized by 

disorderly, erratic fluid movement, featuring 

eddies and swirls that induce a complex mixing of 

the fluid. Within this realm, the flow displays high 

instability, with fluid particles traversing random, 

unpredictable paths, resulting in fluctuations in 

velocity and pressure. (Apostol, 2024). Turbulent 

flow is typically associated with high velocities, 

large pipe diameters, and low viscosity fluids. In 

this domain, directly solving the Navier-Stokes 

Equations (NSE) becomes a formidable task due to 

the intricate turbulence-induced non-linear 

interactions that are challenging to capture. To 

address turbulent flow, engineers often resort to 

turbulence models (e.g., k-ε models, Reynolds-

averaged Navier-Stokes (RANS) equations, or 

large eddy simulation (LES)), which offer 

approximations of the turbulent effects.  

 

2.2.1 BOUNDARY CONDITIONS AND FLOW 

REGIONS 

In many fluid flow problems, particularly those 

involving pipe flow or flow over surfaces, the presence 

of boundaries affects the fluid flow. The boundary 

layer is a thin region close to a solid surface where the 

fluid’s velocity changes from zero (because of the no-

slip condition at the surface) to the free-stream 

velocity (because the fluid is far from the surface). 

(Schlichting, & Gersten, 2016) In all fluid domains, 

the no-slip condition dictates that the fluid's velocity at 

solid boundaries is zero relative to the boundary 

surface. 

 

Symmetry or Free-Surface Conditions also impact 

boundary layers: In cases of laminar flow, boundary 

conditions may encompass symmetry (as seen in flow 

within a pipe, for instance) or prescribed velocity 

profiles. In turbulent flow scenarios, boundary 

conditions grow more intricate, particularly in 

proximity to walls where turbulence models must be 

employed to approximate the boundary layer's effects. 

(Sharma, et al 1968). 

 

Depending on the Reynolds number, the flow within 

the boundary layer can be either laminar or turbulent. 

The boundary layer is especially crucial for 

comprehending frictional losses, heat transfer, and 

mass transfer near surfaces. 

 

Fluid can also be classified according to how they 

respond to applied shear stress or strain rate, A 

Newtonian fluid’s rate of deformation in response to 

an applied force is exactly proportional to the force. 

Under normal circumstances, water and the majority 

of gases behave as Newtonian fluids. Thus, water 

provides a classical example of where the application 

of the NSE would serve as the basis for getting the 

interaction for the solutions of the momentum heat and 

mass balances for Newtonian fluid flow in a horizontal 

pipe flow.  

 

Furthermore, fluids can also be categorized based on 

their density variations during flow as either 

incompressible or compressible. Incompressible flow 

pertains to the movement where the density of the fluid 

remains consistent throughout the process. This 

assumption holds true for most liquids, such as water, 

where alterations in density are minimal. 

On the hand, compressible flow, involves the 

movement where the fluid density undergoes 

significant changes, as seen in gases or when fluids 

travel at exceedingly high speeds (approaching or 

surpassing the speed of sound). Within compressible 
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flow, deviations in pressure and temperature can lead 

to notable density fluctuations, necessitating the 

utilization of specialized equations (like the Euler 

equations or Navier-Stokes equations for compressible 

fluids) to accurately depict the flow characteristics 

(Bird et el, 2007). 

 

The Navier-Stokes equations (NSE) delineate the 

motion of viscous fluids and serve as the cornerstone 

of fluid mechanics. Nevertheless, the manner in which 

these equations are resolved differs considerably for 

incompressible and compressible fluids due to the 

distinct assumptions concerning the fluid's density. 

This differentiation impacts both the mathematical 

formulation and the approach to finding a solution 

(Bird et el, 2007). 

 

The fundamental distinctions in solving for 

Incompressible and Compressible Fluids are as 

follows: 

1. Density: In the realm of incompressible fluids, 

density remains constant, thereby simplifying the 

equations. Conversely, in the domain of 

compressible fluids, density is a variable that 

necessitates determination, exerting influence on 

other properties such as pressure and temperature. 

2. Energy Equation: In the context of incompressible 

flow quandaries, the energy equation is typically 

deemed unnecessary, given the assumption of 

negligible temperature fluctuations. On the 

contrary, addressing compressible flow demands 

the resolution of an energy equation, given the 

significant alterations in temperature and internal 

energy. 

3. Equations of State: The resolution of compressible 

fluid predicaments often mandates the utilization 

of an equation of state to establish the interrelation 

among pressure, density, and temperature, while 

incompressible fluids typically obviate this 

necessity. 

4. Boundary Conditions: Analyses of incompressible 

flow commonly transpire under steady-state 

circumstances with uncomplicated boundary 

conditions, whereas compressible flow scenarios 

can entail intricate boundary conditions due to 

fluctuations in density and pressure, such as 

supersonic flows or shock waves. 

 

Furthermore, time-dependence of the fluid's motion 

flow can also be used to classify flows as steady or 

unsteady flow: 

In steady flow conditions the fluid properties at any 

given point (such as velocity, pressure, and density) do 

not change over time. The flow remains constant at 

each point in the system. The governing NSE for 

steady, incompressible flow in a pipe corresponds to 

equation 1.1 

 

The time derivative term in that equation (
𝜕𝑣

𝜕𝑡
) vanishes, 

and the equation become simplified. For pipe flow, it 

reduces further based on the symmetry of the system 

(Peter and Bala, 2022). For example, in laminar flow 

through a circular pipe, the velocity distribution is 

parabolic (Hagen Poiseuille law), and the pressure 

drop ΔP can be expressed as: 

𝛥𝑃 =
8𝜇𝐿𝑄

𝜋𝑅4     1.3 

 

Where: 

L is the length of the pipe, 

Q is the volumetric flow rate, 

R is the radius of the pipe. 

In this scenario, the flow remains steady over time, and 

the velocity profile depends on the pressure drop and 

the fluid’s viscosity. The solution of the NSE under 

these conditions provides insights into flow 

characteristics like velocity distribution and pressure 

losses due to viscous effects. 

 

In contrast, unsteady flow refers to flow conditions 

where the fluid properties at a given point change with 

time. This could occur due to fluctuating flow rates, 

varying boundary conditions, or transient phenomena 

such as pulsating flow in pipes or flow past an object 

with time-varying conditions. 

 

The solution to this flow pattern depends heavily on 

the initial and boundary conditions, the flow rate, and 

external forces. In real-world cases, unsteady flow is 

commonly observed during the startup of a pump or 

sudden changes in the demand for water. For instance, 

during pump operation, pressure fluctuations and 

velocity variations occur as the system adjusts to the 

desired flow rate. Therefore, the unsteady Navier-

Stokes equations help model the transient behavior of 

the system, including the time it takes for the system 

to reach a steady state Numerical methods are used to 
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simulate how pressure and velocity evolve during the 

transition from unsteady to steady conditions (Peter 

and Bala, 2020). In the context of water transport from 

a pump station to a storage tank, both steady and 

unsteady flow scenarios can occur. 

 

In general, Peter and Bala (2020) contend that the 

solutions of the NSE are based on simplifying 

assumptions such as incompressibility or not, steady-

state or unsteady state flow, and no-slip boundary 

conditions at the pipe walls. Although these analytical 

solutions are only applicable to hypothetical scenarios, 

they establish essential benchmarks for numerical and 

experimental validation. Numerical methods are often 

necessary due to the inherent non-linearity and 

intricacy of the Navier-Stokes equations (NSE), 

especially in turbulent and transitional regimes. These 

equations are commonly tackled using finite element 

techniques (FEM), finite volume methods (FVM), and 

finite difference methods (FDM).  

 

Recent advancements include mass-conservative and 

monotonicity-preserving finite element solvers that 

enhance simulation accuracy and stability at high 

Reynolds numbers. Characteristic-based FEM has 

shown promise in resolving incompressible NSE and 

three-dimensional transport on unstructured grids, as 

indicated by computer studies. 

 

III. MATHEMATICAL FORMULATION FOR 

LAMINAR FLOWS DRIVEN BY 

 PRESSURE GRADIENT 

 

  

 
Figure 1 Laminar Flow in a Pipe. 

 

The fig 1 above illustrate the motion of fluid 

substances in a horizontal pipe the motion of which 

can be described by the Navier-Stokes equations 

(NSE).  (Fefferman, 2000) (Bird et al., 2007): 

 

The NSE for an incompressible fluid are derived from 

the principles of conservation of mass and momentum 

(White, 2011) For an incompressible fluid, the 

equations in vector form are in the form of equation 

1.1 below; 

𝜌 (
𝜕𝑣

𝜕𝑡
 +  𝑣. 𝛻𝑣)  =  −𝛻𝑝 +  𝜇𝛻2𝑣 +  𝑓 1.1 

where: 

𝝆 is the fluid density (kg/m3) 

𝒗 is the velocity vector (m/s) 

𝒑 is the pressure (N/m2) 

 𝜇 is the dynamic viscosity (Ns/m2) 

𝑓 are the body forces per unit volume (e.g., gravity). 

(m/s) 

 

For steady-state flow (no time dependence) and 

assuming the flow is driven by pressure gradients and 

viscous forces, the equation simplifies to: 

𝜌(𝑣. 𝛻𝑣)  =  −𝛻𝑝 +  𝜇𝛻2𝒗  1.4 

The continuity equation for an incompressible fluid 

ensures mass conservation is given by (Bird et el, 

2007): 

𝛻. 𝑣 =  0      1.5 

This equation states that the divergence of the velocity 

field is zero, meaning the fluid density remains 

constant over time. 

 

3.1 APPLICATION TO HORIZONTAL PIPE FLOW 

Typically, in a horizontal pipe, the considerations are 

the cylindrical coordinates (𝖗, 𝛉, 𝐳), where r is the 

radial distance, 𝛉 is the angular position, and z is the 

axial direction along the pipe. (Prandtl, & Tietjens, 

2013). For simplicity, it is assumed that the fluid is 
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incompressible and flow is symmetric and fully 

developed, meaning the velocity field depends only on 

the radial position r and the axial component 𝒗𝒛. 

 

In the use of Navier-Stokes equations to solve for flow 

in a pipe, the boundary conditions for the system must 

be estimated. The Navier-Stokes equations in 

cylindrical coordinates will reduce to a form that 

describes the radial velocity gradient and the pressure 

gradient driving the flow as shown equation 1.6 for the 

axial component 𝑣𝑧 in a horizontal pipe: (Panton, 

2013) and (White, 2016). 

 

Based on assumptions: 

1. No radial or angular velocity components: 𝑣𝑟 = 0,

𝑣𝜃 = 0 

2. Steady flow: 
𝜕𝑣𝑧

𝜕𝑡
= 0 

3. Fully developed flow: 
𝜕𝑣𝑧

𝜕𝑧
= 0 

4. Axisymmetric flow: No dependence on 𝜃. 

5. Driving force: A constant pressure gradient along 

𝑧, denoted as −
𝜕𝑃

𝜕𝑧
. 

 

Therefore, Navier-Stokes equation for 𝒗𝒛 simplifies 

to; 

𝝁 (
𝟏

𝒓
 

𝝏

𝝏𝒓
(𝒓

𝝏𝒗𝒛

𝝏𝒓
 ))  =  

𝝏𝑷

𝝏𝒛
    

 1.6  

The Boundary Conditions are applied to solve this 

equation, the following boundary conditions are 

applied (Schlichting, & Gersten, 2016): 

1. No-slip condition at the pipe wall. The fluid 

velocity at the pipe wall is zero. 

         𝒗𝒛(𝒓 = 𝑹) = 𝟎   1.7 

2. Symmetry condition at the pipe centerline: The 

derivative of the velocity with respect to r at the 

centerline is zero. 

        
𝝏𝒗𝒛

𝝏𝒓
∣r=0 = 𝟎   1.8 

Velocity Profile: For laminar flow, the velocity profile 

𝑣𝑧(𝑟) can be obtained by integrating the simplified 

Navier-Stokes equation twice. (Bird et el, 2007) The 

solution is a parabolic velocity profile; 

 𝑣𝑧(𝑟)  =  
∆𝑃

4𝜇𝐿
(𝑅2−𝑟2)   1.9 

Where; 

∆𝑃 = The pressure-drop across a pipe segment of 

length L (m) 

R = The pipe radius (m) 

This profile indicates that the maximum velocity 

occurs at the center of the pipe and decreases to zero 

at the pipe walls (Schlichting, & Gersten, 2016). 

Flowrate At Laminar Flow 

𝑄 =
𝜋∆𝑃𝑅4

8𝜇𝐿
       1.10                    

This expression highlights the strong dependence of 

flow rate on pipe radius (𝑅4), emphasizing the 

significant impact of small changes in diameter. 

 

3.2 HEAT AND MASS TRANSFER 

CONSIDERATIONS 

3.2.1 Heat Transfer 

In addition to momentum transfer, heat transfer may 

occur due to temperature gradients between the fluid 

and the surroundings. The energy equation governing 

heat transfer in the fluid is given by the equation 1.11 

(Kays & Crawford 1993): 

𝛒𝐂𝐩(
𝜹𝑻

𝜹𝒕
+  𝐯. 𝛁𝐓)  =  𝐤𝛁2𝐓 1.11 

Where: 

Cp is the specific heat capacity (J/KgK) 

T is the temperature (K) 

k is the thermal conductivity (W/mK) 

Likewise, for steady-state conditions and assuming 

negligible heat generation, the equation simplifies to 

equation 3.9 (Kays & Crawford 1993): 

       v. ∇T =  
𝑘

ρCp
∇2T   1.12 

3.2.1 Mass Transfer 

The continuity equation for mass transfer in an 

incompressible fluid ensures that the mass flow rate 

remains constant along the pipe (Kays & Crawford 

1993) and (Bird et el, 2007).  

𝛻. 𝑣 =  0                    

3.11 

This equation is crucial for maintaining the 

consistency of the fluid flow and ensuring that the 

volumetric flow rate is conserved. 

 

The mathematical formulation of the Navier-Stokes 

equations, along with the continuity and energy 

equations, provides a comprehensive framework for 

analyzing water flow in horizontal pipes. By 

understanding the velocity profile, pressure 

distribution, and heat and mass transfer processes, 

engineers can design more efficient and effective 

piping systems. 
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IV. GRAPHICAL ILLUSTRATIONS 

 

The graphical illustrations serve as a bridge between 

theory and real-world application. By using properties 

of Water from the Heat and Mass transfer book for 

parameters like pressure gradient (G), dynamic 

viscosity (μ), and pipe radius (R), the graphs provide a 

visual understanding of: 

1. The parabolic velocity profile. 

2. The exponential sensitivity of flow rate to radius. 

 

These visualizations are tailored to highlight the 

intricate dependencies within the system, offering a 

robust foundation for practical engineering design and 

analysis. 

 

To solve for a laminar flow system with momentum, 

heat, and mass transfer, we assume steady state, fully 

developed flow in a cylindrical pipe.  

 

4.1 PARABOLIC VELOCITY PROFILE 

(LAMINAR FLOW IN A PIPE) 

The parabolic velocity profile in a pipe is derived from 

the balance of forces acting on the fluid. These forces 

include the driving pressure gradient, which propels 

the fluid forward, and the viscous forces, which resist 

motion and are responsible for the characteristic 

velocity distribution. In the velocity profile for laminar 

flow in a horizontal pipe, the velocity is maximum at 

the centerline and decreases to zero at the pipe wall 

due to the no-slip condition. This condition, combined 

with the maximum velocity at the center of the pipe, 

creates the parabolic shape of the profile. 

 

This framework connects momentum, heat, and mass 

transfer, optimizing pipeline performance 

mathematically. 

 

Let's assign values to solve the problem step by step. 

• Pipe radius: R = 0.05 m 

• Pipe length: L =10 m  

• Pressure gradient: 
𝝏𝒑

𝝏𝒛
 = −100 Pa/m 

• Dynamic viscosity: μ = 0.001 Pa.s 

• Thermal conductivity: k = 0.6 W/m.K  

• Wall temperature: Tw = 350 K 

• Fluid specific heat: cp = 4186 J/kgK 

• Fluid density: ρ =1000 kg/m3 

• Diffusion coefficient: D = 1×10−9 m2/s  

• Wall concentration: Cw =1 mol/m3 

• Wall heat flux: q′′ = 500 W/m2 

• Wall mass flux: N=0.01 mol/m2/s 

 

Step 1: Understand the Velocity Equation 

For laminar flow in a pipe, the velocity profile is given 

by: 

𝑣𝑧(𝑟) =
1

4𝜇
(−

𝜕𝑝

𝜕𝑧
)(𝑅2 − 𝑟2) 

• 𝑣𝑧(𝑟): Velocity at a radial distance 𝑟. 

• 𝝁: Dynamic viscosity (0.001 Pa\cdotps for water). 

• 
𝝏𝒑

𝝏𝒛
: Pressure gradient (−100 Pa/m). 

• 𝑹: Pipe radius (0.05 m). 

• 𝑟: Radial distance from the centerline (0 ≤ 𝑟 ≤

𝑅). 

 

Step 2: Define Input Values 

• Use assumed values: 

𝑅 = 0.05𝑚, 𝜇 =
0.001𝑃𝑎

𝑐𝑑𝑜𝑡𝑝𝑠
,

𝜕𝑝

𝜕𝑧
= −

100𝑃𝑎

𝑚
. 

• Define a range of 𝑟 values from 0 (center) to 𝑅 

(pipe wall). 

 

Step 3: Compute Velocity for Each 𝑟 

For each 𝒓 value: 

1. Substitute 𝒓, 𝑹, 𝝁, and 
𝝏𝒑

𝝏𝒛
 into the equation. 

2. Calculate 𝒗𝒛(𝒓) 

 

For example: 

• At 𝒓 = 𝟎 (centerline): 

𝑣𝑧(0) =
1

4×0.001
(100)(0.052 − 02) =

3.125𝑚/𝑠  

• At 𝑟 = 𝑅 = 0.05 (pipe wall):  

𝑣𝑧(0.05) =
1

4×0.001
(100)(0.052 − 0.052) =

0𝑚/𝑠  

 

Step 4: Create a Range of 𝑟 Values and Tabulate  

Let us consider water flowing through a horizontal 

cylindrical pipe with arbitrary data points of radial 

distance, 𝑅(𝑚). Use six equally spaced points between 

0 and 𝑅 to ensure smooth plotting (0.00, 0.01, 0.02, 

0.03, 0.04, and 0.05). 

 

• At 𝑟 = 0.00, 
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𝒗𝒛(𝟎) =
𝟏

𝟒×𝟎.𝟎𝟎𝟏
(𝟏𝟎𝟎)(𝟎. 𝟎𝟓𝟐 − 𝟎𝟐) = 𝟔𝟐. 𝟓𝒎/𝒔  

• At 𝑟 = 0.01, 

𝑣𝑧(0.01) =
1

4×0.001
(100)(0.052 − 0.012) = 60.0𝑚/

𝑠  

• At 𝒓 = 0.02, 

𝑣𝑧(0.02) =
1

4×0.001
(100)(0.052 − 0.022) = 52.5𝑚/

𝑠  

• At 𝑟 = 0.03, 

𝑣𝑧(0.03) =
1

4×0.001
(100)(0.052 − 0.032) = 40.0𝑚/

𝑠  

• At 𝑟 = 0.04, 

𝒗𝒛(𝟎. 𝟎𝟒) =
𝟏

𝟒×𝟎.𝟎𝟎𝟏
(𝟏𝟎𝟎)(𝟎. 𝟎𝟓𝟐 − 𝟎. 𝟎𝟒𝟐) =

𝟐𝟐. 𝟓𝒎/𝒔  

• At 𝒓 = 0.05, 

𝒗𝒛(𝟎. 𝟎𝟓) =
𝟏

𝟒×𝟎.𝟎𝟎𝟏
(𝟏𝟎𝟎)(𝟎. 𝟎𝟓𝟐 − 𝟎. 𝟎𝟓𝟐) =

𝟎. 𝟎𝒎/𝒔  

 

Table 1 Showing the velocity at various points in the 

pipeline. 

𝑟(𝑚) 𝑣𝑧(𝑚/𝑠) 

0.00 62.50 

0.01 60.00 

0.02 52.50 

0.03 40.00 

0.04 22.50 

0.05 0.00 

 

Step 5: Plot the Results 

• Use 𝒓 values on the x-axis (radial distance). 

• Use 𝒗𝒛(𝒓) values on the y-axis (velocity). 

 

 
Figure 2 Velocity Profile (Laminar Flow in a Pipe). 

 

 

4.2 EXPONENTIAL SENSITIVITY OF 

FLOWRATE TO RADIUS 

The graphical illustration of volumetric flow rate as a 

function of pipe radius offers a comprehensive 

visualization of how flow rate scales with the size of 

the pipe under laminar flow conditions. This 

relationship, derived from the Hagen-Poiseuille 

equation, emphasizes the strong dependence of flow 

rate on the fourth power of the pipe radius, making it 

a critical factor in fluid transport systems. Plotting this 

graph provides valuable insights into the efficiency of 

fluid delivery, highlighting how small changes in pipe 

diameter can result in significant variations in flow 

rate, thus aiding in the design and optimization of 

piping systems. 

 

Consider a horizontal cylindrical pipe with arbitrary 

data points of Pipe Radius 𝑅(𝑚), the corresponding 

values of the volumetric flowrate, 𝑄𝑧 from Equation 

3.8 are given in the table below: 

𝑅(𝑚) 0.010 0.015 0.020 0.025 0.030 

𝑄𝑧(𝑚3

/𝑠) 

0.000 0.000 0.001 0.003 0.006 

 

Therefore,  graph below shows;  

 

 
Figure 1 Volumetric Flow Rate as a Function of Pipe 

Radius. 

 

The curve is steep and nonlinear, showcasing the 𝑅4 

dependence. For a fixed pressure gradient and fluid 

viscosity, the flow rate increases exponentially as the 

pipe radius increases. 

 

4.3 OBSERVATIONS: 

1. Non-linear Growth: The relationship between flow 

rate and radius is not proportional but follows a 

fourth-power dependency. This results in rapid 
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growth in flow rate for even modest increases in 

radius. 

2. Dominance of Radius: Among all parameters in 

the Hagen-Poiseuille equation, the radius has the 

most pronounced effect on 𝑄. Changes in other 

parameters, such as viscosity or pressure gradient, 

affect 𝑄 linearly or inversely, but the exponential 

sensitivity to 𝑅 is unparalleled. 

3. Zero Flow at Zero Radius: At 𝑅 = 0, the flow rate 

naturally becomes zero, aligning with the physical 

reality of no flow in a completely closed or 

nonexistent pipe. 

 

The graph is essential for designing water distribution 

networks, oil pipelines, and chemical process systems. 

It informs decisions on pipe diameter for achieving 

desired flow rates under specific operating conditions. 
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