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Abstract- On a general level, it is critical but rather 

complex to handle distributed transactions in 

microservices architectures nowadays is one of the 

core concerns in modern software engineering. This 

paper looks at the concepts, techniques, and 

paradigms that underpin the modern best practices 

in achieving transactional behavior in distributed 

systems, and also how they apply to the complexities 

of microservices architecture. It gives a brief 

comparison of the ACID vs BASE models of 

transaction processing and examines how those 

paradigms affect system design. Common used 

protocols raised here include Two-Phase Commit 

(2PC) and the Saga Pattern; their benefits and 

drawbacks are introduced besides with how to apply 

them. Continuing the evaluation of the CAP theorem 

pointed out in the article, the author examines the 

importance of consistency, availability, and partition 

tolerance for distributed architectures. Filled with 

real-world case studies, practical tips, and 

approximations, it provides developers and system 

architects with the proven approaches to designing 

maintainable, scalable, and efficient systems that do 

not corrupt data in large distributed microservices 

architectures. 
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I. INTRODUCTION 

 

There is no denying that a microservice as a structure 

for the construction of modern software systems has 

become the leading approach for the creation of 

applications with predictable scalability, high 

availability, and increased adaptability. Due to the 

decomposition of large systems into simpler 

components as well as maintaining independently 

deployable components, microservices have several 

benefits over more centralised monolithic models. The 

perceived benefits include more easily achieved 

scalability, better isolation of failures and the 

possibility to comprise different parts of the system 

with different technologies. Nevertheless, the 

transition from a monolithic architecture to a 

microservices system brings new issues into the 

picture – most notable, how to handle transactions 

which cross several microservices? 

 

By definition, in a monolithic system, transactions 

occur in a single database and hence management of 

data consistency, reliability and atomicity based on the 

ACID principles is not complex. On the other hand, 

microservices deploy functionality to several isolated 

services, and every service possesses its database, 

APIs, and business logic. This architectural 

decentralization creates a fundamental challenge: how 

to provide the common interface across multiple 

services while tackling how to manage simultaneous 

transaction processing, quality consistency, and fault-

tolerant mechanisms at the same time. 

 

Let us consider an e-commerce website they are 

companies selling products online. During an order, 

the inventory management service must check 

whether the product is in stock, the payment gateway 

must complete the payment securely, and the shipping 

service must confirm the product’s availability for 

shipping. These operations are connected seamlessly, 

while taking place in different services. In case any of 

the actions is unsuccessful, for instance, a payment 

was declined, or there was no inventory to meet the 

demand – reversing or making adjustments to the 

given move is problematic.  
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These concerns are managed by Distributed 

transaction management through the use of suitable 

methods and patterns of work flow control that are 

applied on services. Standard ACID properties are 

antic to some extent applicable in centralised 

environment however they face problems in 

distributed solution for their impact on availability and 

system throughput. Instead, flexibility models and 

new application patterns like the eventually consistent 

systems, the Two-Phase Commit (2PC) and the Saga 

Pattern. 

 

Fundamentals of Distributed Transactions 

Transaction management for distributed transactions 

is usually important especially in the present day 

microservices architecture where operations may cut 

across different nodes or services. These transactions 

must be managed co-ordinated to meet the principles 

of atomicity, consistency, isolation and durability 

(ACID) that are fundamental traditionally used to 

maintain data integrity in monolithic systems. 

However, with microservices comes the challenges of 

distribution, and so, perfect adherence to the ACID 

form of transaction management is not feasible. To 

overcome such limitations distributed systems 

principles like BASE: Basically Available, Soft state, 

Eventually consistency (Brewer, 2000) are. This 

change in fundamental thinking makes it easier to 

achieve scalability and maintain the functionality 

during network partitions or failures as opposed to 

adhering to database traditional strong consistency. 

 

Main Issues in Distributed Transactions 

 

Network Partitioning: 

Any programs executed in a distributed fashion can, 

unfortunately, fail due to the nature of distributed 

computing – networks fail and nodes or services may 

become disconnected permanently or temporarily. 

Such partitions lead to disconnection, and affects 

transaction co-ordination and synchronization across 

nodes. For example, a node that drops out of a 

distributed transaction may cause data inorganism if it 

is not recovered (Kumar et al., 2018). 

 

Latency: 

Interaction between the services that exist at different 

geographical locations causes delays within the 

system, and this affects its general performance. The 

higher response times slow down the transaction rates 

and thus affect user experience particularly in cases 

where near real-time update is required (Patel & 

Sharma, 2017). Reducing the response time while 

keeping it efficient has always been an issue. 

 

Fault Tolerance: 

It is a challenging job to guarantee data consistency 

when the node or service in consideration has failed. 

Retries, compensating transactions, and distributed 

consensus algorithms are necessary procedures but 

they are costly and vulnerably prone to errors. For 

example, a problem with one of the services 

interdependent on others in a complex transaction 

means that subsequent services have to ‘roll back’, or 

run again, to return to a correct state (Anderson et al., 

2016). 

 

The following table summarizes these challenges and 

the corresponding strategies to address them: 

Challenge Description 
 

Mitigation 

Strategies 
 

Network 

Partitioning 
Loss of connectivity 

between nodes 

disrupts transaction 

consistency. 
 

Adoption of BASE 

principles, use of 

quorum-based 

protocols, and fallback 

mechanisms to handle 

partitions. 
 

Latency Delays in 

communication 

across services impact 

transaction 

performance. 
 

Optimizing network 

communication, 

asynchronous 

processing, and local 

caching for critical 

operations. 
 

Fault 

Tolerance 
 

Handling service or 

node failures without 

losing data 

consistency. 
 

Implementing 

compensating 

transactions, retries, and 

consensus mechanisms 

like Paxos or Raft. 

 

 

BASE in Distributed Transactions 

BASE principles are an asynchronous equivalent of 

the issues with ACID that are not suitable for 

distributed systems since BASE uses eventual 

consistency. Like Paxos, BASE systems provide a 



© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880 

IRE 1706735          ICONIC RESEARCH AND ENGINEERING JOURNALS 706 

guarantee that, after all updates the system is 

consistent, instead of the guarantee that they are 

always consistent. This approach enables distributed 

systems to acquire higher availability as well as fault 

tolerance, though at the same time ensuring scalability. 

For instance, BASE principles are used in e-commerce 

situations where high transaction rates are processed 

while users have great interaction experience 

(Stonebraker, 2010). 

 

The CAP Theorem and Its Implications 

The CAP theorem, proposed by Eric Brewer in 2000, 

is a fundamental concept in distributed systems that 

asserts that it is impossible for a distributed system to 

simultaneously guarantee all three of the following 

properties: 

 

Consistency (C): Read operations from the system will 

always get the most up to date writing from the system. 

This means that all nodes in for a system have access 

to the data at the same time. 

 

Availability (A): At the end of the transaction in read 

or write form, every call will be acknowledged either 

a success or failure without the consensus of data 

nodes. 

 

Partition Tolerance (P): Since the system must run 

properly even when the network is split or nodes are 

failure, the system will be able to handle requests 

during such situations. 

 

By the CAP theorem, distributed systems can only 

provide at most two of these three characteristics 

concurrently. This basically implies that for any 

specific distributed system at your disposal, you need 

to make compromises based on the needs you have at 

that particular instance. Characteristic scenarios occur 

in further development of microservices architectures 

where a transaction involves several services and 

nodes. 

 

CAP in context of microservice 

Partition tolerance in microservices is always a 

constraint because the services are distributed across 

the node, or data center and the network is not perfect; 

it fails. Therefore, the microservices architectures 

generally choose availability and partition tolerance 

high while consistency is usually weak. In practice, 

this means that systems may tolerate at some level of 

inconsistency—updates to the state effected by one 

service may propagate through the other services and 

become consistent over time, but not necessarily when 

the operation is invoked (Pat Helland, 2007). 

 

In some such architectures, there will be use of 

message brokers or other intermediary systems to 

handle failures and sequence issues with getting events 

processed as expected. Such message brokers are used 

to keep messages that cannot be processed at the 

moment due to the system partitioning so that the 

system can come back to life with as high of an 

availability as possible. This pattern known as the 

“eventual consistency” is characteristic of the systems 

where availability and tolerance to the fault are the key 

values, but strict consistency is not as significant (Pat 

Helland, 2007). 

 

It is possible to illustrate the consistency, availability, 

and partition tolerance triangle in this diagram below: 

The three properties are the vertices of triangle and the 

system has be at one of the points or on the boundary 

of the line between two vertices, which means trade-

off. 

 
 

CP (Consistency and Partition Tolerance): 

Configurations that can maintain consistent 

‘projections’ in the face of network partition ability 

but which might be less available during the recovery 

process. 
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CA (Consistency and Availability): Stable and highly 

available consistency and availability systems that 

could not suit the network partitions. 

 

AP (Availability and Partition Tolerance): Those 

systems where upper priority has been given to 

availability over partition tolerance and that so use 

techniques of soft-state or eventuality along with 

consistency. 

 

Real World Application and Take Up 

In big web applications like e-shopping sites, online 

video streaming or social service sites, availability and 

partition tolerance are much more important to retain 

the site’s normal functionality in case of network split 

or congestion. For instance, Netflix’s Cassandra and 

Ama-azon’s DynamoDB make temporary quorum 

hints—that do not guarantee im-mediate consistency 

across ser-vices—by allowing services to operate 

based on eventually-consistent data (Brewer, 2000; 

Stonebraker, 2010). 

 

Nevertheless, were eventual consistency adopted, this 

by no means implies that consistency is completely 

overlooked. Instead, it means that the system can 

tolerate such inconsistency, for it expects the data to 

harmonize in the future. This trade-off is good 

especially when the critical sections can endure a few 

synchronization points slightly off in terms of time or 

systems that are expected to work with eventual 

consistency and methods such as idempotence or 

conflict resolver (last writer wins) (Kumar et al., 

2018). 

 

Approaches to Distributed Transaction Management 

Two-Phase Commit (2PC) 

The Two-Phase Commit (2PC) protocol ensures 

atomicity in distributed transactions with two phases: 

Prepare Phase: In order to gain confirmation from all 

services the coordinator proceeds to make the request. 

If any of the services receive a one or a zero, the whole 

transaction is nullified. 

 

Commit Phase: All the services receive and if all agree 

then coordinator sends a “commit” message to 

complete the transaction. The moment that any service 

is failed it turns back. 

The major downside with 2PC concerning scalability 

and fault tolerance, is that it guarantees consistency at 

the price of these disadvantages. 

Drawback Impact 

High Latency Delays due to multiple 

communication round-

trips. 
 

Blocking 

Resources 
 

Services lock resources, 

causing potential delays. 
 

Single Point 

of Failure 
 

Coordinator failure 

jeopardizes the entire 

transaction. 
 

Lack of Fault 

Tolerance 
 

Service failures require 

aborting the transaction. 

 

 

II. APPLICABILITY IN MICROSERVICE 

 

However, the latency, blocking and fault tolerance 

limitations make 2PC ineffective in scalable, highly 

available microservices architecture. Other 

approaches such as the Saga Pattern or the models like 

eventual consistency are more appropriate in large 

systems (Gray, 1978). Nevertheless, 2PC could still be 

useful inside small, simple environments without 

extremely strict requirements to consistency. 

 

Saga Pattern 

Saga Pattern can be used to facilitate a solution to 

distributed transactions through the splitting of each of 

them into a number of sub-transactions that can be 

compensated using another sub-transaction in the case 

of its failure. This pattern is here aimed help the further 

maintenance of eventual consistency and system 

robustness as it is guaranteed that the consistency of 

the totality of an overall system remains guaranteed in 

case sub-transactions fail. 

 

Sagas can be implemented through two main 

approaches: 

Orchestration: In this model there is a co-ordinator 

responsible for monitoring the flow of transactions, 

the performance of the sub transactions and initiation 

of the compensation transaction in the event of a sub 

transaction failure. The coordinator also makes sure 
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that the transaction includes steps for the state, as well 

as maintaining coherent service states. 

 

Choreography: However, the choreography model 

relates to each service independently controlling its 

sub-transaction. Events occur between services and 

there is no gathering place where the interactions are 

managed from. However, each service waits for an 

event and performs the sub-transaction for the service 

and compels for compensations if necessary. 

 

Although the Saga Pattern gives a system the ability to 

protect against failure and achieve eventual 

consistency, it is best used when carefully designed, 

for example, when addressing issues of cascading 

failures, the problem of compensating transactions, 

and idempotence, a condition where executing the 

same operation twice results in no change (Garcia-

Molina & Salem, 1987). 

 

 
Key Steps: 

Service A (Start Action): 

The first service triggers an exchange by conducting 

its function. If it succeeds, it commits. If it does not 

work out as intended, another corrective action takes 

place to revert the changes of this service. 

 

Service B (Intermediate Action): 

So if Service A commits successfully Service B does 

its function. In this regard upon success it commits and 

passes forward the success. In this case it has a 

compensating mechanism that initiates an action to 

reverse the operation of the failure. 

 

Service C (Intermediate Action): 

Service C works like Service B it executes its role in 

the transaction. If it works then it stakes, if not, then it 

reverses its operations if there was a failure. 

 

Service D (End Action): 

Service D is the finishing service in the transaction. It 

either records the final outcome or, if there was a 

problem, initiates a compensating action that cancels 

its changes while also reversing all subsequent ones. 

The moment any service strikes a failure point, a 

failure event is initiated and the corresponding 

compensating actions are performed in a backward 

cascade beginning from Service D and ending at 

Service A. 

 

Saga Pattern Characteristics: 

Orchestration vs. Choreography: 

Orchestration: One service delivers all the methods of 

a transaction (e.g., Service A contains all the methods 

for performing the transaction). 

Choreography: Only the instruction of leinProcess 

Developer and leinDrives will vary, while each service 

bases its actions on event and is aware when to start or 

undo its part. 

 

This diagram demonstrates how the Saga Pattern can 

handle multiple, distributed transactions that wouldn’t 

behave predictably; it makes sure that everything is 

consistent eventually, even if there are failures across 

several services. 

 

Event-Driven Transactions 

In event-driven architectures, services communicate 

asynchronously using message brokers like RabbitMQ 

or Kafka. Events trigger downstream processes, 

decoupling services and enhancing fault tolerance. 

However, this approach necessitates robust 

mechanisms for ensuring message delivery and 

handling duplicates (Kleppmann, 2017). 

 

Tools and Technologies used in Supporting 

Transaction Management 

The management of transactions in current large-scale 

systems involves numerous solutions that can cope 

with emerging challenges based on consistency, fault 

tolerance, and scalability in microservices 

environments. 

 

1. Distributed Databases 

Distributed database is basic in addressing data 

distribution aspect with multiple services in 

microservices architectures with focus on data 

coherence and access. 

 

NoSQL Databases: Cassandra and MongoDB are 

examples of databases with eventual consistency, that 

means they are highly available and horizontally 

scalable. These databases employ the BASE model as 
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consistency is traded for availability and partition 

tolerance These databases are suitable for distributed 

systems that require scalability Coulouris et al., 2012, 

Pritchett 2008). 

 

Cassandra: Originally implemented with no single 

point of failure and thus being distributed, Cassandra 

has configurable consistency levels offering a 

compromise between strong and eventuality 

consistency (Lakshman & Malik, 2010). 

 

MongoDB: MongoDB supports multi-document 

transactions, which means atomicity in collections, 

something important for the microservices that cross 

services and databases (Chodorow, 2013). 

 

 Comparison of Distributed Databases 

Feature 
 

Cassandra MongoDB 

Consistency 

Model 
 

Eventual 

Consistency 
 

Strong consistency 

with tunable levels 
 

Scaling Horizontal, 

distributed scaling 
 

Horizontal 

scaling 
 

Transaction 

Support 
 

 

Limited (ACID 

support in 2.0) 
 

Multi-document 

ACID transactions 
 

 

2. Message Brokers 

Asynchronous communication refers to services that 

need to be included in distributed transactions in 

event-driven system and this is handled through 

message brokers. 

 

Kafka: Apache Kafka is a distributed streaming 

platform that guarantees the ability of high throughput 

and fault tolerance. It also defines the modeled event-

driven architecture by enabling services to publish and 

consume messages in an asynchronous fashion 

because it is important to implement the eventual 

consistency and Sagas (Kreps et al., 2011). 

 

RabbitMQ: Another type of messaging is request-

response, which is supported by RabbitMQ; besides, 

guarantee is given to delivery a message no matter the 

failures. It is useful for compensating transactions in 

such patterns as the Saga Pattern, as every service can 

respond to the situation and carry out the needed 

transactions (Sacks, 2013). 

 

3. Orchestration Tools 

Transaction management and application of the proper 

orchestration workflow guarantee reliable and 

consistent services with the possibility to recover from 

several failures. 

 

Kubernetes: Kubernetes announced and schedule 

containerized microservices deploying, scaling and 

failure handling. IT has a particularly important 

function in achieving high availability and handling 

transactions in distributed systems (Hightower et al., 

2017). 

 

AWS Step Functions: AWS Step Functions coordinate 

AWS services for running complex tasks and works 

well for distributed transactions, which can have 

failures like retry and rollback. What this does is to 

enhance the organization of transactions across cloud-

based designs through the visualization of a work 

flow. 

 

4. TM Framework 

Bears Software’s Atomikos and Narayana are some of 

the frameworks used in managing distributed 

transactions dealing with different systems at varying 

degrees of compliance with the ACID and Saga 

transactions. 

 

Atomikos: In the context of distributed transactions, 

Atomikos provides implementation of the Two-phase 

commit protocol (2PC) and the Saga Pattern in order 

to keep the consistency of operations across services 

and databases (Baker et al., 2006). 

 

Narayana: Narayana is an open source transactional 

middleware based on Java Technology, dealing both 

with normal ACID Transaction as well as with newer 

ones like Saga; thus, combining a broad-scope 

applicability with robustness and flexibility, Narayana 

is an ideal solution for complex, large-scale Java 

Transaction applications (The Narayana Team, 2019). 

 

Case Studies and Real-World Applications 

Many enterprises across different sectors have adopted 

distributed transaction management in the 

microservices architecture Of these, e-commerce 
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solutions and banking systems are some of the most 

common. These case studies illustrate how Saga 

Pattern, Two-Phase Commit (2PC), and other 

distributed transactions protocols are applied to 

maintain data integrity, availability, and recoverability 

in distributed systems. 

 

1. E-Commerce Platforms 

One of the primary examples of distributed transaction 

management is associated with e-commerce 

platforms, which is inherently a process of integrating 

various services within one system in order to 

accomplish a single customer order. Several critical 

options, including order putting, payment 

authorization, stock reservation, and shipment 

origination, imply synchronized functioning of the 

distributed services that are located in different 

databases as a rule. 

 

Saga Pattern in Action: A business-to-consumer order-

processing in most e-commerce platforms consists of 

several service operations. When the consumer makes 

an order, then the inventory service blocks stock for it, 

payment service handles the transaction, and the 

shipment service gets ready to dispatch order. The 

Saga Pattern guarantees that if any step in this process 

fails for example, payment failure then compensating 

transactions are called. For example, when payment 

cannot be made after having reserved the inventory, 

the Saga releases the latter through a compensating 

action.  

 

Eventual Consistency: Typically, e-commerce 

platforms face the issue of work-stress between 

keeping everything to some extent homogenized while 

maintaining high quality. In particular, eventual 

consistency makes it possible to improve throughput 

and provide service availability at the e-commerce 

systems level by using asynchronous communication, 

for example, message brokers (RabbitMQ Kafka, etc. 

type). 

 

 
2. Financial Systems 

Financial systems are usually very consistent and their 

transaction integration is very rigid because handling 

of financial information is very sensitive. After a while 

and as with any software, distributed ledgers and 

financial applications require intricate transactions to 

be managed between the services and various 

applications in terms of balances, records, and 

regulation. 

 

Hybrid Approach (2PC and Eventual Consistency): In 

the financial systems, therefore, balanced hybrid 

approaches are presented to meet the demands of 

consistency in relation to performance and fault 

tolerance. While basic operations are local 

transactions, certain key operations such as transfer of 

funds from one account to another are strongly 

consistent and are usually handled using protocols 

such as the Two-Phase Commit (2PC) to ensure that 

either the whole transaction takes place or none at all 

in an attempt to avoid situations where some of the 

services in the cluster respond to the transaction while 

others do not hence create huge cash deficits. 

 

Eventual Consistency for Non-Critical Operations: 

For class III tasks, like updating account balances and 

processing interest, that are non-time-sensitive 

financial systems might decide to process transactions 

at some time in the future and might use the Model 

where different services are asynchronous. This 

minimizes the delays involved and results in the 

system being able to handle constant throughput for 

the data to be in a congregate state. In cases where, as 

with fraud detection or reporting, eventuality of 

Consistency is more valuable than immediate 

consistency, Eventual consistency is the optimal 

choice (Chockler et al., 2006). 
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Distributed Ledgers and Blockchain: The management 

of distributed transactions worldwide especially in the 

financial sector can be explained by the usage of 

Blockchain and Distributed Ledger Technology 

(DLT). Blockchain systems offer some characteristics 

which are naturally inherent to their architecture such 

as data immutability and strong consistency because 

every transaction in the system is connected to a 

previous transaction through encryption. This makes it 

very ideal for use in keeping records of every 

transaction that occurs between different participants 

without the need for a controlling center. Banks, 

payment processors and other financial institutions are 

starting to look at blockchain to help increase the level 

of security, efficiency and clarity of transactions 

(Narayanan et al., 2016). 

 

3. Healthcare Systems 

Microservices and distributed architectures are 

becoming more common in healthcare systems where 

the data belonging to patients are being managed, 

appointments are being scheduled, billing is being 

done and insurance claims are being processed. In 

such situations, transactions extend through various 

systems like hospital information system, insurer 

systems, and electronic health record systems. 

 

Saga Pattern for Patient Care Coordination: Health 

care application can be an appointment making, a test 

result processing, or a claim sending application. The 

Saga Pattern can assist in the management of such 

services to guarantee that if one service fails, the other 

services aimed at compensating that failure are 

activated; for instance, if the insurance claim 

submission is unsuccessful, then the appointment is 

canceled, or the scheduling needs to be readjusted. 

This pattern is more beneficial when planning service 

interactions where many parties take part, including 

healthcare providers, insurance firms, and customers 

(Sanders et al., 2017). 

 

Data Privacy and Compliance: The nature of health 

data means that distributed transaction management in 

healthcare must also conform to strict compliance 

regulation therefore; US hipaa or EU GDPR among 

others. Frameworks such as FHIR (Fast Healthcare 

Interoperability Resources) and HL7 standards offer 

structures and guidelines for Transactional Privacy ad 

Security since transactions that occur over different 

systems are brokered (Dixon et al., 2019). 

 

Challenges and Limitations 

Microservices architectures when combined with 

distributed transaction management results in several 

inherent problems that need to be solved to make the 

solution reliable, fast, and scalable. 

 

1. Performance Overheads 

Coordination protocols like Two-Phase Commit 

(2PC) bring a lot of latency from multiple round trips 

over services. This overhead poses a problem to 

overall system performance, particularly in 

environment with heavy traffic such as e-commerce 

application, or financial transactions where system 

latency is a major concern (Newman, 2015). As 

mentioned, delays happen when multiple services are 

included becoming the key problem and restraining 

factor affecting efficiency as it grows. 

 

2. Fault Handling Complexity 

Managing of failures during distributed transactions is 

complicated. In systems such as 2PC, the absence of a 

means of continuing once an issue occurs during the 

execution of a transaction stagnates the process and 

requires complex rollback techniques. When a failure 

happens, compensating transactions such as the ones 

seen in the Saga Pattern reverse the sequence of 

actions, but their design must be well thought out to 

prevent new failures (Gray, 1978). Maintaining 

consistency in such environment, especially if failures 

are across services and/or databases, is a huge 

challenge (Garcia-Molina & Salem, 1987) Controlling 

for update anomalies is very difficult in such a system 

since failure can occur in multiple services or 

databases simultaneously. 

 

3. Debugging and Monitoring 

Isolation of problems in distributed systems is 

complex because a transaction involves multiple 

services. Some tools, such as distributed tracing 

(OpenTelemetry), distributed logs (like ELK stack), 

are Indispensable but hard to set up and maintain 

(Newman, 2015). These aids allow tracking the flow 

of transactions across the services, however using 

these tools implies additional planning needed in 

designing interfaces, as well as may add additional 

load in highly loaded applications. 
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4. Scalability: The main concern for the current RPC 

technique is that most resources are. 

contention: This may be true but the major drawback 

for the current RPC technique is resource contention. 

But as the distributed systems expand the problem of 

achieving scalability without invoking resources is 

cumbersome. As in the case of 2PC, it causes resource 

locking that is detrimental to scalability (Pritchett, 

2008). The Saga Pattern is free from this issue since it 

incorporates an asynchronous form of communication 

so that services may execute concurrently. However, 

it mandates concurrent consistency which may 

become a challenge to manage in system design 

(Gupta et al., 2015). 

 

5. Consistency vs. Availability Trade-offs:  It is a 

fundamental choice in caching strategies between 

being consistent or available, but makes the most sense 

when read in their full title as Cache Inconsistency vs 

Cache Invalidity. 

Distributed systems are known for the CAP theorem 

(Brewer, 2000) stating that distributed systems could 

either be consistent or available, but can almost never 

be both. When it comes to the availability during the 

network partitions, the systems that prioritized the 

consistency like 2PC might be a problem. On the other 

hand, those supporting availability (for example, the 

so-called eventual consistency) can provide a 

temporary mechanism that can temporarily maintain 

consistency inconsistent when services work (Helland, 

2007). 

 

Methodology 

To analyze distributed transaction behavior, this paper 

compiles pre-2019 literature synthesizing 2PC, the 

Saga Pattern, and complementary techniques. The 

information sources used in the study include 

published papers, industry examples, and technical 

blogs. As it will be seen in the following sources, each 

offers a unique view of managing microservices 

transactions. 

 

1. Literature Review 

The review of the literature of the articles published 

before 2019 forms the primary data source that 

informs the foundation of this article. This is true 

because the four research articles centre their 

discussion on theoretical and practical issues of 

distributed transactions in relation to distributed 

systems, including 2PC and Saga patterns. These 

articles offer basic knowledge of distributed 

transactions and their management problems. 

 

Summary of Transaction Patterns 

 

Transacti

on 

Pattern 
 

Charact

eristics 
 

Strength

s 
 

Weaknesse

s 

Two-

Phase 

Commit 

(2PC) 

Synchron

ous, 

atomic 

Strong 

consistenc

y 

guarantee 

High 

latency, 

single 

point of 

failure 
 

Saga 

Pattern 
 

Asynchr

onous, 

compen

sating 
 

Fault 

tolerance

, 

scalabilit

y 
 

Complex 

design, 

eventual 

consistency 

 

 

2. Data Sources 

The information used in this research comprises of 

articles, and technical blogs, case studies. These 

sources contain all the theoretical framework, 

examples of 2PC and Saga, their advantages and 

implementation of distributed transaction problems 

that are needed for the work. 

 

3. Analysis of the transactional history 

One of the important subjects of this study is the 

evaluation and characterization of the comparison of 

Two-Phase Commit (2PC) protocol and Saga Pattern. 

These transaction patterns are assessed for scalability, 

fault tolerance, consistency and availability with 

regard to the requirements of the distributed 

microservices architectural style. 

Cases in Distributed Transactions 
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Pattern 
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ns (Gupta 
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Platfor

m 
 

et al., 

2015) 
 

Financi

al 

System

s 
 

2PC, 

Saga 

Pattern 
 

Maintain

ing 

consisten

cy 
 

Hybrid 

approach 

(Pritchett, 

2008) 
 

Health

care 

System

s 
 

Saga 

Pattern 
 

Coordina

tion of 

multiple 

services 
 

Eventual 

consistency 

(Sanders et 

al., 2017) 

 

 

4. Use Case Analysis 

This section looks into real life use of distributed 

transaction management patterns in e-commerce, 

financial and health sectors. Two examples of the 2PC 

and Saga patterns are presented, and case studies are 

used to make comparisons of how both patterns 

promote the consistency of data and the fault-tolerant 

abilities of large distributed systems. 

 

III. LITERATURE REVIEW 

 

 
 

This methodology diagram provides a clear, step-by-

step visualization of how the research was conducted, 

from literature review to analysis of use cases, guiding 

the reader through the process of synthesizing and 

evaluating distributed transaction management 

patterns. 

 

Discussion 

Microservices’ distributed transaction management 

examined consensus reached in consensus, fault 

tolerance, and scalability. Two of them are the Two-

Phase Commit (2PC) and the Saga Pattern, which have 

different advantages and drawbacks based on the 

application of the distributed system. 

 

1. Understanding Two-Phase Commit (2PC) and Its 

Limitiations 

This makes 2PC ensure that all the participants either 

commit the transaction or roll back the transaction. 

However, it has some cons such as high latency, 

resource blocking and has single point of failure which 

are completely not suitable for the large scalable fault 

tolerant microservices systems. The fact that the two 

phases of 2PC happen simultaneously introduces a 

level of latency and failure in the system has known to 

create system contention thereby reducing scalability 

and availability. 

 

2. The Saga Pattern: A Scalable Alternative 

The Saga Pattern is a better solution to 2PC because of 

using atomic sub-transactions, each of which has a 

compensating action in the event of failure. by not in 

the meantime require global locking and a centralized 

co-ordination to support this type of consistency level 

followed by extendibility and tolerance to failure. 

Nevertheless, its implementation calls for proper 

design of the compensating actions to be undertaken 

and may pose some difficulties in replicability across 

the time horizon. 

 

3. Some of the properties include; Event-Driven 

Architectures and Fault Tolerance. 

A second way that EDA contributes to DTMS is by 

de-coupling of services and asynchronous 

communication. This enhances high availability, 

reliability, and utilization through making services run 

independently. With help of message brokers and 

popular ones are Kafka or RabbitMQ, the systems can 

be designed as fail-safe, where the events can be taken 

as a buffer and the systems will be able to be 

eventually consistent. However, these modes of event 

delivery and the message consistency require 

monitoring to prevent data integrity issues. 

 

4. Selecting the Right Tools and Patterns 

The choice between 2PC, Saga, and event-driven 

architectures depends on the application’s 

requirements: 
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2PC: Most applicable in systems that must be very 

homogeneous but not in large, highly reliable systems. 

Saga Pattern: Designed for large applications that 

require availability and basic tolerance to faults, with 

eventual consistency. 

Event-Driven Architecture: Most suitable for large 

scale, distributed environments where service loose 

coupling and high availability are primary 

requirements. 

When selecting a pattern, then performance, 

scalability and fault tolerance must be met so that 

microservices are effective in managing distributed 

transactions. 

 

CONCLUSION 

 

Any intervention involving distributed transactions in 

microservices architectures must consider conflicting 

priorities for consistency, scalability and robustness. 

The numerous and multiple steps required in 

managing transactions across distributed services 

imply that the best patterns and tools must be selected 

based on the current needs of the network. Saga and 

event-driven transactions have appeared as specific 

solutions, which overcome problems associated with 

using such protocols as Two-Phase Commit (2PC). 

These patterns offer more flexibilities; make it 

possible for services to run autonomously, at the same 

time still maintaining data integrity over the various 

service phases. 

 

Messages queuing using Kafka as an asynchronous 

messaging system and other distributed databases 

including Cassandra, and MongoDB are instrumental 

in these approaches in supporting transaction 

management strategies. These tools enable eventual 

consistency, scalability and fault tolerance that are 

important for the sustained operation of the large scale 

distributed systems. 

 

As with the current solutions they do offer sound 

frameworks for coordinating distributed transactions 

except for some shades of merkmal. Subsequent 

studies should explore how other advanced 

technologies such as Artificial Intelligence (AI) can be 

integrated to improve fault forecasting, automated 

remediation in distributed systems’ reinforcement. 

The AI integrated systems could also proactively 

anticipate possible transactions’ failure scenarios, 

correct the work processes and the transaction 

protocols, as well as optimize the general system 

availability. 
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