
© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 704

Distributed Transaction Management in Microservices
Architecture

MUHAMMAD SOHAIL

Shaheed Zulfikar Ali Bhutto Institute of Science & Technology

Abstract- On a general level, it is critical but rather

complex to handle distributed transactions in

microservices architectures nowadays is one of the

core concerns in modern software engineering. This

paper looks at the concepts, techniques, and

paradigms that underpin the modern best practices

in achieving transactional behavior in distributed

systems, and also how they apply to the complexities

of microservices architecture. It gives a brief

comparison of the ACID vs BASE models of

transaction processing and examines how those

paradigms affect system design. Common used

protocols raised here include Two-Phase Commit

(2PC) and the Saga Pattern; their benefits and

drawbacks are introduced besides with how to apply

them. Continuing the evaluation of the CAP theorem

pointed out in the article, the author examines the

importance of consistency, availability, and partition

tolerance for distributed architectures. Filled with

real-world case studies, practical tips, and

approximations, it provides developers and system

architects with the proven approaches to designing

maintainable, scalable, and efficient systems that do

not corrupt data in large distributed microservices

architectures.

Indexed Terms- Microservices Architecture,

Distributed Transactions, Saga Pattern, Two-Phase

Commit, Eventual Consistency, CAP Theorem,

Database Partitioning, Scalability, Resilience, Data

Integrity, Service-Oriented Architecture, Distributed

System Challenges, Fault Tolerance, Event-Driven

Architecture, Transaction Coordination,

Choreography vs. Orchestration, Consistency

Models, Message Brokers, System.

I. INTRODUCTION

There is no denying that a microservice as a structure

for the construction of modern software systems has

become the leading approach for the creation of

applications with predictable scalability, high

availability, and increased adaptability. Due to the

decomposition of large systems into simpler

components as well as maintaining independently

deployable components, microservices have several

benefits over more centralised monolithic models. The

perceived benefits include more easily achieved

scalability, better isolation of failures and the

possibility to comprise different parts of the system

with different technologies. Nevertheless, the

transition from a monolithic architecture to a

microservices system brings new issues into the

picture – most notable, how to handle transactions

which cross several microservices?

By definition, in a monolithic system, transactions

occur in a single database and hence management of

data consistency, reliability and atomicity based on the

ACID principles is not complex. On the other hand,

microservices deploy functionality to several isolated

services, and every service possesses its database,

APIs, and business logic. This architectural

decentralization creates a fundamental challenge: how

to provide the common interface across multiple

services while tackling how to manage simultaneous

transaction processing, quality consistency, and fault-

tolerant mechanisms at the same time.

Let us consider an e-commerce website they are

companies selling products online. During an order,

the inventory management service must check

whether the product is in stock, the payment gateway

must complete the payment securely, and the shipping

service must confirm the product’s availability for

shipping. These operations are connected seamlessly,

while taking place in different services. In case any of

the actions is unsuccessful, for instance, a payment

was declined, or there was no inventory to meet the

demand – reversing or making adjustments to the

given move is problematic.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 705

These concerns are managed by Distributed

transaction management through the use of suitable

methods and patterns of work flow control that are

applied on services. Standard ACID properties are

antic to some extent applicable in centralised

environment however they face problems in

distributed solution for their impact on availability and

system throughput. Instead, flexibility models and

new application patterns like the eventually consistent

systems, the Two-Phase Commit (2PC) and the Saga

Pattern.

Fundamentals of Distributed Transactions

Transaction management for distributed transactions

is usually important especially in the present day

microservices architecture where operations may cut

across different nodes or services. These transactions

must be managed co-ordinated to meet the principles

of atomicity, consistency, isolation and durability

(ACID) that are fundamental traditionally used to

maintain data integrity in monolithic systems.

However, with microservices comes the challenges of

distribution, and so, perfect adherence to the ACID

form of transaction management is not feasible. To

overcome such limitations distributed systems

principles like BASE: Basically Available, Soft state,

Eventually consistency (Brewer, 2000) are. This

change in fundamental thinking makes it easier to

achieve scalability and maintain the functionality

during network partitions or failures as opposed to

adhering to database traditional strong consistency.

Main Issues in Distributed Transactions

Network Partitioning:

Any programs executed in a distributed fashion can,

unfortunately, fail due to the nature of distributed

computing – networks fail and nodes or services may

become disconnected permanently or temporarily.

Such partitions lead to disconnection, and affects

transaction co-ordination and synchronization across

nodes. For example, a node that drops out of a

distributed transaction may cause data inorganism if it

is not recovered (Kumar et al., 2018).

Latency:

Interaction between the services that exist at different

geographical locations causes delays within the

system, and this affects its general performance. The

higher response times slow down the transaction rates

and thus affect user experience particularly in cases

where near real-time update is required (Patel &

Sharma, 2017). Reducing the response time while

keeping it efficient has always been an issue.

Fault Tolerance:

It is a challenging job to guarantee data consistency

when the node or service in consideration has failed.

Retries, compensating transactions, and distributed

consensus algorithms are necessary procedures but

they are costly and vulnerably prone to errors. For

example, a problem with one of the services

interdependent on others in a complex transaction

means that subsequent services have to ‘roll back’, or

run again, to return to a correct state (Anderson et al.,

2016).

The following table summarizes these challenges and

the corresponding strategies to address them:

Challenge Description

Mitigation

Strategies

Network

Partitioning
Loss of connectivity

between nodes

disrupts transaction

consistency.

Adoption of BASE

principles, use of

quorum-based

protocols, and fallback

mechanisms to handle

partitions.

Latency Delays in

communication

across services impact

transaction

performance.

Optimizing network

communication,

asynchronous

processing, and local

caching for critical

operations.

Fault

Tolerance

Handling service or

node failures without

losing data

consistency.

Implementing

compensating

transactions, retries, and

consensus mechanisms

like Paxos or Raft.

BASE in Distributed Transactions

BASE principles are an asynchronous equivalent of

the issues with ACID that are not suitable for

distributed systems since BASE uses eventual

consistency. Like Paxos, BASE systems provide a

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 706

guarantee that, after all updates the system is

consistent, instead of the guarantee that they are

always consistent. This approach enables distributed

systems to acquire higher availability as well as fault

tolerance, though at the same time ensuring scalability.

For instance, BASE principles are used in e-commerce

situations where high transaction rates are processed

while users have great interaction experience

(Stonebraker, 2010).

The CAP Theorem and Its Implications

The CAP theorem, proposed by Eric Brewer in 2000,

is a fundamental concept in distributed systems that

asserts that it is impossible for a distributed system to

simultaneously guarantee all three of the following

properties:

Consistency (C): Read operations from the system will

always get the most up to date writing from the system.

This means that all nodes in for a system have access

to the data at the same time.

Availability (A): At the end of the transaction in read

or write form, every call will be acknowledged either

a success or failure without the consensus of data

nodes.

Partition Tolerance (P): Since the system must run

properly even when the network is split or nodes are

failure, the system will be able to handle requests

during such situations.

By the CAP theorem, distributed systems can only

provide at most two of these three characteristics

concurrently. This basically implies that for any

specific distributed system at your disposal, you need

to make compromises based on the needs you have at

that particular instance. Characteristic scenarios occur

in further development of microservices architectures

where a transaction involves several services and

nodes.

CAP in context of microservice

Partition tolerance in microservices is always a

constraint because the services are distributed across

the node, or data center and the network is not perfect;

it fails. Therefore, the microservices architectures

generally choose availability and partition tolerance

high while consistency is usually weak. In practice,

this means that systems may tolerate at some level of

inconsistency—updates to the state effected by one

service may propagate through the other services and

become consistent over time, but not necessarily when

the operation is invoked (Pat Helland, 2007).

In some such architectures, there will be use of

message brokers or other intermediary systems to

handle failures and sequence issues with getting events

processed as expected. Such message brokers are used

to keep messages that cannot be processed at the

moment due to the system partitioning so that the

system can come back to life with as high of an

availability as possible. This pattern known as the

“eventual consistency” is characteristic of the systems

where availability and tolerance to the fault are the key

values, but strict consistency is not as significant (Pat

Helland, 2007).

It is possible to illustrate the consistency, availability,

and partition tolerance triangle in this diagram below:

The three properties are the vertices of triangle and the

system has be at one of the points or on the boundary

of the line between two vertices, which means trade-

off.

CP (Consistency and Partition Tolerance):

Configurations that can maintain consistent

‘projections’ in the face of network partition ability

but which might be less available during the recovery

process.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 707

CA (Consistency and Availability): Stable and highly

available consistency and availability systems that

could not suit the network partitions.

AP (Availability and Partition Tolerance): Those

systems where upper priority has been given to

availability over partition tolerance and that so use

techniques of soft-state or eventuality along with

consistency.

Real World Application and Take Up

In big web applications like e-shopping sites, online

video streaming or social service sites, availability and

partition tolerance are much more important to retain

the site’s normal functionality in case of network split

or congestion. For instance, Netflix’s Cassandra and

Ama-azon’s DynamoDB make temporary quorum

hints—that do not guarantee im-mediate consistency

across ser-vices—by allowing services to operate

based on eventually-consistent data (Brewer, 2000;

Stonebraker, 2010).

Nevertheless, were eventual consistency adopted, this

by no means implies that consistency is completely

overlooked. Instead, it means that the system can

tolerate such inconsistency, for it expects the data to

harmonize in the future. This trade-off is good

especially when the critical sections can endure a few

synchronization points slightly off in terms of time or

systems that are expected to work with eventual

consistency and methods such as idempotence or

conflict resolver (last writer wins) (Kumar et al.,

2018).

Approaches to Distributed Transaction Management

Two-Phase Commit (2PC)

The Two-Phase Commit (2PC) protocol ensures

atomicity in distributed transactions with two phases:

Prepare Phase: In order to gain confirmation from all

services the coordinator proceeds to make the request.

If any of the services receive a one or a zero, the whole

transaction is nullified.

Commit Phase: All the services receive and if all agree

then coordinator sends a “commit” message to

complete the transaction. The moment that any service

is failed it turns back.

The major downside with 2PC concerning scalability

and fault tolerance, is that it guarantees consistency at

the price of these disadvantages.

Drawback Impact

High Latency Delays due to multiple

communication round-

trips.

Blocking

Resources

Services lock resources,

causing potential delays.

Single Point

of Failure

Coordinator failure

jeopardizes the entire

transaction.

Lack of Fault

Tolerance

Service failures require

aborting the transaction.

II. APPLICABILITY IN MICROSERVICE

However, the latency, blocking and fault tolerance

limitations make 2PC ineffective in scalable, highly

available microservices architecture. Other

approaches such as the Saga Pattern or the models like

eventual consistency are more appropriate in large

systems (Gray, 1978). Nevertheless, 2PC could still be

useful inside small, simple environments without

extremely strict requirements to consistency.

Saga Pattern

Saga Pattern can be used to facilitate a solution to

distributed transactions through the splitting of each of

them into a number of sub-transactions that can be

compensated using another sub-transaction in the case

of its failure. This pattern is here aimed help the further

maintenance of eventual consistency and system

robustness as it is guaranteed that the consistency of

the totality of an overall system remains guaranteed in

case sub-transactions fail.

Sagas can be implemented through two main

approaches:

Orchestration: In this model there is a co-ordinator

responsible for monitoring the flow of transactions,

the performance of the sub transactions and initiation

of the compensation transaction in the event of a sub

transaction failure. The coordinator also makes sure

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 708

that the transaction includes steps for the state, as well

as maintaining coherent service states.

Choreography: However, the choreography model

relates to each service independently controlling its

sub-transaction. Events occur between services and

there is no gathering place where the interactions are

managed from. However, each service waits for an

event and performs the sub-transaction for the service

and compels for compensations if necessary.

Although the Saga Pattern gives a system the ability to

protect against failure and achieve eventual

consistency, it is best used when carefully designed,

for example, when addressing issues of cascading

failures, the problem of compensating transactions,

and idempotence, a condition where executing the

same operation twice results in no change (Garcia-

Molina & Salem, 1987).

Key Steps:

Service A (Start Action):

The first service triggers an exchange by conducting

its function. If it succeeds, it commits. If it does not

work out as intended, another corrective action takes

place to revert the changes of this service.

Service B (Intermediate Action):

So if Service A commits successfully Service B does

its function. In this regard upon success it commits and

passes forward the success. In this case it has a

compensating mechanism that initiates an action to

reverse the operation of the failure.

Service C (Intermediate Action):

Service C works like Service B it executes its role in

the transaction. If it works then it stakes, if not, then it

reverses its operations if there was a failure.

Service D (End Action):

Service D is the finishing service in the transaction. It

either records the final outcome or, if there was a

problem, initiates a compensating action that cancels

its changes while also reversing all subsequent ones.

The moment any service strikes a failure point, a

failure event is initiated and the corresponding

compensating actions are performed in a backward

cascade beginning from Service D and ending at

Service A.

Saga Pattern Characteristics:

Orchestration vs. Choreography:

Orchestration: One service delivers all the methods of

a transaction (e.g., Service A contains all the methods

for performing the transaction).

Choreography: Only the instruction of leinProcess

Developer and leinDrives will vary, while each service

bases its actions on event and is aware when to start or

undo its part.

This diagram demonstrates how the Saga Pattern can

handle multiple, distributed transactions that wouldn’t

behave predictably; it makes sure that everything is

consistent eventually, even if there are failures across

several services.

Event-Driven Transactions

In event-driven architectures, services communicate

asynchronously using message brokers like RabbitMQ

or Kafka. Events trigger downstream processes,

decoupling services and enhancing fault tolerance.

However, this approach necessitates robust

mechanisms for ensuring message delivery and

handling duplicates (Kleppmann, 2017).

Tools and Technologies used in Supporting

Transaction Management

The management of transactions in current large-scale

systems involves numerous solutions that can cope

with emerging challenges based on consistency, fault

tolerance, and scalability in microservices

environments.

1. Distributed Databases

Distributed database is basic in addressing data

distribution aspect with multiple services in

microservices architectures with focus on data

coherence and access.

NoSQL Databases: Cassandra and MongoDB are

examples of databases with eventual consistency, that

means they are highly available and horizontally

scalable. These databases employ the BASE model as

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 709

consistency is traded for availability and partition

tolerance These databases are suitable for distributed

systems that require scalability Coulouris et al., 2012,

Pritchett 2008).

Cassandra: Originally implemented with no single

point of failure and thus being distributed, Cassandra

has configurable consistency levels offering a

compromise between strong and eventuality

consistency (Lakshman & Malik, 2010).

MongoDB: MongoDB supports multi-document

transactions, which means atomicity in collections,

something important for the microservices that cross

services and databases (Chodorow, 2013).

 Comparison of Distributed Databases

Feature

Cassandra MongoDB

Consistency

Model

Eventual

Consistency

Strong consistency

with tunable levels

Scaling Horizontal,

distributed scaling

Horizontal

scaling

Transaction

Support

Limited (ACID

support in 2.0)

Multi-document

ACID transactions

2. Message Brokers

Asynchronous communication refers to services that

need to be included in distributed transactions in

event-driven system and this is handled through

message brokers.

Kafka: Apache Kafka is a distributed streaming

platform that guarantees the ability of high throughput

and fault tolerance. It also defines the modeled event-

driven architecture by enabling services to publish and

consume messages in an asynchronous fashion

because it is important to implement the eventual

consistency and Sagas (Kreps et al., 2011).

RabbitMQ: Another type of messaging is request-

response, which is supported by RabbitMQ; besides,

guarantee is given to delivery a message no matter the

failures. It is useful for compensating transactions in

such patterns as the Saga Pattern, as every service can

respond to the situation and carry out the needed

transactions (Sacks, 2013).

3. Orchestration Tools

Transaction management and application of the proper

orchestration workflow guarantee reliable and

consistent services with the possibility to recover from

several failures.

Kubernetes: Kubernetes announced and schedule

containerized microservices deploying, scaling and

failure handling. IT has a particularly important

function in achieving high availability and handling

transactions in distributed systems (Hightower et al.,

2017).

AWS Step Functions: AWS Step Functions coordinate

AWS services for running complex tasks and works

well for distributed transactions, which can have

failures like retry and rollback. What this does is to

enhance the organization of transactions across cloud-

based designs through the visualization of a work

flow.

4. TM Framework

Bears Software’s Atomikos and Narayana are some of

the frameworks used in managing distributed

transactions dealing with different systems at varying

degrees of compliance with the ACID and Saga

transactions.

Atomikos: In the context of distributed transactions,

Atomikos provides implementation of the Two-phase

commit protocol (2PC) and the Saga Pattern in order

to keep the consistency of operations across services

and databases (Baker et al., 2006).

Narayana: Narayana is an open source transactional

middleware based on Java Technology, dealing both

with normal ACID Transaction as well as with newer

ones like Saga; thus, combining a broad-scope

applicability with robustness and flexibility, Narayana

is an ideal solution for complex, large-scale Java

Transaction applications (The Narayana Team, 2019).

Case Studies and Real-World Applications

Many enterprises across different sectors have adopted

distributed transaction management in the

microservices architecture Of these, e-commerce

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 710

solutions and banking systems are some of the most

common. These case studies illustrate how Saga

Pattern, Two-Phase Commit (2PC), and other

distributed transactions protocols are applied to

maintain data integrity, availability, and recoverability

in distributed systems.

1. E-Commerce Platforms

One of the primary examples of distributed transaction

management is associated with e-commerce

platforms, which is inherently a process of integrating

various services within one system in order to

accomplish a single customer order. Several critical

options, including order putting, payment

authorization, stock reservation, and shipment

origination, imply synchronized functioning of the

distributed services that are located in different

databases as a rule.

Saga Pattern in Action: A business-to-consumer order-

processing in most e-commerce platforms consists of

several service operations. When the consumer makes

an order, then the inventory service blocks stock for it,

payment service handles the transaction, and the

shipment service gets ready to dispatch order. The

Saga Pattern guarantees that if any step in this process

fails for example, payment failure then compensating

transactions are called. For example, when payment

cannot be made after having reserved the inventory,

the Saga releases the latter through a compensating

action.

Eventual Consistency: Typically, e-commerce

platforms face the issue of work-stress between

keeping everything to some extent homogenized while

maintaining high quality. In particular, eventual

consistency makes it possible to improve throughput

and provide service availability at the e-commerce

systems level by using asynchronous communication,

for example, message brokers (RabbitMQ Kafka, etc.

type).

2. Financial Systems

Financial systems are usually very consistent and their

transaction integration is very rigid because handling

of financial information is very sensitive. After a while

and as with any software, distributed ledgers and

financial applications require intricate transactions to

be managed between the services and various

applications in terms of balances, records, and

regulation.

Hybrid Approach (2PC and Eventual Consistency): In

the financial systems, therefore, balanced hybrid

approaches are presented to meet the demands of

consistency in relation to performance and fault

tolerance. While basic operations are local

transactions, certain key operations such as transfer of

funds from one account to another are strongly

consistent and are usually handled using protocols

such as the Two-Phase Commit (2PC) to ensure that

either the whole transaction takes place or none at all

in an attempt to avoid situations where some of the

services in the cluster respond to the transaction while

others do not hence create huge cash deficits.

Eventual Consistency for Non-Critical Operations:

For class III tasks, like updating account balances and

processing interest, that are non-time-sensitive

financial systems might decide to process transactions

at some time in the future and might use the Model

where different services are asynchronous. This

minimizes the delays involved and results in the

system being able to handle constant throughput for

the data to be in a congregate state. In cases where, as

with fraud detection or reporting, eventuality of

Consistency is more valuable than immediate

consistency, Eventual consistency is the optimal

choice (Chockler et al., 2006).

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 711

Distributed Ledgers and Blockchain: The management

of distributed transactions worldwide especially in the

financial sector can be explained by the usage of

Blockchain and Distributed Ledger Technology

(DLT). Blockchain systems offer some characteristics

which are naturally inherent to their architecture such

as data immutability and strong consistency because

every transaction in the system is connected to a

previous transaction through encryption. This makes it

very ideal for use in keeping records of every

transaction that occurs between different participants

without the need for a controlling center. Banks,

payment processors and other financial institutions are

starting to look at blockchain to help increase the level

of security, efficiency and clarity of transactions

(Narayanan et al., 2016).

3. Healthcare Systems

Microservices and distributed architectures are

becoming more common in healthcare systems where

the data belonging to patients are being managed,

appointments are being scheduled, billing is being

done and insurance claims are being processed. In

such situations, transactions extend through various

systems like hospital information system, insurer

systems, and electronic health record systems.

Saga Pattern for Patient Care Coordination: Health

care application can be an appointment making, a test

result processing, or a claim sending application. The

Saga Pattern can assist in the management of such

services to guarantee that if one service fails, the other

services aimed at compensating that failure are

activated; for instance, if the insurance claim

submission is unsuccessful, then the appointment is

canceled, or the scheduling needs to be readjusted.

This pattern is more beneficial when planning service

interactions where many parties take part, including

healthcare providers, insurance firms, and customers

(Sanders et al., 2017).

Data Privacy and Compliance: The nature of health

data means that distributed transaction management in

healthcare must also conform to strict compliance

regulation therefore; US hipaa or EU GDPR among

others. Frameworks such as FHIR (Fast Healthcare

Interoperability Resources) and HL7 standards offer

structures and guidelines for Transactional Privacy ad

Security since transactions that occur over different

systems are brokered (Dixon et al., 2019).

Challenges and Limitations

Microservices architectures when combined with

distributed transaction management results in several

inherent problems that need to be solved to make the

solution reliable, fast, and scalable.

1. Performance Overheads

Coordination protocols like Two-Phase Commit

(2PC) bring a lot of latency from multiple round trips

over services. This overhead poses a problem to

overall system performance, particularly in

environment with heavy traffic such as e-commerce

application, or financial transactions where system

latency is a major concern (Newman, 2015). As

mentioned, delays happen when multiple services are

included becoming the key problem and restraining

factor affecting efficiency as it grows.

2. Fault Handling Complexity

Managing of failures during distributed transactions is

complicated. In systems such as 2PC, the absence of a

means of continuing once an issue occurs during the

execution of a transaction stagnates the process and

requires complex rollback techniques. When a failure

happens, compensating transactions such as the ones

seen in the Saga Pattern reverse the sequence of

actions, but their design must be well thought out to

prevent new failures (Gray, 1978). Maintaining

consistency in such environment, especially if failures

are across services and/or databases, is a huge

challenge (Garcia-Molina & Salem, 1987) Controlling

for update anomalies is very difficult in such a system

since failure can occur in multiple services or

databases simultaneously.

3. Debugging and Monitoring

Isolation of problems in distributed systems is

complex because a transaction involves multiple

services. Some tools, such as distributed tracing

(OpenTelemetry), distributed logs (like ELK stack),

are Indispensable but hard to set up and maintain

(Newman, 2015). These aids allow tracking the flow

of transactions across the services, however using

these tools implies additional planning needed in

designing interfaces, as well as may add additional

load in highly loaded applications.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 712

4. Scalability: The main concern for the current RPC

technique is that most resources are.

contention: This may be true but the major drawback

for the current RPC technique is resource contention.

But as the distributed systems expand the problem of

achieving scalability without invoking resources is

cumbersome. As in the case of 2PC, it causes resource

locking that is detrimental to scalability (Pritchett,

2008). The Saga Pattern is free from this issue since it

incorporates an asynchronous form of communication

so that services may execute concurrently. However,

it mandates concurrent consistency which may

become a challenge to manage in system design

(Gupta et al., 2015).

5. Consistency vs. Availability Trade-offs: It is a

fundamental choice in caching strategies between

being consistent or available, but makes the most sense

when read in their full title as Cache Inconsistency vs

Cache Invalidity.

Distributed systems are known for the CAP theorem

(Brewer, 2000) stating that distributed systems could

either be consistent or available, but can almost never

be both. When it comes to the availability during the

network partitions, the systems that prioritized the

consistency like 2PC might be a problem. On the other

hand, those supporting availability (for example, the

so-called eventual consistency) can provide a

temporary mechanism that can temporarily maintain

consistency inconsistent when services work (Helland,

2007).

Methodology

To analyze distributed transaction behavior, this paper

compiles pre-2019 literature synthesizing 2PC, the

Saga Pattern, and complementary techniques. The

information sources used in the study include

published papers, industry examples, and technical

blogs. As it will be seen in the following sources, each

offers a unique view of managing microservices

transactions.

1. Literature Review

The review of the literature of the articles published

before 2019 forms the primary data source that

informs the foundation of this article. This is true

because the four research articles centre their

discussion on theoretical and practical issues of

distributed transactions in relation to distributed

systems, including 2PC and Saga patterns. These

articles offer basic knowledge of distributed

transactions and their management problems.

Summary of Transaction Patterns

Transacti

on

Pattern

Charact

eristics

Strength

s

Weaknesse

s

Two-

Phase

Commit

(2PC)

Synchron

ous,

atomic

Strong

consistenc

y

guarantee

High

latency,

single

point of

failure

Saga

Pattern

Asynchr

onous,

compen

sating

Fault

tolerance

,

scalabilit

y

Complex

design,

eventual

consistency

2. Data Sources

The information used in this research comprises of

articles, and technical blogs, case studies. These

sources contain all the theoretical framework,

examples of 2PC and Saga, their advantages and

implementation of distributed transaction problems

that are needed for the work.

3. Analysis of the transactional history

One of the important subjects of this study is the

evaluation and characterization of the comparison of

Two-Phase Commit (2PC) protocol and Saga Pattern.

These transaction patterns are assessed for scalability,

fault tolerance, consistency and availability with

regard to the requirements of the distributed

microservices architectural style.

Cases in Distributed Transactions

Use

Case

Transact

ion

Pattern

Key

Challeng

e

Solution

E-

comme

rce

Saga

Pattern

Payment

failure

handling

Compens

ating

transactio

ns (Gupta

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 713

Platfor

m

et al.,

2015)

Financi

al

System

s

2PC,

Saga

Pattern

Maintain

ing

consisten

cy

Hybrid

approach

(Pritchett,

2008)

Health

care

System

s

Saga

Pattern

Coordina

tion of

multiple

services

Eventual

consistency

(Sanders et

al., 2017)

4. Use Case Analysis

This section looks into real life use of distributed

transaction management patterns in e-commerce,

financial and health sectors. Two examples of the 2PC

and Saga patterns are presented, and case studies are

used to make comparisons of how both patterns

promote the consistency of data and the fault-tolerant

abilities of large distributed systems.

III. LITERATURE REVIEW

This methodology diagram provides a clear, step-by-

step visualization of how the research was conducted,

from literature review to analysis of use cases, guiding

the reader through the process of synthesizing and

evaluating distributed transaction management

patterns.

Discussion

Microservices’ distributed transaction management

examined consensus reached in consensus, fault

tolerance, and scalability. Two of them are the Two-

Phase Commit (2PC) and the Saga Pattern, which have

different advantages and drawbacks based on the

application of the distributed system.

1. Understanding Two-Phase Commit (2PC) and Its

Limitiations

This makes 2PC ensure that all the participants either

commit the transaction or roll back the transaction.

However, it has some cons such as high latency,

resource blocking and has single point of failure which

are completely not suitable for the large scalable fault

tolerant microservices systems. The fact that the two

phases of 2PC happen simultaneously introduces a

level of latency and failure in the system has known to

create system contention thereby reducing scalability

and availability.

2. The Saga Pattern: A Scalable Alternative

The Saga Pattern is a better solution to 2PC because of

using atomic sub-transactions, each of which has a

compensating action in the event of failure. by not in

the meantime require global locking and a centralized

co-ordination to support this type of consistency level

followed by extendibility and tolerance to failure.

Nevertheless, its implementation calls for proper

design of the compensating actions to be undertaken

and may pose some difficulties in replicability across

the time horizon.

3. Some of the properties include; Event-Driven

Architectures and Fault Tolerance.

A second way that EDA contributes to DTMS is by

de-coupling of services and asynchronous

communication. This enhances high availability,

reliability, and utilization through making services run

independently. With help of message brokers and

popular ones are Kafka or RabbitMQ, the systems can

be designed as fail-safe, where the events can be taken

as a buffer and the systems will be able to be

eventually consistent. However, these modes of event

delivery and the message consistency require

monitoring to prevent data integrity issues.

4. Selecting the Right Tools and Patterns

The choice between 2PC, Saga, and event-driven

architectures depends on the application’s

requirements:

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 714

2PC: Most applicable in systems that must be very

homogeneous but not in large, highly reliable systems.

Saga Pattern: Designed for large applications that

require availability and basic tolerance to faults, with

eventual consistency.

Event-Driven Architecture: Most suitable for large

scale, distributed environments where service loose

coupling and high availability are primary

requirements.

When selecting a pattern, then performance,

scalability and fault tolerance must be met so that

microservices are effective in managing distributed

transactions.

CONCLUSION

Any intervention involving distributed transactions in

microservices architectures must consider conflicting

priorities for consistency, scalability and robustness.

The numerous and multiple steps required in

managing transactions across distributed services

imply that the best patterns and tools must be selected

based on the current needs of the network. Saga and

event-driven transactions have appeared as specific

solutions, which overcome problems associated with

using such protocols as Two-Phase Commit (2PC).

These patterns offer more flexibilities; make it

possible for services to run autonomously, at the same

time still maintaining data integrity over the various

service phases.

Messages queuing using Kafka as an asynchronous

messaging system and other distributed databases

including Cassandra, and MongoDB are instrumental

in these approaches in supporting transaction

management strategies. These tools enable eventual

consistency, scalability and fault tolerance that are

important for the sustained operation of the large scale

distributed systems.

As with the current solutions they do offer sound

frameworks for coordinating distributed transactions

except for some shades of merkmal. Subsequent

studies should explore how other advanced

technologies such as Artificial Intelligence (AI) can be

integrated to improve fault forecasting, automated

remediation in distributed systems’ reinforcement.

The AI integrated systems could also proactively

anticipate possible transactions’ failure scenarios,

correct the work processes and the transaction

protocols, as well as optimize the general system

availability.

REFERENCES

[1] Limόn, X., Guerra-Hernández, A., Sánchez-

García, A. J., & Arriaga, J. C. P. (2018, October).

SagaMAS: a software framework for distributed

transactions in the microservice architecture.

In 2018 6th International Conference in

Software Engineering Research and Innovation

(CONISOFT) (pp. 50-58). IEEE.

[2] Lungu, S., & Nyirenda, M. (2024). Current

Trends in the Management of Distributed

Transactions in Micro-Services Architectures: A

Systematic Literature Review. Open Journal of

Applied Sciences, 14(9), 2519-2543.

[3] Daraghmi, E., Zhang, C. P., & Yuan, S. M.

(2022). Enhancing saga pattern for distributed

transactions within a microservices

architecture. Applied Sciences, 12(12), 6242.

[4] Salah, T., Zemerly, M. J., Yeun, C. Y., Al-

Qutayri, M., & Al-Hammadi, Y. (2016,

December). The evolution of distributed systems

towards microservices architecture. In 2016 11th

International Conference for Internet

Technology and Secured Transactions

(ICITST) (pp. 318-325). IEEE.

[5] Bashtovyi, A., & Fechan, A. (2024).

DISTRIBUTED TRANSACTIONS IN

MICROSERVICE ARCHITECTURE:

INFORMED DECISION-MAKING

STRATEGIES.

[6] Toffetti, G., Brunner, S., Blöchlinger, M.,

Dudouet, F., & Edmonds, A. (2015, April). An

architecture for self-managing microservices.

In Proceedings of the 1st international workshop

on automated incident management in cloud (pp.

19-24).

[7] Yadav, P. S. DESIGN AND EVALUATION OF

EVENT-DRIVEN ARCHITECTURES FOR

TRANSACTION MANAGEMENT IN

MICROSERVICES.

[8] Shabani, I., Mëziu, E., Berisha, B., & Biba, T.

(2021). Design of modern distributed systems

based on microservices

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706735 ICONIC RESEARCH AND ENGINEERING JOURNALS 715

architecture. International Journal of Advanced

Computer Science and Applications, 12(2).

[9] Navarro, A. (2022). Fundamentals of

Transaction Management in Enterprise

Application Architectures. IEEE Access, 10,

124305-124332.

[10] Nylund, W. (2023). Comparing Transaction

Management Methods in Microservice

Architecture.

[11] Zhang, G., Ren, K., Ahn, J. S., & Ben-

Romdhane, S. (2019, April). GRIT: consistent

distributed transactions across polyglot

microservices with multiple databases. In 2019

IEEE 35th International Conference on Data

Engineering (ICDE) (pp. 2024-2027). IEEE.

[12] González-Aparicio, M. T., Younas, M., Tuya, J.,

& Casado, R. (2023). A transaction platform for

microservices-based big data

systems. Simulation Modelling Practice and

Theory, 123, 102709.

[13] Godage, S., Kumar, T. R., Pandya, H., Bhosale,

S., & Patil, R. (2023). Web Interface for

Distributed Transaction System. Computer

Integrated Manufacturing Systems, 29(6), 214-

227.

[14] Christudas, B., & Christudas, B. (2019).

Distributed Transactions. Practical

Microservices Architectural Patterns: Event-

Based Java Microservices with Spring Boot and

Spring Cloud, 385-481.

[15] Fan, P., Liu, J., Yin, W., Wang, H., Chen, X., &

Sun, H. (2020). 2PC*: a distributed transaction

concurrency control protocol of multi-

microservice based on cloud computing

platform. Journal of Cloud Computing, 9, 1-22.

[16] Newman, S. (2021). Building microservices. "

O'Reilly Media, Inc.".

[17] Christudas, B., & Christudas, B. (2019).

Transactions and Microservices. Practical

Microservices Architectural Patterns: Event-

Based Java Microservices with Spring Boot and

Spring Cloud, 483-541.

