
© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 280

Machine Learning-Driven Fall Detection Using Wearable

Sensors for Enhanced Safety

OBI-OBUOHA ABIAMAMELA1, NGIM N. EWEZU2, ADJEROH E. PRINCEWILL3, DR.

AKINWUMI O. ADERONKE4

1,2,3,4Department of Mechanical and Mechatronics Engineering, Afe Babalola University, Ekiti, Nigeria.

Abstract- The goal of this study is to create an

accurate and dependable fall detection system

utilizing machine learning methods. By merging

accelerometer measurements from wearable sensors

that covered motion patterns related with falls and

regular activities, a huge dataset was constructed. To

extract useful characteristics from sensor data,

feature engineering approaches were used. After the

training of the model, upon testing an accuracy value

of 86.25% was attained, alongside a recall value of

90.68%, precision value of 83.16% and a f1 score of

85.91%. Finally, this work proposes a novel

approach to fall detection based on machine learning

approaches. Our research shows significant progress

in accurately detecting falls, outperforming existing

threshold-based approaches. The purpose of

building an effective fall detection system is to

promote individual safety and well-being,

particularly in healthcare settings. The proposed

technique has enormous potential to transform how

we respond to fall-related events and provide crucial

help to the aging population and those who work jobs

that may cause them to fall, such as construction

workers. This opens up fascinating new possibilities

for future study and real-world use of machine

learning-based fall detection systems, which will

directly touch people's lives.

Indexed Terms- Accelerometer, Fall detection,

Machine learning-based, Wearable sensors.

I. INTRODUCTION

All humans lose their balance and fall from time to

time, it is a phenomenon that affects all of us.

Although we consider falls to be prevalent, not all of

them are benign. In actual fact, in 1996, falls were

responsible for over 14,000 fatalities and 22 million

hospital and doctor visits. For individuals aged 79 and

over, they are the primary cause of unintentional injury

mortality and the second most common cause for

people of all ages. Men always die from falls at a

higher rate than women, and the rate rises

progressively with age. The two most frequently

identified locations for fatal falls are residences and

residential institutions [1].

However, within the population as a whole, there are

certain demographics of people at a greater risk of it

and who stand to be more affected by it. One such

group is the elderly, falling is a problem that affects

older persons all too frequently and can have serious

repercussions. Over one-third of senior citizens

experience unintentional falls, which causes them to

lose their independence and experience fear.

Unintentional falls frequently happen indoors when

moving about, as in restrooms and on stairs. For those

65 and older, the percentage of falls varies from 28 to

35, and for those 70 and older, it goes from 32 to 42

percent [2].

Another group of people whose falls might interest us

include those who faint. In medical terminology,

fainting is also known as ‘syncope’. It occurs when the

heart is unable to adequately pump blood to the brain.

Underlying medical conditions, such as balance or gait

issues, vision impairment, drug side effects, or

cognitive impairment, may be present in patients who

fall frequently. In these situations, healthcare

professionals must do a complete assessment of the

patient's health and create a personalized care plan to

lower the risk of falls. Seeing the effects of falling and

the groups of people it affects, it becomes necessary to

develop a system that helps speed up response to falls.

II. LITERATURE REVIEW

The goal of detecting falls is to get the victim prompt

medical attention by alerting a responder. Broadly

speaking, there are two approaches for detecting falls

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 281

in terms of the inference engine a controller uses. The

methods are; by using a threshold-based engine and a

Machine Learning-based engine.

A. Inference Engine

Threshold-based fall detection systems work by

capturing certain data from sensor — such as

acceleration, angular velocity, or orientation —

exceeds predetermined thresholds, it is considered to

be a fall event. This approach is predicated on the idea

that falls can be reasonably accurately identified by

setting proper thresholds since the motion patterns

during a fall are different from regular daily activities.

In order to assess whether a fall event has occurred,

this method entails setting precise thresholds for

several parameters, such as acceleration, orientation,

or angular velocity, which are then evaluated against

the sensor readings in real-time [3]. It is a very easy

approach to detecting falls once the threshold has been

decided. However, it's crucial to remember that the

right threshold value may change depending on the

particulars of the situation, such as the type of sensor

being used, the population being observed, and the

demands of the particular application. As a result, the

threshold needs to be properly established through

comprehensive investigation and validation in the

particular environment where the fall detection system

will be used.

B. Machine Learning

The research area of Machine Learning (ML) is what

enables computers to learn without being explicitly

taught [4]. ML is the branch of Artificial Intelligence

(AI) that teaches computers to make decisions by

helping them find the relationship between the inputs

and outputs in a dataset.

Most people agree that the current version of machine

learning was created by Cornell University

psychologist Frank Rosenblatt. Rosenblatt oversaw a

group that used theories about the workings of the

human nervous system to create a method that would

enable a machine to recognize the letters of the

alphabet. With a threshold component that converted

analog signals into discrete ones, the device, which its

creator called the "perceptron," used both discrete and

analog impulses. The way it learned was similar to the

psychological models developed of both human and

animal learning, and it served as the model for modern

artificial neural networks (ANN) [5].

In order to learn from data, machine learning uses

algorithms [6]. ML is an essential technique to fully

exploit AI technology. Because of its ability to learn

and make decisions, machine learning is commonly

referred to as artificial intelligence (AI), but it is

actually a subset of AI. It was a phase of AI

development up until the late 1970s. After that, it

broke off to carry on developing independently.

Nowadays, machine learning is used in many cutting-

edge technologies and is an essential response tool for

eCommerce and cloud computing [7].

C. Neural Networks

Conventional Machine Learning algorithms have the

disadvantage of still being machine-like, despite their

seeming complexity. They need a great deal of subject

knowledge and human assistance, and they can only

do what they were designed to do. Deep learning has

slightly greater potential for both the general public

and AI developers in this regard [8]. It makes it

possible for developers to tackle issues in areas in

which they lack expertise. Deep learning is a part of

machine learning that, in practice, learns to represent

the world as a layered hierarchy of concepts, where

each concept is defined in connection to more abstract

representations that are calculated in terms of less

abstract ones. Deep learning can attain enormous

power and flexibility because to this learning process

[8].

D. Wearable Sensors

The term ‘wearable fall detection’ refers to the use of

wearable devices that have sensors to detect and alert

for falls in real-time. The wearable devices can be

watches, wristbands, pendants, or belts; they typically

have accelerometers, gyroscopes, or other sensors that

can detect changes in movement and orientation.

When a fall is detected, the wearable device sends an

alert to a caregiver, family member, or emergency

services.

In [9], the suggested system extracts characteristics of

fall events from a mix of accelerometer and gyroscope

sensors and classifies them using machine learning

methods. In order to assess the effectiveness of the

approach, the authors also suggest a brand-new dataset

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 282

of fall events that includes activities that take place

throughout the fall.

The study's findings demonstrate that the suggested

system detects and recognizes falls with a high degree

of accuracy. With a sensitivity of 97.92% and a

specificity of 91.88%, the system detected falls with

an overall accuracy of 94.44%. The authors concluded

that their suggested system, which uses wearable

sensors to detect falls and distinguish them from

regular activities, is a promising method for detecting

falls in actual environments.

E. Non-Wearable Sensors

While wearable devices have traditionally been

utilized for fall detection, such as accelerometers and

gyro sensors included in smart watches and pendants,

there is growing interest in non-wearable fall detection

systems that do not require people to wear any

equipment.

Non-wearable fall detection systems employ a variety

of sensing methods, including pressure, acoustic, and

vision-based sensors. By examining the movements

and poses of the people, vision-based sensors that use

cameras can detect falls. Acoustic-based sensors

employ microphones to record the fall's sound and

recognize the distinctive acoustic patterns that are

related to falls. Pressure-based sensors use floor

sensors to identify pressure changes brought on by a

fall's impact. One of the popular non-wearable

methods that makes use of computer vision techniques

for fall detection is camera-based fall detection. In

these systems, cameras are installed in the surrounding

area to record video feeds, which are then analysed to

detect falls, such as in homes or healthcare institutions.

A single camera and an image processing algorithm

were utilized in a study [10] to develop a vision-based

fall detection system. The program was created to

identify falls by examining changes in the position,

size, and form of the objects in the camera view. They

got sensitivity and specificity values of at least 92

percent.

An acoustic-based fall detection system was suggested

in a different study [11], which employed a

smartphone to record and assess the sound of falls. The

suggested approach analyses the sound of a fall using

characteristics including energy, spectral centroid,

spectral entropy, and spectral flatness. To create a

classifier using the support vector machine (SVM)

algorithm, the system was trained using a dataset of

simulated falls and non-fall activities. The results

showed that the proposed system achieved a high

detection rate of 90.6% with a low false positive rate

of 0.2 per hour.

A pressure-based fall detection system that used

pressure sensors embedded in the floor to detect falls

was suggested in a study [12]. The technology they

used offers advantages over existing fall detection

systems, such as having a passive sensor (no power

source is required) and being fully undetectable

because the sensor is built into the floor. The outcomes

are contrasted with cutting-edge categorization

methods. With a True Positive Rate of 94.4% and a

False Positive Rate of 2.4%, fall detection performed

well on the database.

F. Research Gaps

There is still a void in our understanding of fall

detection notwithstanding notable breakthroughs.

Although it has been the subject of substantial

investigation, the kind of data sufficient to effectively

distinguish between falls and activities of daily living

(ADLs) to an almost certain degree of accuracy has not

received as much attention. Therefore, additional

research is required to close this gap and gain a better

understanding of what parameters are closely linked to

understanding falls.

In [13], their model was fed data from a gyroscope

only. However, because it cannot distinguish between

a fall and other activities that produce similar

acceleration patterns, an accelerometer alone is

insufficient for fall detection. It is challenging to

distinguish between falls and other activities, such as

sitting down, lying down, or activities of daily life that

may cause comparable acceleration profiles according

to [3]. Additional sensors, like gyroscopes or

barometers, may be required to provide

complementary data on changes in body position and

altitude in order to effectively detect falls.

Additionally, [14] noted that "the complexity of

human activities and the diversity of acceleration

patterns make it challenging to develop a reliable fall

detection algorithm using only acceleration data".

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 283

When deriving insights from data, it is important to get

context. In order to fully comprehend the data, the

interactions between variables, and the potential

influences on the data, context is essential while

evaluating data. Data without context may be

incomplete, deceptive, or difficult to understand. Take

a dataset, for instance, that reveals a sharp rise in sales

of a specific product. Without context, one would infer

that this growth is the result of an effective marketing

effort when, in fact, it might be the result of a seasonal

pattern or a shortage of a rival product.

It is quite common to find papers studying fall

detection that forget about context. In [15], only 10

participants had data collected, which may not be

enough to fully assess the proposed system's efficacy,

especially in identifying falls in various settings and

among diverse populations. In fall detection, where the

model must be able to detect falls in various

surroundings, with various people, and in various

situations, a model that has been trained on a big, but

more importantly, diverse dataset is more likely to

generalize to new situations and settings.

Secondly, larger dataset may offer more variety in the

kinds of recorded falls and non-fall events, enabling a

more thorough knowledge of fall patterns and

behaviours. By doing this, the model's precision and

adaptability to novel circumstances can both be

enhanced.

III. RESEARCH METHODOLOGY

A. Hardware

As the physical interface between the program and the

outside world, hardware plays a crucial role in

embedded systems initiatives. The capabilities of the

software are heavily reliant on the hardware, for

optimal function of our system we chose a

microcontroller and peripherals that complied with the

project’s power consumption, memory, ease of use,

size, processing and budgetary restrictions.

Additionally, hardware design is essential to ensuring

the system complies with the project's power

consumption, size, and budgetary restrictions.

Hardware constraints may occasionally even influence

the choices made for software design and execution.

i. Choosing microcontroller

A microcontroller is a miniaturized microcomputer

designed to perform certain tasks for embedded

devices, such accepting external signals and

displaying radio data. It is essentially our project's

brain. Peripherals are controlled by it.

Choosing our micro-controller left us with a lot of

dilemmas, the first criteria we used was processing

power. Processing power, commonly referred to as

computing power, describes a computer system's

capacity to carry out calculations and handle data. It is

often assessed in terms of how quickly and effectively

a system can carry out actions like running software

programs, managing input and output, and carrying

out mathematical computations.

The central processing unit (CPU), which is in charge

of carrying out computations and carrying out

commands, is mostly responsible for determining the

processing power of a computer system. The CPU's

clock speed, which is expressed in gigahertz (GHz),

determines how quickly it operates. Faster processing

power is typically associated with higher clock speeds,

while other elements like the number of cores and the

architecture's efficiency can also impact performance.

We considered the Raspberry Pi with its 1.5 GHz

quad-core 64-bit ARM Cortex-A72 processor, up to 8

GB of RAM, and up to 256 GB of microSD storage. It

is perfect for uses like home automation and

multimedia streaming because it supports technologies

like Wi-Fi and Bluetooth networking. Raspberry Pi

can be used for various ML jobs even though its

processing power is lower than that of more potent

desktop or server computers. Running small to

medium-sized ML models and even Neural Networks,

such speech or picture classification, on the Raspberry

Pi is a good idea. These models can be developed on

more powerful platforms, trained, and then deployed

for inference on the Raspberry Pi. In contrast, due to

their constrained processing speed and memory,

Arduino boards are not normally intended for

demanding machine learning (ML) workloads.

Nevertheless, there are some situations in which

Arduino boards can be utilized for machine learning,

such as for straightforward categorization jobs or

simple data pre-processing.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 284

ii. Memory

When it comes to embedded systems, memory is a

crucial factor. Embedded systems are frequently

utilized in areas with limited power and space since

they are typically built to carry out specific functions.

The precise needs of the system and the tasks it must

complete determine how much memory is needed for

an embedded system. For instance, the system can

need extra memory to retain intermediate findings if it

must process vast volumes of data or run complicated

algorithms. Similarly, the system can need extra non-

volatile memory if it wants to store a lot of data or

program instructions.

Raspberry Pi has greater RAM and non-volatile

memory than most Arduino boards ranging from 2GB-

8GB vs 32KB -512 KB of flash memory and 2KB -

32KB of RAM. Tilting the suitability for ML in

Raspberry Pi’s favour.

iii. Ease of Use

Given the time available to complete this project, it

was very important to find out which microcontroller

would be easier to use and set-up. Needing some

knowledge of Linux to get the Raspberry Pi running

was a bit discouraging. Meanwhile, Arduino had its

simplicity and the abundance of user-friendly tutorials

and materials going for it.

iv. Portability

It is important for the wearable device to be

comfortable for the user to wear. That means it should

be portable.

Due to their smaller size and reduced power needs,

Arduino boards are generally more portable than

Raspberry Pi. The tiny and lightweight designs of

Arduino boards make them perfect for projects that

need to be carried around. On the other hand,

Raspberry Pi is typically bigger and uses more power

to run. Even while certain Raspberry Pi versions, like

the Raspberry Pi Zero, are small and portable, they still

need a power source like a micro-USB connection and

possibly other accessories like a monitor and

keyboard. Arduinos meanwhile, use a battery of USB.

v. Availability and Support

One very important criterion is availability, project

delays and cost overruns may occur if a

microcontroller is not easily accessible. It is vital to

choose a microcontroller that is widely available and

easy to purchase from trustworthy sources. It can also

ensure that any necessary replacement parts or

components are readily available.

Another important factor is the availability of support

materials such as manuals, tutorials, and forums. They

can have a significant impact on the ease and speed

with which development can be completed. It is vital

to choose a microcontroller that includes useful

information and recommendations. applying new

features, understanding how to swiftly identify

problems, and applying best practices and

optimizations can all benefit developers. Furthermore,

having a large and active development community has

advantages. Developers can use this to contribute

code, discover answers to questions, and learn from

others' experiences. It may also ensure that the

microcontroller is compatible with a wide selection of

software libraries, tools, and add-ons.

vi. Cost

The cost of a microcontroller is an important

consideration for many design projects. One of the

most obvious reasons to consider the cost of a

microcontroller is to ensure that the project remains

within budget.

Another important reason is if the project is intended

for mass production, the cost of each microcontroller

can add up quickly. By selecting a cost-effective

microcontroller, designers can keep the production

costs low and increase their profit margins.

As a result, many design projects consider a

microcontroller's price. The Arduino and Raspberry Pi

platforms differ from one another in terms of price in

some ways.

Generally speaking, Arduino boards are less expensive

than Raspberry Pi boards. Depending on the type and

features it delivers, an Arduino board might cost

anywhere from $5 to $60. Using these criteria after

comparing the two microcontrollers, the Arduino was

decided to be the best option, due to its adequate

performance in ML applications, cost-effectiveness,

availability and support, and ease of use.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 285

B. Selecting Peripherals

Peripherals in embedded systems are hardware

components that are added to the main microcontroller

or microprocessor to expand its capabilities. These

peripherals can be either built into the microcontroller

or added externally, and they provide a way to

interface with the outside world, such as sensors,

displays, or communication devices.

Choosing the peripherals was dependent on how we

wanted the overall system to function and factors like

the pinout, voltage levels and communication

protocols. We envisioned a system whereby based on

motion data, a ML model detects whether a fall has

occurred or not, and when it had, a call for help is

made. To get this motion data, we decided to use an

accelerometer (specifically the ADXL345) and for the

signal, a GSM module. The accelerometer reveals

details about an object’s motion or orientation by

measuring change in velocity. The operational

principle can be summarized in Figure 1.

i. Sensor data

The most important criteria for picking peripherals are

what they are being used for.

In fall detection, the most important variables to

consider are acceleration in all three axes, tilt and the

direction of the magnetic field. So, we need the

peripherals to include the following; accelerometer,

gyroscope and magnetometer. Gyroscopes track

rotational motion or angular velocity around several

axes. They can be used to detect changes in orientation

and offer information on the rate of rotation of an item.

Figure 1: Flowchart for the development of the Fall

detection system

Gyroscopes are essential for activities like stabilizing

a camera or managing an aircraft's attitude.

For precise measurements of an object's motion in

three dimensions, the IMU combines data from

multiple sensors. The IMU can follow changes in

location, velocity, and orientation by continually

measuring acceleration and rotation. Applications

requiring accurate motion tracking and control, such

as navigation, robotics, virtual reality, motion capture,

and many more areas, all depend on this data.

When training our model, we decided to use an

established dataset called the SisFall dataset on

Kaggle. We did this instead of gathering data

ourselves from ourselves because of the following

reasons; challenges with removing noise, the time

taken to gather enough data and complexities involved

in storing the data. Our approach gave us access to a

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 286

standard benchmark for our model training, enabled us

to develop the system faster and access to proven

quality data. As a result of the data we were using for

training we decided to use an ADXL345

accelerometer as our sensor. The ADXL345 is a small,

thin, fully functioning 3-axis accelerometer with

signal-conditioned voltage outputs. The full-scale

range of the device's acceleration detection is ±16g.

Fixed plates and moving plates make up the

accelerometer's fundamental construction. The

capacitance between stationary plates and movable

plates changes as acceleration is applied along an axis.

As a result, the output voltage amplitude of the sensor

increases in proportion to the acceleration. This

module's specifications and features include an on-

board LDO voltage regulator, a 3V–6V DC supply

voltage, integrated MOSFET-based voltage level

converter, it has the ability to interact with both 3.3V

and 5V microcontrollers. Ultra-Low Power: SPI and

I2C interfaces, Tap/Double Tap Detection, Free-Fall

Detection, 40uA in measurement mode, and 0.1uA in

standby at 2.5V The measurement range is ±16g, and

the values are -235 to +270 for X, -240 to +260 for Y,

and -240 to +270 for Z. An image can be found in

Figure 2.

Call for help

The other function the controller is not capable of

performing is the communication with the outside

world. Peripherals that enable this are called

communication modules, alongside them a buzzer,

LED and charging module were included to sound an

alarm, call bystanders through light and charge the

system respectively. The HC-05 Bluetooth module

was the first communication module that was taken

into consideration for the project.

Figure 2: ADXL345 accelerometer

The research (included in the planning stage) revealed

that previously created systems lacked 'fast'

communication methods as a result, which was

discovered later on. This observation was made in the

sense that the device's primary goal, to immediately

alert first responders in the event of a fall, was not

really achieved as the Bluetooth module needed to

send data to a mobile device first and foremost before

the user could call the medical staff. This finding led

to the selection of the SIM808 GSM/GPRS module as

a new communication module.

The SIM808 Module from SIMCOM serves as the

basis for this GSM and GPS modem. The SIM808

uses the Global Positioning System (GPS) for satellite

navigation and supports GSM/GPRS Quad-Band

networks. It is based on the most modern GSM/GPS

module from SIMCOM. It contains a built-in charging

circuit for lithium-ion batteries and a very extended

standby life. It is therefore ideal for uses that require

rechargeable Li-Ion batteries. In addition, it has 66

acquisition channels and 22 tracking receiver

channels, both of which improve the sensitivity of its

GPS reception. Additionally, A-GPS, which can be

utilized for indoor localization, is supported. AT

instructions are used to control the module using

UART. module (ElectronicsComp.Com)., 2023). The

SIM808 is shown in Figure 3.

Figure 3: SIM808 Module

We also included a buzzer to sound an alarm whenever

a fall happens and an LED. A buzzer or beeper is an

auditory signalling device that can be mechanical,

electromechanical, or piezoelectric (The Free

Dictionary, 2015). They can be active or passive. For

the project, an active buzzer was used. They are

commonly offered in voltage ranges between 1.5V to

24V. To generate a sound, all that is needed to do is

supply a DC voltage to the pins. Active buzzers are

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 287

polarized. Similar to an LED and a capacitor, the

longer pin is connected to the positive terminal.

i. Charging Module

The TP4056 charging module was employed. For

lithium-ion and LIPO batteries, this is a linear charger.

The module can recharge single-cell batteries, and

because of its ability to create 4.2V, it is particularly

well suited for charging 18650 cells and other 3.7V

batteries. The charger can be powered by any source

that provides a 5V and 1A supply, whether a USB

source, wall adapter, or other.

When operating at high power levels or in

environments with high ambient temperatures,

thermal feedback automatically modifies the charge

current to control chip temperature. A resistor can be

used to externally control the charging current, while

the charging voltage is fixed at 4.2V. The TP4056

module automatically switches to a low current mode,

reducing the battery leakage current to less than 2uA,

when the input voltage (from the AC adapter or USB

power) is interrupted.

C. Circuit Design

The circuitry of the device must be clearly defined in

order for it to operate as intended. Tinker CAD was

used for the circuit design. This Autodesk-developed

free online 3D modelling tool is accessed using a web

browser (Herrman, n.d.). Proteus 8 was initially

supposed to be utilized, but it was abandoned in favour

of Tinker CAD since it lacked libraries for some of the

components, such as those for the sensors (the

ADXL345 accelerometer and the LSM303 IMU

module).

The HC-05 Bluetooth module served as the

communication module in the initial circuit design.

The circuit design for the system is shown in Figure 4.

Figure 4: Circuit design for the connection of the

components involved in the fall detection system

A new circuit was created after the modifications and

improvements made to the HC-05 Bluetooth module

to accommodate for those factors.

The selection of the design and component steps was

followed by the implementation phase. Components

were ordered and delivered on time to avoid project

delays. At this stage, a test version of the fall detection

and alarm system was developed. The creation of

programming code or algorithms for the

microcontroller—in this case, the ATMega328PU

from the Arduino UNO—is another thing that

happens. To make it easier to spot and address issues,

it was made sure that the algorithm was clear-cut and

simple to understand.

D. Software Implementation

The success of this project is massively dependent on

the ML model. This is because the regular detection of

falls is a function of the accuracy of the model. A high

model accuracy on new data means that it has

successfully learnt the relationship between the

features and output. Training a model is essential to its

accuracy because it enables the model to learn

patterns, relationships, and representations from the

available data.

The model was trained with access to a lot of labelled

data. This is to help it derive pertinent features and

comprehend underlying patterns and trends by

watching and examining this data. High accuracy is

achieved by the generalization of the model's

information from training instances to new ones. The

objective is to identify the underlying patterns that

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 288

may be applied to fresh, comparable situations rather

than simply memorizing the training data.

The Jupyter Notebook was used for the majority of the

model's training, testing, and evaluation. Creating and

sharing documents with live code, equations, pictures,

and narrative text is possible with this open-source

web application. It is a popular tool for data analysis,

scientific computing, and machine learning.

Its compatibility with the Python programming

language was key in its choice. This is because of

Python’s simplicity, abundance of ML libraries,

adaptability, strong community support, simplicity in

integrating with other technologies, and ability to

balance performance and productivity.

i. Import dataset

The lifeblood of ML is the data. Quality data is needed

to make good inferences. The dataset the model was

trained on was the SisFall dataset from Kaggle, as

stated earlier. To provide enough information to the

model about a 1000 sets of data points were fed into

the model.

Also, to enable it distinguish between falls and not

falls, an equal number of samples were used.

The pandas library which is useful for manipulating

data was imported to help read the dataset into the

code.

ii. Filter data

The SisFall dataset has over a million samples. This is

good because the more samples fed into the model, the

better it can generalize. However, larger datasets tend

to take longer to train. To save training time, the model

was reduced to 2000 samples. 1000 samples of falls

and another 1000 samples of non-falls.

An equal number of affirmative and negative samples

were used to prevent a class imbalance. Classification

models frequently perform poorly for the minority

class when there is a class imbalance because they are

biased toward the dominant class. So, bias was

reduced by giving the model an equal representation

of both classes by balancing the amount of affirmative

and negative samples. This makes the model more

accurate.

After filtering the data, the dataset was segmented into

the features and dependent variable vectors. Features

are the characteristics or properties that reveal details

about the instances or data points in a dataset. They

record various data facets or qualities that are pertinent

to the learning activity. With regards to this project,

the features are the data from the sensor. We also

removed data our sensors wouldn’t have like rotational

data.

Whereas, the dependent variable vector is the model’s

output i.e. whether the individual has fallen or not.

Generally, it could either be a set of continuous

numbers or a category.

iii.

iv. Pre-process data

In machine learning, the term "data pre-processing"

refers to the procedures and methods used to organize

and change raw data into a format appropriate for

analysis and model training. It plays a crucial role in

the machine learning pipeline and entails a number of

tasks, such as normalization, transformation, and data

cleansing. Improving data quality, managing missing

values, getting rid of inconsistencies, and preparing

the data for machine learning algorithms are its

objectives. Encoding categorical data, dividing the

data into training and test sets, and feature scaling were

the data pre-processing techniques used in this study.

Categorical data refers to data that is not in numerical

form. Data used to name or categorize objects is

referred to as categorical data since it reflects several

categories or groups. It is made up of qualitative

variables that describe the traits or qualities of the

subjects under investigation. Nominal or qualitative

data are other names for categorical data. In

categorical data, each observation is categorized into a

single category or class; the categories themselves

have no inherent numerical value or order. However,

computers cannot understand qualitative data e.g.

‘tall’, ‘short’, ‘fall’, ‘not fall’ etc. Therefore, it has to

be converted into a form the model would understand.

The majority of statistical models and machine

learning algorithms operate on numerical data. We

make it possible for these models to effectively

process and interpret the data by encoding categorical

variables into numerical form. Algorithms may

compare data, carry out mathematical operations, and

find patterns in the data by converting category data to

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 289

numerical values. The output values fall and not fall

are converted to 0s and 1s.

The main goal of separating the dataset is to assess a

model's performance on unobserved data. We use one

part, usually the majority of the samples, to train the

model. That portion of the data set is called the training

set, meanwhile, the ‘unobserved data’ is the test set.

The main reason this is done is to measure how

effectively the model generalizes to new, untested

situations by using a subset of the data as a test set.

The model's performance in real-world situations is

estimated by this evaluation, which also helps

determine the model's predictive or categorical

accuracy. Lastly, but not least dividing the dataset is

done to avoid leakage. Usually, before the training set

is fed into the model it undergoes several processing

stages. To avoid information from the test set

mistakenly affecting the outcome. It is separated from

the dataset. Also, by using this test set. We can

compare the accuracies of different models to find out

which is more suitable for the problem at hand. The

entire dataset was split 80/20 into training and test set.

Afterwards, we scaled our features. Feature scaling is

a data pre-processing method used in machine learning

to standardize or normalize a dataset's numerical

features. This is done eliminate biases and make sure

that no one aspect predominates the learning process,

it seeks to scale all features to a similar level.

The size of the features can have a major impact on the

performance of the model in many Machine Learning

techniques, including those based on distance

computations or gradient descent.

v. Training the Model

There are several kinds of Machine Learning (ML)

models. The factors considered in choosing a model

were; the problem type, interpretability, robustness to

noise, model complexity and performance metrics.

a. Problem Type

Broadly speaking, ML can be grouped into two types

of problems namely; regression and classification.

Regression involves the prediction of a continuous

numerical variable. The target variable is a number

with actual meaning to the computer.

Meanwhile, classification involves the prediction of

categories. Its object is to use labelled to data to predict

the label of unseen data.

The aim of the model in this project is to ‘label’

movement as falls or not falls. Therefore,

classification ML models were decided upon.

b. Interpretability

It was of utmost importance that the model used could

represent the relationship between the features and

output as a mathematical equation. This is because

implementing the model on Arduino becomes a

problem of simple computation and not one of intense

programming. Arduino is not a native language for

training ML models, so to avoid any difficulty. We’d

get the equation after building the model with Python

elsewhere, using the Arduino just for inference.

c. Robustness to Noise

A very desirable characteristic of machine learning

(ML) models and systems is robustness to noise. It

speaks to a model's capacity for sustaining reliable

predictions or actions in the face of noise or other

disturbances in the input data. Measurement mistakes,

outliers, missing data, and irrelevant features are just a

few of the many potential sources of noise that can

have a big impact on how well ML models perform

and how reliable they are.

d. Model Complexity

Simpler models are frequently simpler to understand,

train, and troubleshoot. Though more accurate,

complex models can be computationally expensive

and prone to overfitting.

e. Performance Metrics

This involves choosing models based on their ability

to make accurate predictions on unseen data. Two

metrics we considered are accuracy and f1 score. Two

metrics that show how well a machine learning model

can categorize observations into classes are accuracy

score and F1 score. How many of our predictions were

accurate is indicated by the straightforward metric

known as accuracy. Another statistic applied to multi-

class classification models is the F1 score. It is

preferred over accuracy because it offers trustworthy

results for a variety of datasets, whether or not they are

imbalanced.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 290

After considering the above criteria, it was decided

that the Support Vector Classifier would be the most

appropriate for this project. However, it has two

different types namely; linear and kernel Support

Vector Classifier. To determine which to use, their

performance metrics were evaluated. The linear SVM

had an accuracy and f1 score of 0.8888 and 0.886

respectively meanwhile, the RBF/Kernel SVM had an

accuracy and f1 score of 0.87 and 0.86. Therefore, the

linear SVM performed better on new observations.

vi. Arduino Implementation

On Arduino, the model was implemented alongside

the operations of the sensors, GSM modules and

buzzers. The following steps were undertaken to

achieve this; importing libraries, configure the GSM

module, set weights and biases, build model, get data

from sensors, pre-process data and parse new data into

the model.

a. Importing Libraries

For software development, library imports are crucial.

They make code organization, work simplification,

time savings, code sharing, reliability, and learning

materials all possible. They provide pre-made

functions for typical operations, bundle reusable code,

and simplify low-level details.

Libraries help to add new functionality to sketches,

such as the ability to interact with hardware or

manipulate data. They simplify the process of

interacting with hardware. The libraries imported

were:

• Wire.h: To aid serial communication with external

devices.

• Adafruit_Sensor.h: To help control all sensors

from Adafruit

• GSM.h: To help control the GSM module.

• Adafruit_ADXL345: To help control the

accelerometer specifically.

b. Configure GSM module

To configure the GSM module, an instance of the

GSM library was created, providing functions and

APIs to interact with GSM modules for enabling data

connections, placing calls, and sending and receiving

SMS messages.

c. Configure the accelerometer

The accelerometer was configured using an instance

of the Adafruit_ADXL345 library to operate the

ADXL345 sensor module, which is a three-axis

accelerometer capable of measuring acceleration

along multiple directions. This library offers methods

for interacting with the sensor, retrieving acceleration

data, configuring power-saving modes, enabling

interrupts, and setting measurement ranges. The

getEvent function was employed to obtain real-time

motion data.

d. Configure buzzer

Additionally, the buzzer was set up by defining the pin

it was connected to and configuring it as an output

using pinMode. A condition was established to send a

HIGH signal to the buzzer, triggering it as needed.

e. Pre-process data

The data from the sensor needs to have a similar

distribution to the one the model was trained on.

The mean and standard deviation of the training set is

obtained and used to scale the sensor data before it is

passed into the model.

f. Inference/ Prediction

 Finally, the model was implemented as a prediction

function, utilizing the weights and biases derived from

the model trained in Jupyter. These parameters were

stored in an array and applied within an equation to

determine the best fit for classification. Based on the

output values, the sensor data was classified as either

a fall or a non-fall event.

g. Activate buzzer

When a fall is detected, a ‘HIGH’ signal is sent to the

buzzer and a message is sent by the GSM module to a

number chosen by the designer.

IV. RESULTS AND DISCUSSION

The findings of a thorough examination into fall

detection using machine learning approaches are

presented in this chapter. The goal of this project was

to create a fall detection system that was precise and

trustworthy while utilizing AI algorithms. The

effectiveness of various machine learning models was

assessed through rigorous experimentation and

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 291

analysis with the goal of enhancing the detection

abilities of such systems.

A diversified dataset made up of actual fall events and

non-fall activities was used for the studies. The dataset

was meticulously chosen to guarantee its variety and

representativeness, including a range of scenarios and

environments. On the basis of this dataset, machine

learning models were trained to identify the patterns

and traits connected to falls while separating them

from other activities.

The performance of our models for the fall detection

system are then discussed. By giving a complete

examination of the investigation's findings, this

chapter offers insightful information on fall detection

utilizing machine learning techniques.

a. Learning Curve

A conventional learning curve's x-axis reflects the

number of training samples or iterations, while the y-

axis represents a performance parameter like accuracy

or error rate. The learning curve depicts how the

model's performance improves or stabilizes as more

data or iterations are added.

Per the learning curve, our model performed quite well

on the training and test set without overfitting. The

accuracy on the training set started at 100 percent and

that of the test set at about 0, but over more epochs

both converged at 91 and 86 percent respectively. This

shows that the model stopped memorizing the training

data as time went on and began to generalize better on

unseen data. Showing that ML is viable approach to

detecting falls. The curve is shown in Figure 5.

Figure 5. Learning Curve of the model

b. Colour Map

When building models, it is important to have a feel

for how it makes decisions. To this end, we employed

a colour map to understand how our model classifies

an action as a fall or an ADL. The colour map is used

to show the decision boundary of a machine learning

model. The decision boundary is the dividing line or

surface that separates multiple classes or categories in

the input space. It is the moment when the model

switches from predicting one class to predicting

another. Though most data points are correctly

classified, the boundary between both classes is a

straight line due to our use of a linear model.

Consequently, you would notice that it doesn’t define

both classes appropriately because many wrongly

classified data points can be found on either side of it.

Another thing is, our dataset was of a high

dimensionality and had to be reduced to 2D through

Principal Composition Analysis (PCA) to make the

visualization, as a result, it is hard to understand which

combination of our features PC1 and PC2 are. The

colour map can be seen in Figure 6.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 292

Figure 6: Decision Boundary of the model

c. ROC curve

A graph called the ROC curve shows how well a

classification model can distinguish between two

classes. It displays the true positive rate (sensitivity) in

comparison to the false positive rate (1-specificity) at

different threshold levels. The curve of a successful

model will be toward the upper-left corner, signifying

low false positives and high sensitivity.

By contrasting sensitivity (true positive rate) against

false positive rate (1-specificity) at various threshold

levels, the ROC curve illustrates a classification

model's capacity to discriminate between two classes.

In the context of fall detection, it is critical to

comprehend how sensitivity and specificity are

balanced. High sensitivity guarantees that most falls

are recognized, but it may increase false positives,

resulting in unneeded alarms or actions. Improving

specificity (cutting false positives) may reduce

sensitivity, risking missing falls, which could have

serious consequences. Given the various contexts in

which this technology could be used it is important to

understand the trade-offs at play here.

An ideal AUC (Area under the curve) tends to 1,

indicating a high ability to tell apart both events (falls

and ADLs). However, AUC does not show

performance at individual thresholds, it is useful to

focus on specific locations on the ROC curve where

sensitivity is preferred. The curve is shown in Figure

7.

Figure 7: Area under the ROC curve

d. Confusion Matrix

A classification model's performance is assessed using

a table called the confusion matrix. It is extensively

used in statistics and machine learning to understand

the prediction accuracy and error rates of a model. A

confusion matrix is often a square matrix that contains

both the actual and expected classes or labels. It is

divided into four major sections:

True Positives (TP) occur when the model correctly

predicted the positive class. The model detects falls so

the positive class is ‘fall’ and the negative class is ‘not

fall’.

True Negatives (TN) are situations in which the model

correctly predicted the negative class.

False Positives (FP) occur when the model incorrectly

predicted a class and the actual class is not that class.

False Negatives (FN) occur when the model

incorrectly predicted the negative class.

The image of the table generated by the code is shown

in Figure 8.

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 293

Figure 8: The Confusion Matrix

The confusion matrix shows that while our model

properly identified 360 falls as falls, it misclassified 73

non-falls as falls, and it correctly identified 330 non-

falls but misclassified 37 falls as non-falls. As per the

model's predictions, there were 360 True Positives, 73

False Positives, 330 True Negatives, and 37 False

Negatives.

Evaluation measures including the accuracy score,

precision, recall, and f1 score can be calculated from

these statistics. One performance metric that shows

how well a model predicts the future overall is

accuracy. It is computed as the sum of the true

positives and true negatives divided by the total

number of forecasts. The percentage of accurate

positive forecasts among all positive forecasts is

known as precision. It highlights how important

positive forecasts are.

Recall, sometimes referred to as sensitivity or true

positive rate, quantifies the percentage of correctly

anticipated positive cases among all actual positive

instances. It centres on how accurate optimistic

predictions are.

The F1 score combines precision and recall into a

single metric by considering their harmonic mean. It

offers an impartial evaluation of the model's

performance. Our model's f1 score was 85.91, its

precision was 83.16, and its recall was 90.68.

especially good at spotting real positives, (i.e. falls).

CONCLUSION

This project successfully designed and implemented a

fall detection system using machine learning

techniques. By employing the SisFall dataset for

model training and testing, the system achieved an

impressive accuracy of 86.25% and demonstrated

strong performance metrics, including a recall of

90.68%, precision of 83.16%, and an F1 score of

85.91%. These results highlight the system's ability to

reliably detect falls while minimizing false positives,

making it suitable for real-world applications.

The fall detection system's innovative design—

integrating robust hardware, a trained machine

learning model, and communication peripherals—

ensures timely alerts to caregivers, promoting safety

and independence for ‘at-risk’ individuals. While the

results are promising, further research is

recommended to enhance the system's adaptability to

diverse environments and populations, improve

robustness against noise, and explore alternative data

sources for increased accuracy. The development of

this system contributes significantly to the field of

wearable technology and machine learning, opening

avenues for improved patient care and accident

response.

ACKNOWLEDGMENT

We would like to thank God for giving us the

opportunity to carry out this study and Afe Babalola

University for providing the tools and assistance

required for this investigation. Dr. A. O. Akinwumi

deserves special recognition for her important advice

and knowledge during the study. The SisFall dataset is

also credited with making it easier to train and assess

the machine learning model. Last but not least, we

appreciate the support and helpful criticism we

received from our peers and families during the study.

REFERENCES

[1] Hoskin, A. (1998, April 01). Europe PMC.

Retrieved from https://europepmc.org:

https://europepmc.org/article/med/9592923.

[2] World Health Organization. (2023, March 30).

Retrieved from https://www.who.int/news-

© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880

IRE 1706660 ICONIC RESEARCH AND ENGINEERING JOURNALS 294

room/fact-

sheets/detail/falls#:~:text=A%20fall%20is%20d

efined%20as,though%20most%20are%20non%

2Dfatal.

[3] Bourke, A. K. (2010). GamblEvaluation of

waist-mounted tri-axial accelerometer-based

fall-detection algorithms during scripted and

continuous unscripted activities. Journal of

Biomechanics, 3051-3057.

[4] Mahesh, B. (2018). Machine Learning

Algorithms - A Review. International Journal of

Science and Research (IJSR), 381-386.

[5] Bush, R. R. (1951). A mathematical model for

simple learning. Psychological Review,

58(5),313–323.

[6] Robert Koch. (2023, March 2).

https://www.clickworker.com/. Retrieved from

clickworker.com:

https://www.clickworker.com/customer-

blog/history-of-machine-learning/

[7] Foote, K. (2021, December 3). dataversity.

Retrieved from https://www.dataversity.net:

https://www.dataversity.net/a-brief-history-of-

machine-learning/

[8] Mahapatra, S. (2018, March 21). Towards Data

Science. Retrieved from

towardsdatascience.com:

https://towardsdatascience.com/why-deep-

learning-is-needed-over-traditional-machine-

learning-1b6a99177063

[9] F. Hussain, F. H.-u.-H. (2019). Activity-Aware

Fall Detection and Recognition Based on

Wearable Sensors. IEEE Sensors Journal, vol.

19, no. 12, 4528-4536.

[10] Adrian Nunez-Marcos, G. A.-C. (2017). Vision-

Based Fall Detection with Convolutional Neural

Networks. Hindawi,Wireless Communications

and Mobile Computing 2017(1), 1-16.

[11] Cheffena, M. (2016). Fall Detection Using

Smartphone Audio Features. IEEE Journal of

Biomedical and Health Informatics, vol. 20, no.

4, 1073-1080.

[12] Minvielle, L. M. (2017). Fall detection using

smart floor sensor and supervised learning. 39th

Annual International Conference of the IEEE

Engineering in Medicine and Biology Society

(EMBC). Jeju, Korea (South): IEEE.

[13] Tang, C.-H. O. (2015). Fall Detection Sensor

System for the Elderly. International Journal of

Advanced Computer Research.

[14] Su, Y. &. (2015). Fall detection in the elderly

population by using wearable devices: A review.

Sensors, 15(6), 11882-11910.

[15] Santoyo-Ramón, J. C.-G. (2018). Analysis of a

smartphone-based architecture with multiple

mobility sensors for fall detection with

supervised learning. Sensors 18, 1155.

