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Abstract- The goal of this study is to create an 

accurate and dependable fall detection system 

utilizing machine learning methods. By merging 

accelerometer measurements from wearable sensors 

that covered motion patterns related with falls and 

regular activities, a huge dataset was constructed. To 

extract useful characteristics from sensor data, 

feature engineering approaches were used. After the 

training of the model, upon testing an accuracy value 

of 86.25% was attained, alongside a recall value of 

90.68%, precision value of 83.16% and a f1 score of 

85.91%. Finally, this work proposes a novel 

approach to fall detection based on machine learning 

approaches. Our research shows significant progress 

in accurately detecting falls, outperforming existing 

threshold-based approaches. The purpose of 

building an effective fall detection system is to 

promote individual safety and well-being, 

particularly in healthcare settings. The proposed 

technique has enormous potential to transform how 

we respond to fall-related events and provide crucial 

help to the aging population and those who work jobs 

that may cause them to fall, such as construction 

workers. This opens up fascinating new possibilities 

for future study and real-world use of machine 

learning-based fall detection systems, which will 

directly touch people's lives. 

 

Indexed Terms- Accelerometer, Fall detection, 

Machine learning-based, Wearable sensors. 

 

I. INTRODUCTION 

 

All humans lose their balance and fall from time to 

time, it is a phenomenon that affects all of us. 

Although we consider falls to be prevalent, not all of 

them are benign. In actual fact, in 1996, falls were 

responsible for over 14,000 fatalities and 22 million 

hospital and doctor visits. For individuals aged 79 and 

over, they are the primary cause of unintentional injury 

mortality and the second most common cause for 

people of all ages. Men always die from falls at a 

higher rate than women, and the rate rises 

progressively with age. The two most frequently 

identified locations for fatal falls are residences and 

residential institutions [1].  

 

However, within the population as a whole, there are 

certain demographics of people at a greater risk of it 

and who stand to be more affected by it. One such 

group is the elderly, falling is a problem that affects 

older persons all too frequently and can have serious 

repercussions. Over one-third of senior citizens 

experience unintentional falls, which causes them to 

lose their independence and experience fear. 

Unintentional falls frequently happen indoors when 

moving about, as in restrooms and on stairs. For those 

65 and older, the percentage of falls varies from 28 to 

35, and for those 70 and older, it goes from 32 to 42 

percent [2].  

 

Another group of people whose falls might interest us 

include those who faint. In medical terminology, 

fainting is also known as ‘syncope’. It occurs when the 

heart is unable to adequately pump blood to the brain. 

Underlying medical conditions, such as balance or gait 

issues, vision impairment, drug side effects, or 

cognitive impairment, may be present in patients who 

fall frequently. In these situations, healthcare 

professionals must do a complete assessment of the 

patient's health and create a personalized care plan to 

lower the risk of falls. Seeing the effects of falling and 

the groups of people it affects, it becomes necessary to 

develop a system that helps speed up response to falls. 

 

II. LITERATURE REVIEW 

 

The goal of detecting falls is to get the victim prompt 

medical attention by alerting a responder. Broadly 

speaking, there are two approaches for detecting falls 
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in terms of the inference engine a controller uses. The 

methods are; by using a threshold-based engine and a 

Machine Learning-based engine. 

 

A. Inference Engine 

Threshold-based fall detection systems work by 

capturing certain data from sensor — such as 

acceleration, angular velocity, or orientation —

exceeds predetermined thresholds, it is considered to 

be a fall event. This approach is predicated on the idea 

that falls can be reasonably accurately identified by 

setting proper thresholds since the motion patterns 

during a fall are different from regular daily activities. 

In order to assess whether a fall event has occurred, 

this method entails setting precise thresholds for 

several parameters, such as acceleration, orientation, 

or angular velocity, which are then evaluated against 

the sensor readings in real-time [3]. It is a very easy 

approach to detecting falls once the threshold has been 

decided. However, it's crucial to remember that the 

right threshold value may change depending on the 

particulars of the situation, such as the type of sensor 

being used, the population being observed, and the 

demands of the particular application. As a result, the 

threshold needs to be properly established through 

comprehensive investigation and validation in the 

particular environment where the fall detection system 

will be used. 

 

B. Machine Learning 

The research area of Machine Learning (ML) is what 

enables computers to learn without being explicitly 

taught [4]. ML is the branch of Artificial Intelligence 

(AI) that teaches computers to make decisions by 

helping them find the relationship between the inputs 

and outputs in a dataset.  

 

Most people agree that the current version of machine 

learning was created by Cornell University 

psychologist Frank Rosenblatt. Rosenblatt oversaw a 

group that used theories about the workings of the 

human nervous system to create a method that would 

enable a machine to recognize the letters of the 

alphabet. With a threshold component that converted 

analog signals into discrete ones, the device, which its 

creator called the "perceptron," used both discrete and 

analog impulses. The way it learned was similar to the 

psychological models developed of both human and 

animal learning, and it served as the model for modern 

artificial neural networks (ANN) [5].  

 

In order to learn from data, machine learning uses 

algorithms [6]. ML is an essential technique to fully 

exploit AI technology. Because of its ability to learn 

and make decisions, machine learning is commonly 

referred to as artificial intelligence (AI), but it is 

actually a subset of AI. It was a phase of AI 

development up until the late 1970s. After that, it 

broke off to carry on developing independently. 

Nowadays, machine learning is used in many cutting-

edge technologies and is an essential response tool for 

eCommerce and cloud computing [7]. 

 

C. Neural Networks 

Conventional Machine Learning algorithms have the 

disadvantage of still being machine-like, despite their 

seeming complexity. They need a great deal of subject 

knowledge and human assistance, and they can only 

do what they were designed to do. Deep learning has 

slightly greater potential for both the general public 

and AI developers in this regard [8]. It makes it 

possible for developers to tackle issues in areas in 

which they lack expertise. Deep learning is a part of 

machine learning that, in practice, learns to represent 

the world as a layered hierarchy of concepts, where 

each concept is defined in connection to more abstract 

representations that are calculated in terms of less 

abstract ones. Deep learning can attain enormous 

power and flexibility because to this learning process 

[8]. 

 

D. Wearable Sensors 

The term ‘wearable fall detection’ refers to the use of 

wearable devices that have sensors to detect and alert 

for falls in real-time. The wearable devices can be 

watches, wristbands, pendants, or belts; they typically 

have accelerometers, gyroscopes, or other sensors that 

can detect changes in movement and orientation. 

When a fall is detected, the wearable device sends an 

alert to a caregiver, family member, or emergency 

services. 

 

In [9], the suggested system extracts characteristics of 

fall events from a mix of accelerometer and gyroscope 

sensors and classifies them using machine learning 

methods. In order to assess the effectiveness of the 

approach, the authors also suggest a brand-new dataset 
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of fall events that includes activities that take place 

throughout the fall. 

 

The study's findings demonstrate that the suggested 

system detects and recognizes falls with a high degree 

of accuracy. With a sensitivity of 97.92% and a 

specificity of 91.88%, the system detected falls with 

an overall accuracy of 94.44%. The authors concluded 

that their suggested system, which uses wearable 

sensors to detect falls and distinguish them from 

regular activities, is a promising method for detecting 

falls in actual environments. 

 

E. Non-Wearable Sensors 

While wearable devices have traditionally been 

utilized for fall detection, such as accelerometers and 

gyro sensors included in smart watches and pendants, 

there is growing interest in non-wearable fall detection 

systems that do not require people to wear any 

equipment.  

 

Non-wearable fall detection systems employ a variety 

of sensing methods, including pressure, acoustic, and 

vision-based sensors. By examining the movements 

and poses of the people, vision-based sensors that use 

cameras can detect falls. Acoustic-based sensors 

employ microphones to record the fall's sound and 

recognize the distinctive acoustic patterns that are 

related to falls. Pressure-based sensors use floor 

sensors to identify pressure changes brought on by a 

fall's impact. One of the popular non-wearable 

methods that makes use of computer vision techniques 

for fall detection is camera-based fall detection. In 

these systems, cameras are installed in the surrounding 

area to record video feeds, which are then analysed to 

detect falls, such as in homes or healthcare institutions. 

A single camera and an image processing algorithm 

were utilized in a study [10] to develop a vision-based 

fall detection system. The program was created to 

identify falls by examining changes in the position, 

size, and form of the objects in the camera view. They 

got sensitivity and specificity values of at least 92 

percent. 

 

An acoustic-based fall detection system was suggested 

in a different study [11], which employed a 

smartphone to record and assess the sound of falls. The 

suggested approach analyses the sound of a fall using 

characteristics including energy, spectral centroid, 

spectral entropy, and spectral flatness. To create a 

classifier using the support vector machine (SVM) 

algorithm, the system was trained using a dataset of 

simulated falls and non-fall activities. The results 

showed that the proposed system achieved a high 

detection rate of 90.6% with a low false positive rate 

of 0.2 per hour. 

 

A pressure-based fall detection system that used 

pressure sensors embedded in the floor to detect falls 

was suggested in a study [12]. The technology they 

used offers advantages over existing fall detection 

systems, such as having a passive sensor (no power 

source is required) and being fully undetectable 

because the sensor is built into the floor. The outcomes 

are contrasted with cutting-edge categorization 

methods. With a True Positive Rate of 94.4% and a 

False Positive Rate of 2.4%, fall detection performed 

well on the database. 

 

F. Research Gaps 

There is still a void in our understanding of fall 

detection notwithstanding notable breakthroughs. 

Although it has been the subject of substantial 

investigation, the kind of data sufficient to effectively 

distinguish between falls and activities of daily living 

(ADLs) to an almost certain degree of accuracy has not 

received as much attention. Therefore, additional 

research is required to close this gap and gain a better 

understanding of what parameters are closely linked to 

understanding falls. 

 

In [13], their model was fed data from a gyroscope 

only. However, because it cannot distinguish between 

a fall and other activities that produce similar 

acceleration patterns, an accelerometer alone is 

insufficient for fall detection. It is challenging to 

distinguish between falls and other activities, such as 

sitting down, lying down, or activities of daily life that 

may cause comparable acceleration profiles according 

to [3]. Additional sensors, like gyroscopes or 

barometers, may be required to provide 

complementary data on changes in body position and 

altitude in order to effectively detect falls.  

 

Additionally, [14] noted that "the complexity of 

human activities and the diversity of acceleration 

patterns make it challenging to develop a reliable fall 

detection algorithm using only acceleration data".  
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When deriving insights from data, it is important to get 

context. In order to fully comprehend the data, the 

interactions between variables, and the potential 

influences on the data, context is essential while 

evaluating data. Data without context may be 

incomplete, deceptive, or difficult to understand. Take 

a dataset, for instance, that reveals a sharp rise in sales 

of a specific product. Without context, one would infer 

that this growth is the result of an effective marketing 

effort when, in fact, it might be the result of a seasonal 

pattern or a shortage of a rival product. 

 

It is quite common to find papers studying fall 

detection that forget about context. In [15], only 10 

participants had data collected, which may not be 

enough to fully assess the proposed system's efficacy, 

especially in identifying falls in various settings and 

among diverse populations. In fall detection, where the 

model must be able to detect falls in various 

surroundings, with various people, and in various 

situations, a model that has been trained on a big, but 

more importantly, diverse dataset is more likely to 

generalize to new situations and settings. 

 

Secondly, larger dataset may offer more variety in the 

kinds of recorded falls and non-fall events, enabling a 

more thorough knowledge of fall patterns and 

behaviours. By doing this, the model's precision and 

adaptability to novel circumstances can both be 

enhanced. 

 

III. RESEARCH METHODOLOGY 

 

A. Hardware 

As the physical interface between the program and the 

outside world, hardware plays a crucial role in 

embedded systems initiatives. The capabilities of the 

software are heavily reliant on the hardware, for 

optimal function of our system we chose a 

microcontroller and peripherals that complied with the 

project’s power consumption, memory, ease of use, 

size, processing and budgetary restrictions. 

Additionally, hardware design is essential to ensuring 

the system complies with the project's power 

consumption, size, and budgetary restrictions. 

Hardware constraints may occasionally even influence 

the choices made for software design and execution.  

 

 

i. Choosing microcontroller 

A microcontroller is a miniaturized microcomputer 

designed to perform certain tasks for embedded 

devices, such accepting external signals and 

displaying radio data. It is essentially our project's 

brain. Peripherals are controlled by it. 

 

Choosing our micro-controller left us with a lot of 

dilemmas, the first criteria we used was processing 

power. Processing power, commonly referred to as 

computing power, describes a computer system's 

capacity to carry out calculations and handle data. It is 

often assessed in terms of how quickly and effectively 

a system can carry out actions like running software 

programs, managing input and output, and carrying 

out mathematical computations. 

 

The central processing unit (CPU), which is in charge 

of carrying out computations and carrying out 

commands, is mostly responsible for determining the 

processing power of a computer system. The CPU's 

clock speed, which is expressed in gigahertz (GHz), 

determines how quickly it operates. Faster processing 

power is typically associated with higher clock speeds, 

while other elements like the number of cores and the 

architecture's efficiency can also impact performance. 

We considered the Raspberry Pi with its 1.5 GHz 

quad-core 64-bit ARM Cortex-A72 processor, up to 8 

GB of RAM, and up to 256 GB of microSD storage. It 

is perfect for uses like home automation and 

multimedia streaming because it supports technologies 

like Wi-Fi and Bluetooth networking. Raspberry Pi 

can be used for various ML jobs even though its 

processing power is lower than that of more potent 

desktop or server computers. Running small to 

medium-sized ML models and even Neural Networks, 

such speech or picture classification, on the Raspberry 

Pi is a good idea. These models can be developed on 

more powerful platforms, trained, and then deployed 

for inference on the Raspberry Pi. In contrast, due to 

their constrained processing speed and memory, 

Arduino boards are not normally intended for 

demanding machine learning (ML) workloads. 

Nevertheless, there are some situations in which 

Arduino boards can be utilized for machine learning, 

such as for straightforward categorization jobs or 

simple data pre-processing.  
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ii. Memory 

When it comes to embedded systems, memory is a 

crucial factor. Embedded systems are frequently 

utilized in areas with limited power and space since 

they are typically built to carry out specific functions. 

The precise needs of the system and the tasks it must 

complete determine how much memory is needed for 

an embedded system. For instance, the system can 

need extra memory to retain intermediate findings if it 

must process vast volumes of data or run complicated 

algorithms. Similarly, the system can need extra non-

volatile memory if it wants to store a lot of data or 

program instructions. 

 

Raspberry Pi has greater RAM and non-volatile 

memory than most Arduino boards ranging from 2GB-

8GB vs 32KB -512 KB of flash memory and 2KB -

32KB of RAM. Tilting the suitability for ML in 

Raspberry Pi’s favour. 

 

iii. Ease of Use 

Given the time available to complete this project, it 

was very important to find out which microcontroller 

would be easier to use and set-up. Needing some 

knowledge of Linux to get the Raspberry Pi running 

was a bit discouraging. Meanwhile, Arduino had its 

simplicity and the abundance of user-friendly tutorials 

and materials going for it.   

 

iv. Portability 

It is important for the wearable device to be 

comfortable for the user to wear. That means it should 

be portable. 

 

Due to their smaller size and reduced power needs, 

Arduino boards are generally more portable than 

Raspberry Pi. The tiny and lightweight designs of 

Arduino boards make them perfect for projects that 

need to be carried around. On the other hand, 

Raspberry Pi is typically bigger and uses more power 

to run. Even while certain Raspberry Pi versions, like 

the Raspberry Pi Zero, are small and portable, they still 

need a power source like a micro-USB connection and 

possibly other accessories like a monitor and 

keyboard. Arduinos meanwhile, use a battery of USB. 

 

v. Availability and Support 

One very important criterion is availability, project 

delays and cost overruns may occur if a 

microcontroller is not easily accessible. It is vital to 

choose a microcontroller that is widely available and 

easy to purchase from trustworthy sources. It can also 

ensure that any necessary replacement parts or 

components are readily available. 

 

Another important factor is the availability of support 

materials such as manuals, tutorials, and forums. They 

can have a significant impact on the ease and speed 

with which development can be completed. It is vital 

to choose a microcontroller that includes useful 

information and recommendations. applying new 

features, understanding how to swiftly identify 

problems, and applying best practices and 

optimizations can all benefit developers. Furthermore, 

having a large and active development community has 

advantages. Developers can use this to contribute 

code, discover answers to questions, and learn from 

others' experiences. It may also ensure that the 

microcontroller is compatible with a wide selection of 

software libraries, tools, and add-ons. 

 

vi. Cost 

The cost of a microcontroller is an important 

consideration for many design projects. One of the 

most obvious reasons to consider the cost of a 

microcontroller is to ensure that the project remains 

within budget.  

 

Another important reason is if the project is intended 

for mass production, the cost of each microcontroller 

can add up quickly. By selecting a cost-effective 

microcontroller, designers can keep the production 

costs low and increase their profit margins. 

 

As a result, many design projects consider a 

microcontroller's price. The Arduino and Raspberry Pi 

platforms differ from one another in terms of price in 

some ways. 

 

Generally speaking, Arduino boards are less expensive 

than Raspberry Pi boards. Depending on the type and 

features it delivers, an Arduino board might cost 

anywhere from $5 to $60. Using these criteria after 

comparing the two microcontrollers, the Arduino was 

decided to be the best option, due to its adequate 

performance in ML applications, cost-effectiveness, 

availability and support, and ease of use. 
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B. Selecting Peripherals 

Peripherals in embedded systems are hardware 

components that are added to the main microcontroller 

or microprocessor to expand its capabilities. These 

peripherals can be either built into the microcontroller 

or added externally, and they provide a way to 

interface with the outside world, such as sensors, 

displays, or communication devices. 

 

Choosing the peripherals was dependent on how we 

wanted the overall system to function and factors like 

the pinout, voltage levels and communication 

protocols. We envisioned a system whereby based on 

motion data, a ML model detects whether a fall has 

occurred or not, and when it had, a call for help is 

made. To get this motion data, we decided to use an 

accelerometer (specifically the ADXL345) and for the 

signal, a GSM module. The accelerometer reveals 

details about an object’s motion or orientation by 

measuring change in velocity. The operational 

principle can be summarized in Figure 1. 

 

i. Sensor data 

The most important criteria for picking peripherals are 

what they are being used for. 

In fall detection, the most important variables to 

consider are acceleration in all three axes, tilt and the 

direction of the magnetic field. So, we need the 

peripherals to include the following; accelerometer, 

gyroscope and magnetometer. Gyroscopes track 

rotational motion or angular velocity around several 

axes. They can be used to detect changes in orientation 

and offer information on the rate of rotation of an item.  

 

 
Figure 1: Flowchart for the development of the Fall 

detection system 

 

Gyroscopes are essential for activities like stabilizing 

a camera or managing an aircraft's attitude. 

For precise measurements of an object's motion in 

three dimensions, the IMU combines data from 

multiple sensors. The IMU can follow changes in 

location, velocity, and orientation by continually 

measuring acceleration and rotation. Applications 

requiring accurate motion tracking and control, such 

as navigation, robotics, virtual reality, motion capture, 

and many more areas, all depend on this data. 

 

When training our model, we decided to use an 

established dataset called the SisFall dataset on 

Kaggle. We did this instead of gathering data 

ourselves from ourselves because of the following 

reasons; challenges with removing noise, the time 

taken to gather enough data and complexities involved 

in storing the data. Our approach gave us access to a 
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standard benchmark for our model training, enabled us 

to develop the system faster and access to proven 

quality data. As a result of the data we were using for 

training we decided to use an ADXL345 

accelerometer as our sensor. The ADXL345 is a small, 

thin, fully functioning 3-axis accelerometer with 

signal-conditioned voltage outputs. The full-scale 

range of the device's acceleration detection is ±16g. 

 

Fixed plates and moving plates make up the 

accelerometer's fundamental construction. The 

capacitance between stationary plates and movable 

plates changes as acceleration is applied along an axis. 

As a result, the output voltage amplitude of the sensor 

increases in proportion to the acceleration. This 

module's specifications and features include an on-

board LDO voltage regulator, a 3V–6V DC supply 

voltage, integrated MOSFET-based voltage level 

converter, it has the ability to interact with both 3.3V 

and 5V microcontrollers. Ultra-Low Power: SPI and 

I2C interfaces, Tap/Double Tap Detection, Free-Fall 

Detection, 40uA in measurement mode, and 0.1uA in 

standby at 2.5V The measurement range is ±16g, and 

the values are -235 to +270 for X, -240 to +260 for Y, 

and -240 to +270 for Z. An image can be found in 

Figure 2. 

Call for help 

The other function the controller is not capable of 

performing is the communication with the outside 

world. Peripherals that enable this are called 

communication modules, alongside them a buzzer, 

LED and charging module were included to sound an 

alarm, call bystanders through light and charge the 

system respectively. The HC-05 Bluetooth module 

was the first communication module that was taken 

into consideration for the project.  

 
Figure 2: ADXL345 accelerometer 

The research (included in the planning stage) revealed 

that previously created systems lacked 'fast' 

communication methods as a result, which was 

discovered later on. This observation was made in the 

sense that the device's primary goal, to immediately 

alert first responders in the event of a fall, was not 

really achieved as the Bluetooth module needed to 

send data to a mobile device first and foremost before 

the user could call the medical staff. This finding led 

to the selection of the SIM808 GSM/GPRS module as 

a new communication module. 

 

The SIM808 Module from SIMCOM serves as the 

basis for this GSM and GPS modem.   The SIM808 

uses the Global Positioning System (GPS) for satellite 

navigation and supports GSM/GPRS Quad-Band 

networks. It is based on the most modern GSM/GPS 

module from SIMCOM. It contains a built-in charging 

circuit for lithium-ion batteries and a very extended 

standby life. It is therefore ideal for uses that require 

rechargeable Li-Ion batteries. In addition, it has 66 

acquisition channels and 22 tracking receiver 

channels, both of which improve the sensitivity of its 

GPS reception. Additionally, A-GPS, which can be 

utilized for indoor localization, is supported. AT 

instructions are used to control the module using 

UART. module (ElectronicsComp.Com)., 2023). The 

SIM808 is shown in Figure 3. 

 

 
Figure 3: SIM808 Module 

 

We also included a buzzer to sound an alarm whenever 

a fall happens and an LED. A buzzer or beeper is an 

auditory signalling device that can be mechanical, 

electromechanical, or piezoelectric (The Free 

Dictionary, 2015). They can be active or passive. For 

the project, an active buzzer was used. They are 

commonly offered in voltage ranges between 1.5V to 

24V. To generate a sound, all that is needed to do is 

supply a DC voltage to the pins. Active buzzers are 
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polarized. Similar to an LED and a capacitor, the 

longer pin is connected to the positive terminal. 

  

i. Charging Module 

The TP4056 charging module was employed.  For 

lithium-ion and LIPO batteries, this is a linear charger. 

The module can recharge single-cell batteries, and 

because of its ability to create 4.2V, it is particularly 

well suited for charging 18650 cells and other 3.7V 

batteries. The charger can be powered by any source 

that provides a 5V and 1A supply, whether a USB 

source, wall adapter, or other. 

 

When operating at high power levels or in 

environments with high ambient temperatures, 

thermal feedback automatically modifies the charge 

current to control chip temperature. A resistor can be 

used to externally control the charging current, while 

the charging voltage is fixed at 4.2V. The TP4056 

module automatically switches to a low current mode, 

reducing the battery leakage current to less than 2uA, 

when the input voltage (from the AC adapter or USB 

power) is interrupted. 

 

C. Circuit Design 

The circuitry of the device must be clearly defined in 

order for it to operate as intended. Tinker CAD was 

used for the circuit design. This Autodesk-developed 

free online 3D modelling tool is accessed using a web 

browser (Herrman, n.d.). Proteus 8 was initially 

supposed to be utilized, but it was abandoned in favour 

of Tinker CAD since it lacked libraries for some of the 

components, such as those for the sensors (the 

ADXL345 accelerometer and the LSM303 IMU 

module). 

 

The HC-05 Bluetooth module served as the 

communication module in the initial circuit design. 

The circuit design for the system is shown in Figure 4. 

 
Figure 4: Circuit design for the connection of the 

components involved in the fall detection system 

 

A new circuit was created after the modifications and 

improvements made to the HC-05 Bluetooth module 

to accommodate for those factors. 

 

The selection of the design and component steps was 

followed by the implementation phase. Components 

were ordered and delivered on time to avoid project 

delays. At this stage, a test version of the fall detection 

and alarm system was developed. The creation of 

programming code or algorithms for the 

microcontroller—in this case, the ATMega328PU 

from the Arduino UNO—is another thing that 

happens. To make it easier to spot and address issues, 

it was made sure that the algorithm was clear-cut and 

simple to understand. 

 

D. Software Implementation 

The success of this project is massively dependent on 

the ML model. This is because the regular detection of 

falls is a function of the accuracy of the model. A high 

model accuracy on new data means that it has 

successfully learnt the relationship between the 

features and output. Training a model is essential to its 

accuracy because it enables the model to learn 

patterns, relationships, and representations from the 

available data.  

 

The model was trained with access to a lot of labelled 

data. This is to help it derive pertinent features and 

comprehend underlying patterns and trends by 

watching and examining this data. High accuracy is 

achieved by the generalization of the model's 

information from training instances to new ones. The 

objective is to identify the underlying patterns that 
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may be applied to fresh, comparable situations rather 

than simply memorizing the training data.  

 

The Jupyter Notebook was used for the majority of the 

model's training, testing, and evaluation. Creating and 

sharing documents with live code, equations, pictures, 

and narrative text is possible with this open-source 

web application. It is a popular tool for data analysis, 

scientific computing, and machine learning. 

 

Its compatibility with the Python programming 

language was key in its choice. This is because of 

Python’s simplicity, abundance of ML libraries, 

adaptability, strong community support, simplicity in 

integrating with other technologies, and ability to 

balance performance and productivity. 

i. Import dataset 

The lifeblood of ML is the data. Quality data is needed 

to make good inferences. The dataset the model was 

trained on was the SisFall dataset from Kaggle, as 

stated earlier. To provide enough information to the 

model about a 1000 sets of data points were fed into 

the model. 

 

Also, to enable it distinguish between falls and not 

falls, an equal number of samples were used. 

 

The pandas library which is useful for manipulating 

data was imported to help read the dataset into the 

code. 

ii. Filter data 

The SisFall dataset has over a million samples. This is 

good because the more samples fed into the model, the 

better it can generalize. However, larger datasets tend 

to take longer to train. To save training time, the model 

was reduced to 2000 samples. 1000 samples of falls 

and another 1000 samples of non-falls. 

 

An equal number of affirmative and negative samples 

were used to prevent a class imbalance. Classification 

models frequently perform poorly for the minority 

class when there is a class imbalance because they are 

biased toward the dominant class. So, bias was 

reduced by giving the model an equal representation 

of both classes by balancing the amount of affirmative 

and negative samples. This makes the model more 

accurate. 

 

After filtering the data, the dataset was segmented into 

the features and dependent variable vectors. Features 

are the characteristics or properties that reveal details 

about the instances or data points in a dataset. They 

record various data facets or qualities that are pertinent 

to the learning activity. With regards to this project, 

the features are the data from the sensor. We also 

removed data our sensors wouldn’t have like rotational 

data. 

 

Whereas, the dependent variable vector is the model’s 

output i.e. whether the individual has fallen or not. 

Generally, it could either be a set of continuous 

numbers or a category. 

iii.  

iv. Pre-process data 

In machine learning, the term "data pre-processing" 

refers to the procedures and methods used to organize 

and change raw data into a format appropriate for 

analysis and model training. It plays a crucial role in 

the machine learning pipeline and entails a number of 

tasks, such as normalization, transformation, and data 

cleansing. Improving data quality, managing missing 

values, getting rid of inconsistencies, and preparing 

the data for machine learning algorithms are its 

objectives. Encoding categorical data, dividing the 

data into training and test sets, and feature scaling were 

the data pre-processing techniques used in this study. 

Categorical data refers to data that is not in numerical 

form. Data used to name or categorize objects is 

referred to as categorical data since it reflects several 

categories or groups. It is made up of qualitative 

variables that describe the traits or qualities of the 

subjects under investigation. Nominal or qualitative 

data are other names for categorical data. In 

categorical data, each observation is categorized into a 

single category or class; the categories themselves 

have no inherent numerical value or order.  However, 

computers cannot understand qualitative data e.g. 

‘tall’, ‘short’, ‘fall’, ‘not fall’ etc. Therefore, it has to 

be converted into a form the model would understand. 

The majority of statistical models and machine 

learning algorithms operate on numerical data. We 

make it possible for these models to effectively 

process and interpret the data by encoding categorical 

variables into numerical form. Algorithms may 

compare data, carry out mathematical operations, and 

find patterns in the data by converting category data to 
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numerical values. The output values fall and not fall 

are converted to 0s and 1s. 

 

The main goal of separating the dataset is to assess a 

model's performance on unobserved data. We use one 

part, usually the majority of the samples, to train the 

model. That portion of the data set is called the training 

set, meanwhile, the ‘unobserved data’ is the test set. 

 

The main reason this is done is to measure how 

effectively the model generalizes to new, untested 

situations by using a subset of the data as a test set. 

The model's performance in real-world situations is 

estimated by this evaluation, which also helps 

determine the model's predictive or categorical 

accuracy. Lastly, but not least dividing the dataset is 

done to avoid leakage. Usually, before the training set 

is fed into the model it undergoes several processing 

stages. To avoid information from the test set 

mistakenly affecting the outcome. It is separated from 

the dataset. Also, by using this test set. We can 

compare the accuracies of different models to find out 

which is more suitable for the problem at hand. The 

entire dataset was split 80/20 into training and test set. 

Afterwards, we scaled our features. Feature scaling is 

a data pre-processing method used in machine learning 

to standardize or normalize a dataset's numerical 

features. This is done eliminate biases and make sure 

that no one aspect predominates the learning process, 

it seeks to scale all features to a similar level. 

 

The size of the features can have a major impact on the 

performance of the model in many Machine Learning 

techniques, including those based on distance 

computations or gradient descent. 

 

v. Training the Model 

There are several kinds of Machine Learning (ML) 

models. The factors considered in choosing a model 

were; the problem type, interpretability, robustness to 

noise, model complexity and performance metrics. 

 

a. Problem Type 

Broadly speaking, ML can be grouped into two types 

of problems namely; regression and classification. 

Regression involves the prediction of a continuous 

numerical variable. The target variable is a number 

with actual meaning to the computer. 

 

Meanwhile, classification involves the prediction of 

categories. Its object is to use labelled to data to predict 

the label of unseen data.  

 

The aim of the model in this project is to ‘label’ 

movement as falls or not falls. Therefore, 

classification ML models were decided upon. 

 

b. Interpretability 

It was of utmost importance that the model used could 

represent the relationship between the features and 

output as a mathematical equation. This is because 

implementing the model on Arduino becomes a 

problem of simple computation and not one of intense 

programming. Arduino is not a native language for 

training ML models, so to avoid any difficulty. We’d 

get the equation after building the model with Python 

elsewhere, using the Arduino just for inference. 

 

c. Robustness to Noise 

A very desirable characteristic of machine learning 

(ML) models and systems is robustness to noise. It 

speaks to a model's capacity for sustaining reliable 

predictions or actions in the face of noise or other 

disturbances in the input data. Measurement mistakes, 

outliers, missing data, and irrelevant features are just a 

few of the many potential sources of noise that can 

have a big impact on how well ML models perform 

and how reliable they are. 

 

d. Model Complexity 

Simpler models are frequently simpler to understand, 

train, and troubleshoot. Though more accurate, 

complex models can be computationally expensive 

and prone to overfitting. 

 

e. Performance Metrics 

This involves choosing models based on their ability 

to make accurate predictions on unseen data. Two 

metrics we considered are accuracy and f1 score. Two 

metrics that show how well a machine learning model 

can categorize observations into classes are accuracy 

score and F1 score. How many of our predictions were 

accurate is indicated by the straightforward metric 

known as accuracy. Another statistic applied to multi-

class classification models is the F1 score. It is 

preferred over accuracy because it offers trustworthy 

results for a variety of datasets, whether or not they are 

imbalanced. 
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After considering the above criteria, it was decided 

that the Support Vector Classifier would be the most 

appropriate for this project. However, it has two 

different types namely; linear and kernel Support 

Vector Classifier. To determine which to use, their 

performance metrics were evaluated. The linear SVM 

had an accuracy and f1 score of 0.8888 and 0.886 

respectively meanwhile, the RBF/Kernel SVM had an 

accuracy and f1 score of 0.87 and 0.86. Therefore, the 

linear SVM performed better on new observations. 

 

vi. Arduino Implementation 

On Arduino, the model was implemented alongside 

the operations of the sensors, GSM modules and 

buzzers. The following steps were undertaken to 

achieve this; importing libraries, configure the GSM 

module, set weights and biases, build model, get data 

from sensors, pre-process data and parse new data into 

the model. 

 

a. Importing Libraries 

For software development, library imports are crucial. 

They make code organization, work simplification, 

time savings, code sharing, reliability, and learning 

materials all possible. They provide pre-made 

functions for typical operations, bundle reusable code, 

and simplify low-level details.  

 

Libraries help to add new functionality to sketches, 

such as the ability to interact with hardware or 

manipulate data. They simplify the process of 

interacting with hardware. The libraries imported 

were: 

• Wire.h: To aid serial communication with external 

devices. 

• Adafruit_Sensor.h: To help control all sensors 

from Adafruit 

• GSM.h: To help control the GSM module. 

• Adafruit_ADXL345: To help control the 

accelerometer specifically. 

 

b. Configure GSM module 

To configure the GSM module, an instance of the 

GSM library was created, providing functions and 

APIs to interact with GSM modules for enabling data 

connections, placing calls, and sending and receiving 

SMS messages. 

  

c. Configure the accelerometer 

The accelerometer was configured using an instance 

of the Adafruit_ADXL345 library to operate the 

ADXL345 sensor module, which is a three-axis 

accelerometer capable of measuring acceleration 

along multiple directions. This library offers methods 

for interacting with the sensor, retrieving acceleration 

data, configuring power-saving modes, enabling 

interrupts, and setting measurement ranges. The 

getEvent function was employed to obtain real-time 

motion data. 

  

d. Configure buzzer 

Additionally, the buzzer was set up by defining the pin 

it was connected to and configuring it as an output 

using pinMode. A condition was established to send a 

HIGH signal to the buzzer, triggering it as needed. 

 

e. Pre-process data 

The data from the sensor needs to have a similar 

distribution to the one the model was trained on. 

The mean and standard deviation of the training set is 

obtained and used to scale the sensor data before it is 

passed into the model. 

 

f. Inference/ Prediction 

 Finally, the model was implemented as a prediction 

function, utilizing the weights and biases derived from 

the model trained in Jupyter. These parameters were 

stored in an array and applied within an equation to 

determine the best fit for classification. Based on the 

output values, the sensor data was classified as either 

a fall or a non-fall event. 

 

g. Activate buzzer 

When a fall is detected, a ‘HIGH’ signal is sent to the 

buzzer and a message is sent by the GSM module to a 

number chosen by the designer. 

 

IV. RESULTS AND DISCUSSION 

 

The findings of a thorough examination into fall 

detection using machine learning approaches are 

presented in this chapter. The goal of this project was 

to create a fall detection system that was precise and 

trustworthy while utilizing AI algorithms. The 

effectiveness of various machine learning models was 

assessed through rigorous experimentation and 
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analysis with the goal of enhancing the detection 

abilities of such systems. 

 

A diversified dataset made up of actual fall events and 

non-fall activities was used for the studies. The dataset 

was meticulously chosen to guarantee its variety and 

representativeness, including a range of scenarios and 

environments. On the basis of this dataset, machine 

learning models were trained to identify the patterns 

and traits connected to falls while separating them 

from other activities. 

 

The performance of our models for the fall detection 

system are then discussed. By giving a complete 

examination of the investigation's findings, this 

chapter offers insightful information on fall detection 

utilizing machine learning techniques. 

 

a. Learning Curve 

A conventional learning curve's x-axis reflects the 

number of training samples or iterations, while the y-

axis represents a performance parameter like accuracy 

or error rate. The learning curve depicts how the 

model's performance improves or stabilizes as more 

data or iterations are added. 

 

Per the learning curve, our model performed quite well 

on the training and test set without overfitting. The 

accuracy on the training set started at 100 percent and 

that of the test set at about 0, but over more epochs 

both converged at 91 and 86 percent respectively. This 

shows that the model stopped memorizing the training 

data as time went on and began to generalize better on 

unseen data. Showing that ML is viable approach to 

detecting falls. The curve is shown in Figure 5. 

 
Figure 5. Learning Curve of the model 

 

b. Colour Map 

When building models, it is important to have a feel 

for how it makes decisions. To this end, we employed 

a colour map to understand how our model classifies 

an action as a fall or an ADL. The colour map is used 

to show the decision boundary of a machine learning 

model. The decision boundary is the dividing line or 

surface that separates multiple classes or categories in 

the input space. It is the moment when the model 

switches from predicting one class to predicting 

another. Though most data points are correctly 

classified, the boundary between both classes is a 

straight line due to our use of a linear model. 

Consequently, you would notice that it doesn’t define 

both classes appropriately because many wrongly 

classified data points can be found on either side of it. 

Another thing is, our dataset was of a high 

dimensionality and had to be reduced to 2D through 

Principal Composition Analysis (PCA) to make the 

visualization, as a result, it is hard to understand which 

combination of our features PC1 and PC2 are. The 

colour map can be seen in Figure 6. 
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Figure 6: Decision Boundary of the model 

 

c. ROC curve 

A graph called the ROC curve shows how well a 

classification model can distinguish between two 

classes. It displays the true positive rate (sensitivity) in 

comparison to the false positive rate (1-specificity) at 

different threshold levels. The curve of a successful 

model will be toward the upper-left corner, signifying 

low false positives and high sensitivity. 

 

By contrasting sensitivity (true positive rate) against 

false positive rate (1-specificity) at various threshold 

levels, the ROC curve illustrates a classification 

model's capacity to discriminate between two classes. 

In the context of fall detection, it is critical to 

comprehend how sensitivity and specificity are 

balanced. High sensitivity guarantees that most falls 

are recognized, but it may increase false positives, 

resulting in unneeded alarms or actions. Improving 

specificity (cutting false positives) may reduce 

sensitivity, risking missing falls, which could have 

serious consequences. Given the various contexts in 

which this technology could be used it is important to 

understand the trade-offs at play here. 

 

An ideal AUC (Area under the curve) tends to 1, 

indicating a high ability to tell apart both events (falls 

and ADLs). However, AUC does not show 

performance at individual thresholds, it is useful to 

focus on specific locations on the ROC curve where 

sensitivity is preferred. The curve is shown in Figure 

7. 

 
Figure 7: Area under the ROC curve 

 

d. Confusion Matrix 

A classification model's performance is assessed using 

a table called the confusion matrix. It is extensively 

used in statistics and machine learning to understand 

the prediction accuracy and error rates of a model. A 

confusion matrix is often a square matrix that contains 

both the actual and expected classes or labels. It is 

divided into four major sections: 

 

True Positives (TP) occur when the model correctly 

predicted the positive class. The model detects falls so 

the positive class is ‘fall’ and the negative class is ‘not 

fall’. 

 

True Negatives (TN) are situations in which the model 

correctly predicted the negative class. 

 

False Positives (FP) occur when the model incorrectly 

predicted a class and the actual class is not that class.  

False Negatives (FN) occur when the model 

incorrectly predicted the negative class. 

 

The image of the table generated by the code is shown 

in Figure 8. 



© DEC 2024 | IRE Journals | Volume 8 Issue 6 | ISSN: 2456-8880 

 

IRE 1706660          ICONIC RESEARCH AND ENGINEERING JOURNALS 293 

 
Figure 8: The Confusion Matrix 

 

The confusion matrix shows that while our model 

properly identified 360 falls as falls, it misclassified 73 

non-falls as falls, and it correctly identified 330 non-

falls but misclassified 37 falls as non-falls. As per the 

model's predictions, there were 360 True Positives, 73 

False Positives, 330 True Negatives, and 37 False 

Negatives. 

 

Evaluation measures including the accuracy score, 

precision, recall, and f1 score can be calculated from 

these statistics. One performance metric that shows 

how well a model predicts the future overall is 

accuracy. It is computed as the sum of the true 

positives and true negatives divided by the total 

number of forecasts. The percentage of accurate 

positive forecasts among all positive forecasts is 

known as precision. It highlights how important 

positive forecasts are. 

 

Recall, sometimes referred to as sensitivity or true 

positive rate, quantifies the percentage of correctly 

anticipated positive cases among all actual positive 

instances. It centres on how accurate optimistic 

predictions are. 

 

The F1 score combines precision and recall into a 

single metric by considering their harmonic mean. It 

offers an impartial evaluation of the model's 

performance. Our model's f1 score was 85.91, its 

precision was 83.16, and its recall was 90.68. 

especially good at spotting real positives, (i.e. falls). 

 

 

CONCLUSION 

 

This project successfully designed and implemented a 

fall detection system using machine learning 

techniques. By employing the SisFall dataset for 

model training and testing, the system achieved an 

impressive accuracy of 86.25% and demonstrated 

strong performance metrics, including a recall of 

90.68%, precision of 83.16%, and an F1 score of 

85.91%. These results highlight the system's ability to 

reliably detect falls while minimizing false positives, 

making it suitable for real-world applications. 

 

The fall detection system's innovative design—

integrating robust hardware, a trained machine 

learning model, and communication peripherals—

ensures timely alerts to caregivers, promoting safety 

and independence for ‘at-risk’ individuals. While the 

results are promising, further research is 

recommended to enhance the system's adaptability to 

diverse environments and populations, improve 

robustness against noise, and explore alternative data 

sources for increased accuracy. The development of 

this system contributes significantly to the field of 

wearable technology and machine learning, opening 

avenues for improved patient care and accident 

response. 
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