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Abstract- Software Defined Networking (SDN) has 

revolutionized network architecture by separating 

the control plane from the data plane, offering 

enhanced flexibility, programmability, and 

centralized control. However, this paradigm shift 

introduces significant security concerns, 

particularly in the area of topology discovery, 

where threats such as topology poisoning, link 

fabrication, and host hijacking are prevalent due 

to the lack of standardization in SDN protocols and 

the dynamic nature network environments like 

virtual data centers and cloud infrastructures. This 

survey explores various security mechanisms 

proposed for topology discovery in SDN, with a 

focus on the OpenFlow protocol. It reviews key 

approaches designed to mitigate common 

vulnerabilities, including the use of 

authentication, encryption, and anomaly detection 

techniques. The survey highlights the trade-offs 

between security measures and network 

performance, analyzing their effectiveness in 

addressing topology-related threats while 

minimizing overhead. The findings suggest that 

while many solutions enhance SDN security, 

challenges such as resource consumption, latency, 

and packet processing overhead persist. Future 

research should aim to develop lightweight, 

scalable mechanisms that balance robust security 

with operational efficiency, ensuring optimal 

performance of SDN in dynamic, large-scale 

networks. 

 

Indexed Terms- Software Defined Network, 

Topology Discovery, Link Layer Discovery 

Protocol (LLDP), OpenFlow  

 

I. INTRODUCTION 

 

Software-Defined Networking (SDN) is a new area 

in networking that is focused on making networks 

programable by decoupling the control plane from 

the data plane of the network [14]. There is the 

presence of a controller on top of which high-level 

Northbound Application Programming Interfaces 

(APIs) run to achieve very advanced functionality 

such as load balancing, traffic shaping, rule-based 

access control, or general traffic monitoring which 

were in the past, the function of middleboxes in the 

network. The controller typically has a northbound 

and a southbound interface through which it 

communicates with the APIs and the network 

elements at the data planes, respectively.  

 

The OpenFlow communication protocol, 

standardized by the Open Networking Foundation 

(ONF) in 2011, is the de-facto open-source standard 

for the southbound interface [10]. The OpenFlow 

protocol has received significant attention from the 

research community [9] and is currently being used 

in real-world SDN networks, such as Google’s B4 

network [6]. The centralized controller is 

responsible for installing and configuring the 

forwarding table in the programable switches. This 

makes it possible to control the network behavior 

from a centralized location. This was very easy to 

accomplish as switches already implemented flow 

tables in their design [6], so, vendors were only 

required to open up interfaces so that separate 

software could populate these flow tables.  

 

Switches contain several flow tables, each with its 

own set of flow rules. A flow rule consists of three 

fields: matching criteria, action (e.g., drop the 

packet), and priority. At the initial reception of a 

packet by the switch which it has not learned from 

the controller how to handle, it sends such packet in 

an encapsulated OpenFlow packet-in message to the 

controller which receives it and in turn installs the 

flow rule for handling such packet in the controller 

through a packet-out message. So, in the next 

occurrence of such packet in the switch, it acts on it 

based on the installed rule matching the packet 

header as long as the rule remains valid. The SDN 

controller makes use of the Link Layer Discovery 

Protocol (LLDP) for establishing the existence of 

links amongst network components. In the 

traditional topology discovery architecture, the 

LLDP packet is sent as a broadcast message at a 
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fixed periodic interval to connected OpenFlow 

Enabled-Switches [11].  Because the switch 

broadcasts the packet to all its ports, a malicious host 

connected to one of the ports can get the LLDP 

packet as an attack vector to poison the network 

topology.  

 

In the case of a relay attack, the adversary passes on 

this LLDP packet directly to another switch that 

does not have direct link to the originating switch 

and in turn revert the same packet to the controller 

which learns falsely that there is a direct link 

between the switches as there is no way of verifying 

the authenticity of the packet source [20]. In the case 

of a host hijacking attack, the malicious host 

modifies the packet to reconstruct the packet header 

as may be desired to trick the controller that a known 

host moved to another location in the network. 

Therefore, if there is no way of verifying that the 

host has actually moved, the controller updates the 

flow table to reflect this new host location 

information. 

 

Several researchers have shown that it is possible to 

launch security attacks at the application, control, 

and data planes ([17] and [19]), while other works 

proposed counter measures for improving the 

security of SDN ([16] and [18]). Among the 

proposed attacks, topology attacks that aim at 

poisoning the network topology are one of the most 

dangerous types. Unlike in traditional networks 

where adversaries can only tamper with the topology 

of a small fraction of the network by convincing a 

set of switches/routers of a specific (fake) topology 

event, the consequences of such attacks in SDN 

networks can be more severe due to the controller’s 

centralization and the global view it has of the 

network. As the controller contains all the network 

topology information in a centralized location, 

adversaries can influence any part of the network 

regardless of their location. Furthermore, the 

complication of SDN attack cases also comes from 

the fact the OpenFlow enabled-switches lack 

sufficient logic and capabilities to implement 

traditional countermeasures such as dynamic 

Address Resolution Protocol (ARP) inspection. 

 

From what precedes, it becomes very clear that 

maintaining the correct and genuine network 

topology view at the controller is of paramount 

importance. The core services and applications in 

SDN require real-time and accurate topology 

information to perform their tasks correctly. The 

possibility of attack and compromise to the SDN 

topology discovery service can open the way for 

adversaries to gain access to the network traffic. 

This can mean the ability to bypass security policies 

in the network, carry out Man-in-The-Middle 

(MiTM) or Denial-of-Service (DoS) attacks. Or 

even hijack the identity of hosts in the network to 

divert their traffic for malicious operations. The host 

could be a whole server that handles a very large 

amount of traffic in the network 

 

In TCP/IP architecture, the layering abstraction is in 

the vertical dimension while the plane abstraction is 

in the horizontal dimension with the first path being 

the physical infrastructure and some sequence of 

layers on top of that as shown in Figure 1. Each layer 

in the layer abstraction directly depends on the 

services of other layers, the plane abstraction has no 

such dependency. Instead, every layer has a specific 

function and responsibility in the network. 

 

 
Fig. 1. Illustration of TCP/IP Layering and Plane 

 

In the current Internet Protocol (IP), functions such 

as packet forwarding, flow control, access control, 

routing, and network management are a collection of 

functions performed by the same set of IP protocols. 

The control/management and forwarding are tightly 

coupled together whereas this constitutes an 

obstacle to the ever-demanding flexibility required 

by the growing Internet and Internet services. The 

introduction of SDN opens a new chapter in the 

decoupling needs of the network and allows each 

plane to scale vertically without being restricted by 

the initial tight coupling in the layered approach. 

 

This paper contributes to the field by: 
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a. Providing a comprehensive analysis of recent 

advancements in security mechanisms for 

topology discovery in Software Defined 

Networking (SDN), with a focus on OpenFlow 

protocol. 

b. Highlighting the benefits and limitations of 

existing solutions, particularly regarding their 

trade-offs between enhanced security and 

network performance. 

c. Offering insights for researchers and 

practitioners to understand the challenges of 

balancing robust security with operational 

efficiency in dynamic, large-scale SDN 

environments. 

 

The paper is structured into six sections: Section I 

introduces the study, Section II discusses the 

Layering Architecture of SDN, and Section III 

focuses on the SDN elements and the 

communication protocol between them. Section IV 

discusses LLDP structure and its security 

challenges. Section V reviews existing security 

mechanisms for addressing topology discovery 

related threats, and identifies areas for further 

research. Sections VI conclude the study. 

 

II. LAYERING ARCHITECTURE OF SDN 

 

SDN maintains a global view of the network as an 

abstraction to the application layer thereby hiding 

most of the complex maintenance and configuration 

functions carried out by individual network and 

network devices in a traditional environment.  This 

task is now taken up by the controller. In this paper, 

our focus is on topology discovery services of the 

SDN controller and how to optimize the security in 

the process. Every switch on the network is managed 

by the controller through the process of installing 

appropriate forwarding rules [14]. The southbound 

interface is the interface between the controller and 

the infrastructure. To achieve control and 

management of the underlying infrastructure 

through the installation of the forwarding rules, the 

switches need to allow dynamic configuration of 

their flow table. So, switch manufacturers can easily 

open interfaces in switches to allow this 

configurability. One of such southbound interface 

standards that are widely adopted is OpenFlow [10]. 

At the top of the SDN controller is the application 

layer which allows high-level programs to interact 

with the controller for network management and 

configuration functions. SDN architecture is 

presented in Figure 2. 

 

 
 

Through the application layer, the network 

programmer can define high-level network policies, 

high-end services, and network functions such as 

routing, and traffic engineering.  Between the 

application layer and the controller is the 

northbound interface. Currently, the northbound 

specific standard is still under development [7] 

unlike the southbound which has already witnessed 

some level of standardization and adoption.   

 

III. THE SDN ELEMENTS 

 

The SDN architecture consists of three elements: 

The controller, Forwarding Elements 

(Programmable Switches), and the communication 

protocol between them [10]. The controller which is 

the central control unit or network operating system 

is responsible for gathering and communicating the 

network information for the programming needs of 

the network administrator or developer through 

some standard interfaces. It is also saddled with the 

responsibility of dynamic configuration of the 

forwarding elements in the network due to the global 

view it has gained as a result of topology learning 

and discovery. Because of its centralization and 

control ability, it eases the task of network 

administration which can now be achieved from a 

single point and programmatically. The controller 

can provide more advanced functionality for the 

network such as traffic engineering and network 

user abstraction. The switches and routers now act 

as mere forwarding elements without the 

complication of policy and switching rules in them. 

Network policies and security definitions come from 

the centralized controller more efficiently [18].  
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OpenFlow is the most widely accepted standard 

protocol for defining the southbound interface of 

SDN [10]. This interface lies between the controller 

and the network infrastructure and through it, the 

controller is able to communicate with the 

OpenFlow enabled switches at the infrastructure 

layer of the network. It allows the controller to 

control and manage the switches through the 

installation of forwarding rules in their flow tables 

[14]. Other existing protocols for the southbound 

interface such as Simple Network Management 

Protocol (SNMP), Border Gateway Protocol (BGP) 

and Path Computation Element Protocol (PCEP) 

[21]. The reason for OpenFlow wide acceptance is 

the fact that it is being promoted by the Open 

Network Foundation (ONF) (Open Networking 

Foundation, 2021) which makes it the current 

dominant standard. The current version of 

OpenFlow as at the time of this research is version 

1.5 (Open Flow Standard version, 2021). Since the 

first released version (1.0) of the OpenFlow 

protocol, it has undergone some changes. However, 

the differences in the various version do not affect 

the implementation of our proposed discovery 

scheme as it works for all versions in the same way. 

An OpenFlow enabled switch supports basic match-

action, this allows every incoming packet to be 

compared against the rules in the switch's flow table 

and the associated match-action is executed against 

it. Supported OpenFlow match fields includes the 

switch ingress port, various packet header fields 

such as source and destination MAC addresses, 

source and destination IP addresses, UPD/TCP port 

numbers. 

 

The SDN need a way of knowing how the network 

infrastructure is laid out in the network to provide 

basic network functions such as routing, flow 

control, basic Match/Action operations on received 

packets [11], and even the current functions of some 

middleboxes like network load balancing, 

firewalling and quality of service. Therefore, there 

is the need for up-to-date information of Topology 

at the SDN Controller. Only a de facto protocol – 

OpenFlow Discovery Protocol (OFDP) which 

adopts the layer 2 Link Layer Discovery Protocol 

(LLDP) packet format is used for this service in 

most of the available controllers and most of them 

follow the same structure for topology discovery as 

derived from the original SDN controller- 

Networking Operating System (NOX). In the OFDP 

discovery approach, The SDN controller is required 

to generate an LLDP packet for the individual port 

on each switch carrying the specific Data Path 

Identity (DPID) and Port Identity (PortId) as 

applicable [11]. These generated LLDP packets are 

sent in a packet-out message to the designated 

switches with individual instruction to forward the 

packet to the mentioned port. In the OpenFlow 

Enabled-Switches, there exist a preconfigured flow 

rule that allows for three possible actions on the 

received LLDP packet - Broadcasting to all switch 

ports, drop the packet, or send to the controller via a 

packet-in message which also contains metadata 

with necessary parameters for link discovery like the 

chases number of the switch, the ingress port where 

the LLDP packet was received from and other 

details in the Type-Length-Value (TLVs) of the 

packet which makes the controller guess the 

existence of a link between the LLDP packet source 

and destination [11]. Figure 3 illustrates the flow of 

this discovery packet in a network comprising of 

three switches. While Figure 4 shows how an 

adversary can succeed in poisoning the SDN 

topology view making use of the static LLDP 

packet. The reverse link is learned in another phase 

of LLDP propagation and a bidirectional link is 

established. This discovery process is performed at 

fixed periodic interval typically around 5 seconds to 

update the network topology view at the controller 

[11] and should incase a link is nonexistent any more 

or a new link is added resulting in topology change, 

the controller learns this through repetition of the 

process. 

 
 

IV. STRUCTURE OF LLDP PACKET 

 

LLDP exchanges information through specific units 

of data called Link Layer Discovery Protocol Data 

Unit (LLDPDU). These data unit consists of TLVs 

and each TLV field corresponds to a certain type and 

length. LLDP standard IEEE 802.1AB has three 

TLVs that are mandatory at the beginning of an 

LLDPDU in the following order: 

• Type 1 = Chassis ID (Identifies the device) 
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• Type 2 = Port ID (Identifies the port) 

• Type 3 = Time to live (Tells the receiving device 

how long the received information should 

remain valid) 

• Following these mandatory TLVs, an LLDPDU 

can include additional, optional TLVs: 

• Type 4 = Port description (displays details about 

the port) 

• Type 5 = System name (displays given name for 

the device) 

• Type 6 = System description (displays version of 

the software) 

• Type 7 = System capabilities (tells the primary 

function and capabilities of the device) 

• Type 8 = Management address (shows the IP or 

MAC address of the device) 

• At the end of an LLDPDU the following TLV is 

mandatory: 

• Type 0 = End of LLDPDU (Signals the end of 

the data unit) 

 

LLDP Replay Attach: In this type of attack, the 

adversary is a host sitting on one of the ports of the 

OpenFlow switch connected to the controller. Since 

the LLDP packet gets to each port on the switches 

[11], the attacker grabs the packet and through a 

compromised host on another switch either a 

machine or malicious software, inserts the LLDP 

packer directly to the second switch without 

modification. By default, the switch has been 

configured to forward such received LLDP packets 

directly to the controller. Therefore, the attacker can 

deceive the controller and create a fake link between 

switch 1 and switch 3 which was previously non-

existent as shown in Figure 4. The attacker can then 

utilize this fake link for malicious activities on the 

network like packet sniffing and DDOS attack. 

Topology poisoning attacks can be in the form of 

link fabrication or host hijacking. Link fabrication is 

achieved as explained above by replay or forgery of 

the LLDP packet. In the host hijacking type of 

topology poisoning, the attacker can create a fake 

packet with a source address the same as that of a 

real host in the network. This packet is injected into 

the network and when the controller received the 

LLDP packet, identifies that the host has migrated 

and goes ahead to update the flow table with this 

new location information. All packets meant for 

such host are now diverted to the newly installed 

host location on the network. 

 

 
Fig. 4: LLDP Relay Attack for Topology Poisoning 

[11] 

 

V. LITERATURE REVIEW 

 

This study is based on an in-depth review of the 

literature, focusing on emerging trends in securing 

topology discovery in Software Defined Networking 

(SDN) environments. Articles published from 1990 

to 2022 were examined, emphasizing OpenFlow-

based security mechanisms and mitigation strategies 

against topology-related threats such as topology 

poisoning and link fabrication. The primary 

keywords used in the search included "SDN 

Security," "Topology Discovery," "OpenFlow 

Protocol," and "Network Threat Mitigation." 

 

A total of 150 publications were identified through 

the literature search, of which 21 were deemed most 

relevant to this study. Ensuring secure topology 

discovery is critical to enhancing SDN's reliability 

in dynamic and large-scale network environments. 

Consequently, this study provides valuable insights 

into effective security strategies and highlights areas 

for further research and development. 

 

Since the introduction of Software Defined Network 

(SDN), The research community has constantly put 

effort to improve its performance and adoption in 

the general networking world. The main protocol 

supported by the Open Network (ONF) is the 

OpenFlow protocol which adapts the topology 

discovery scheme from the legacy layer 2 LLDP. 

Concentration is therefore on how to ensure 

effective and efficient topology discovery in SDN. 

Some of such works included that of [4] where they 

attempt to extend the security architecture of the 

SDN controller by adding additional attributes (like 

the device type and list of hosts) that can guarantee 

the legitimacy of topology update requests. With 
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such new attributes, it can show if the traffic is 

received from a connected host or the switch itself. 

It uses encryption authentication to tackle link 

fabrication attacks however, their work called 

TOPOGUARD is not effective against replay-type 

link fabrication attacks because they make use of a 

static packet that can be reused by an attacker to 

create a fake link in the network. And their 

concentration was mainly on SDN poisoning attacks 

without much attention to other types of attacks in 

the SDN topology discovery protocol. Another 

approach called SPHINX [2] uses static mapping of 

ports with a host on the network to detect poisoning 

attacks. It uses a flow graph to detect anomalous 

behavior in the data plane and based on the state of 

the traffic, it compares with some set of predefined 

or learned 'normal' behavior to alert the system of 

any divergence. It is more of an alert system without 

much concentration on the technical details of the 

attack. Since SPHINX is more of a policy-based 

system, it brings about an additional burden on the 

network administrator who will have to be writing 

and reviewing network security strategies to keep 

the system relevant as attacks become more 

sophisticated. Alharbi et al. (2015) proposed OFDP-

HMAC which introduces the addition of extra TLVs 

in the LLDP packet to ensure its authentication and 

packet integrity with Cryptographic Message 

Authentication (MAC) that has a random key chosen 

for every round of LLDP generation. But the 

problem is that they still broadcast to all the switch 

ports. Therefore, it is also very easy for adversaries 

to have access to their discovery packet for packet 

reengineering or direct injection in the network to 

create fake links thereby poisoning the network 

topology view of the controller. Other models such 

as that of [15] proposed to transfer some of the 

topology verification tasks to the switch with 

additional computational power. Their model is 

based on Internet Engineering Task Force’s (IETF) 

Forwarding and Control Element Separation 

(ForCES) framework. The main focus of their work 

is to gather LLDP data directly from the network 

devices while the controller queries for the topology 

information periodically.   

 

SDN Resource Discovery Protocol (SDN-RDP) 

which is a distributed resource discovery protocol 

was proposed by [8]. In this approach, more than one 

controller is responsible for managing all the 

switches in the network, the controller needs to 

announce its presence in the network and then join 

the switches. It takes a two-phase approach, First the 

forwarding phase where the controllers announce 

their presence thereby learning the leaf nodes that 

are involved in the creation of the control channel. 

While the second phase is the backward phase that 

allows the individual nodes to select the preferred 

link direction to the controller. 

 

[12] proposed a verification strategy that is based on 

switch agent. The mode of operation requires that 

the controller generates and sends out a multicast 

message to the switches in the network. When the 

switches receive this message, they are changed 

from standby node to either Father node or Active 

node. Each of the nodes on the network is tasked 

with the collection of neighbor information which is 

collated and asynchronously sent to the controller by 

a single designated Father node.   

 

[13] suggests a layer two topology discovery that 

makes use of an autonomic fault recovery protocol. 

A topoRequest message is sent out by the controller 

as a multicast. While the nodes operate in four roles, 

(non-discovered nodes, leaf nodes, v-leaf nodes, and 

core nodes). Each port on the switches too can be in 

either of four states (standby state, parent state, child 

state, and pruned state). It is able to achieve 

automatic fault recovery with the help of some 

managed components and an autonomic manager. It 

is the task of the autonomic manager to detects the 

status of each port and send updated information to 

the managed components. SDN Link Discovery 

Protocol (SLDP) [11] is another very important 

work that was successful in reducing the number of 

LLDP packets generated by the controller through 

the introduction of what they called an ‘eligible list’ 

of ports due for LLDP reception. With this concept, 

the overhead of LLDP packet generation at a fixed 

periodic interval to all the switch ports was reduced 

including minimized wasteful LLDP packets as 

several criterial like port inactivity after some 

specific period can lead to the delisting of such port. 

They also introduced a fixed-length positional 

packet structure for LLDP. In addition, they used a 

token-based approach that generates random source 

MAC address for each SLDP packet. Though this 

work achieved a reduced number of SLDP packet 

generation by gradually learning and maintaining an 

eligible list in the controller with a well-written 

algorithm for port exclusion due to several factors 

such as when a port is not receiving SLDP packet 

over some defined period or there is no reversal of 

http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0013
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the generated SLDP to the controller from a 

particular port, or when a port is flagged for 

malicious operation, the controller also checks if a 

successful unidirectional link is not completed as a 

bidirectional link within a certain period and flags 

such source port as malicious and delist. SLDP is 

proposed to be lightweight for topology discovery 

due to its small size and few numbers of packets 

required as a result of eligible list introduction in 

their approach. It significantly reduced the packet 

processing overhead at the side of the controller 

making the network faster in terms of topology 

discovery time.  

 

SLDP packet size is limited to the minimum number 

of bytes necessary for SDN link discovery. In 

contrast to other approaches which use 40bytes to 85 

bytes, SLDP uses only 26bytes doing away with 

those bytes that are not required for topology 

discovery.   

 

It was implemented in the Mininet emulator in the 

architecture as shown in Figure 5. Though the 

number of SLDP is reduced even while there is no 

topology change occurring at the eligible port, they 

still receive the SLDP packet and this is still CPU 

and memory wastage coupled with the security 

demand and MAC creation overhead associated 

with this 'wasteful' SLDP packets. 

 

 
Fig. 5. SLDP System Architecture [11] 

 

[5] proposed a topology verification scheme called 

TrustTopo that addresses (1) Host location 

verification strategy using path tracking and 

asynchronous rollback technique and (2) For Link 

verification, uses chaotic model and dynamic 

password generation strategy. TrustTopo leverages 

on the chaotic model strategy which dynamically 

generates the passwords. The nature of the model is 

such that an attacker cannot calculate the password 

generation space in advance, this approach helps to 

maintain the integrity of the information. They also 

make use of Fingerprint codes to ensure the 

unforgeability of LLDP packets, this gives two 

levels of trust in the LLPD generation. First, the 

attacker cannot predict the password in advance, and 

secondly, statistical learning will also not help in the 

forgeability of the packet security components. 

Unlike the simple authentication approach (i.e., the 

random number scheme), the TrustTopo strategy 

can effectively resist brute-force attacks. TrustTopo 

combines the chaotic model based on the random 

number and the random transformation rules to 

obtain the "double random" feature. As a result, the 

TrustTopo strategy achieves the dynamic and 

unpredictability of the passwords by taking 

advantage of the large differences between different 

conversion rules. To tackle the problem of host 

hijacking, TrustTopo relied on the fact that a host 

should not be reachable at its previous location 

which forms a corresponding feature event for 

verification. Such event is used to judge the 

authenticity of the host migration request. They 

achieve this with the path tracking and asynchronous 

rollback technique. TrustTopo architecture is given 

in Figure 6. 

 

 
Fig. 6. TrustTopo Architecture in the SDN 

controller (Huang et. al., 2020). 

 

TrustTopo Link Verification Strategy focused more 

on two protective majors, 1) how to achieve 

unforgeability of the LLDP packet and 2) 

Effectively detect a relayed LLDP packet. The 
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authors used chaotic model based on chaotic motion 

which is both common and complex in the linear 

dynamic systems. In specific terms, the chaotic 

motion is complex and non-repetitive movement 

which is always confined to a limited area. It has the 

characteristics of avalanche effect as any slight 

change to the initial condition greatly affects the 

system state. Packet hop-count is also used in the 

network to verify relay-type link fabrication attack 

since the construction and processing of the LLDP 

packet will result in packet transmission delay. The 

authors also add timeline to the generated passwords 

to prevent relayed packet reaching the controller for 

topology updates.  

 

The approach of [5] -TrustTopo is able to place 

integrity on the generated LLDP packet for topology 

change request at the controller, makes use of 

dynamic packet at every round of LLDP generation, 

and takes care to protect the controller from the three 

types of attacks namely: Poisoning, Flooding and 

Replay. They have however not solved the problems 

with the packet generation overhead that occurs at 

the controller. These problems seem to be general 

with almost all the research works reviewed. 

 

The primary gap identified across the literature is the 

challenge of balancing security with operational 

efficiency. While advanced security measures like 

encryption and dynamic packet generation help 

protect the network, they often come at the cost of 

increased resource utilization and network latency. 

Future research should focus on developing 

lightweight, scalable solutions that minimize packet 

overhead while maintaining robust security. 

Mechanisms such as on-demand topology 

verification, improved bidirectional checks, and 

better utilization of existing secure channels (e.g., 

OpenFlow) offer promising directions for 

addressing these challenges. 

 

CONCLUSION 

 

This survey has reviewed various approaches aimed 

at enhancing topology discovery and security in 

Software Defined Networking (SDN) with a focus 

on mitigating common vulnerabilities such as 

topology poisoning, link fabrication, and replay 

attacks. The reviewed literature highlights several 

innovative techniques, including TOPOGUARD's 

device-type verification, SPHINX's anomaly 

detection, OFDP-HMAC's cryptographic integrity 

checks, and TrustTopo's dynamic password 

generation and path tracking mechanisms. Each 

approach contributes, particularly in securing the 

topology discovery process in SDN, but of the 

approaches still suffer from inefficiencies, such as 

excessive resource use due to fixed periodic LLDP 

broadcasts or the need for complex key and 

password management. Additionally, several of the 

models introduce added administrative burden 

through policy-based systems or encryption 

overhead, which may limit scalability and 

performance in larger or more dynamic networks.  
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