
© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 584

Securing Topology Discovery in Software Defined

Networks: Trends, Gaps, And Future Directions

AHMAD ENESI SIYAKA1, SALISU ALIYU2, SAHABI YUSUF ALI3
1, 2, 3 Computer Science Department, Ahmadu Bello University, Zaria-Nigeria

Abstract- Software Defined Networking (SDN) has

revolutionized network architecture by separating

the control plane from the data plane, offering

enhanced flexibility, programmability, and

centralized control. However, this paradigm shift

introduces significant security concerns,

particularly in the area of topology discovery,

where threats such as topology poisoning, link

fabrication, and host hijacking are prevalent due

to the lack of standardization in SDN protocols and

the dynamic nature network environments like

virtual data centers and cloud infrastructures. This

survey explores various security mechanisms

proposed for topology discovery in SDN, with a

focus on the OpenFlow protocol. It reviews key

approaches designed to mitigate common

vulnerabilities, including the use of

authentication, encryption, and anomaly detection

techniques. The survey highlights the trade-offs

between security measures and network

performance, analyzing their effectiveness in

addressing topology-related threats while

minimizing overhead. The findings suggest that

while many solutions enhance SDN security,

challenges such as resource consumption, latency,

and packet processing overhead persist. Future

research should aim to develop lightweight,

scalable mechanisms that balance robust security

with operational efficiency, ensuring optimal

performance of SDN in dynamic, large-scale

networks.

Indexed Terms- Software Defined Network,

Topology Discovery, Link Layer Discovery

Protocol (LLDP), OpenFlow

I. INTRODUCTION

Software-Defined Networking (SDN) is a new area

in networking that is focused on making networks

programable by decoupling the control plane from

the data plane of the network [14]. There is the

presence of a controller on top of which high-level

Northbound Application Programming Interfaces

(APIs) run to achieve very advanced functionality

such as load balancing, traffic shaping, rule-based

access control, or general traffic monitoring which

were in the past, the function of middleboxes in the

network. The controller typically has a northbound

and a southbound interface through which it

communicates with the APIs and the network

elements at the data planes, respectively.

The OpenFlow communication protocol,

standardized by the Open Networking Foundation

(ONF) in 2011, is the de-facto open-source standard

for the southbound interface [10]. The OpenFlow

protocol has received significant attention from the

research community [9] and is currently being used

in real-world SDN networks, such as Google’s B4

network [6]. The centralized controller is

responsible for installing and configuring the

forwarding table in the programable switches. This

makes it possible to control the network behavior

from a centralized location. This was very easy to

accomplish as switches already implemented flow

tables in their design [6], so, vendors were only

required to open up interfaces so that separate

software could populate these flow tables.

Switches contain several flow tables, each with its

own set of flow rules. A flow rule consists of three

fields: matching criteria, action (e.g., drop the

packet), and priority. At the initial reception of a

packet by the switch which it has not learned from

the controller how to handle, it sends such packet in

an encapsulated OpenFlow packet-in message to the

controller which receives it and in turn installs the

flow rule for handling such packet in the controller

through a packet-out message. So, in the next

occurrence of such packet in the switch, it acts on it

based on the installed rule matching the packet

header as long as the rule remains valid. The SDN

controller makes use of the Link Layer Discovery

Protocol (LLDP) for establishing the existence of

links amongst network components. In the

traditional topology discovery architecture, the

LLDP packet is sent as a broadcast message at a

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 585

fixed periodic interval to connected OpenFlow

Enabled-Switches [11]. Because the switch

broadcasts the packet to all its ports, a malicious host

connected to one of the ports can get the LLDP

packet as an attack vector to poison the network

topology.

In the case of a relay attack, the adversary passes on

this LLDP packet directly to another switch that

does not have direct link to the originating switch

and in turn revert the same packet to the controller

which learns falsely that there is a direct link

between the switches as there is no way of verifying

the authenticity of the packet source [20]. In the case

of a host hijacking attack, the malicious host

modifies the packet to reconstruct the packet header

as may be desired to trick the controller that a known

host moved to another location in the network.

Therefore, if there is no way of verifying that the

host has actually moved, the controller updates the

flow table to reflect this new host location

information.

Several researchers have shown that it is possible to

launch security attacks at the application, control,

and data planes ([17] and [19]), while other works

proposed counter measures for improving the

security of SDN ([16] and [18]). Among the

proposed attacks, topology attacks that aim at

poisoning the network topology are one of the most

dangerous types. Unlike in traditional networks

where adversaries can only tamper with the topology

of a small fraction of the network by convincing a

set of switches/routers of a specific (fake) topology

event, the consequences of such attacks in SDN

networks can be more severe due to the controller’s

centralization and the global view it has of the

network. As the controller contains all the network

topology information in a centralized location,

adversaries can influence any part of the network

regardless of their location. Furthermore, the

complication of SDN attack cases also comes from

the fact the OpenFlow enabled-switches lack

sufficient logic and capabilities to implement

traditional countermeasures such as dynamic

Address Resolution Protocol (ARP) inspection.

From what precedes, it becomes very clear that

maintaining the correct and genuine network

topology view at the controller is of paramount

importance. The core services and applications in

SDN require real-time and accurate topology

information to perform their tasks correctly. The

possibility of attack and compromise to the SDN

topology discovery service can open the way for

adversaries to gain access to the network traffic.

This can mean the ability to bypass security policies

in the network, carry out Man-in-The-Middle

(MiTM) or Denial-of-Service (DoS) attacks. Or

even hijack the identity of hosts in the network to

divert their traffic for malicious operations. The host

could be a whole server that handles a very large

amount of traffic in the network

In TCP/IP architecture, the layering abstraction is in

the vertical dimension while the plane abstraction is

in the horizontal dimension with the first path being

the physical infrastructure and some sequence of

layers on top of that as shown in Figure 1. Each layer

in the layer abstraction directly depends on the

services of other layers, the plane abstraction has no

such dependency. Instead, every layer has a specific

function and responsibility in the network.

Fig. 1. Illustration of TCP/IP Layering and Plane

In the current Internet Protocol (IP), functions such

as packet forwarding, flow control, access control,

routing, and network management are a collection of

functions performed by the same set of IP protocols.

The control/management and forwarding are tightly

coupled together whereas this constitutes an

obstacle to the ever-demanding flexibility required

by the growing Internet and Internet services. The

introduction of SDN opens a new chapter in the

decoupling needs of the network and allows each

plane to scale vertically without being restricted by

the initial tight coupling in the layered approach.

This paper contributes to the field by:

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 586

a. Providing a comprehensive analysis of recent

advancements in security mechanisms for

topology discovery in Software Defined

Networking (SDN), with a focus on OpenFlow

protocol.

b. Highlighting the benefits and limitations of

existing solutions, particularly regarding their

trade-offs between enhanced security and

network performance.

c. Offering insights for researchers and

practitioners to understand the challenges of

balancing robust security with operational

efficiency in dynamic, large-scale SDN

environments.

The paper is structured into six sections: Section I

introduces the study, Section II discusses the

Layering Architecture of SDN, and Section III

focuses on the SDN elements and the

communication protocol between them. Section IV

discusses LLDP structure and its security

challenges. Section V reviews existing security

mechanisms for addressing topology discovery

related threats, and identifies areas for further

research. Sections VI conclude the study.

II. LAYERING ARCHITECTURE OF SDN

SDN maintains a global view of the network as an

abstraction to the application layer thereby hiding

most of the complex maintenance and configuration

functions carried out by individual network and

network devices in a traditional environment. This

task is now taken up by the controller. In this paper,

our focus is on topology discovery services of the

SDN controller and how to optimize the security in

the process. Every switch on the network is managed

by the controller through the process of installing

appropriate forwarding rules [14]. The southbound

interface is the interface between the controller and

the infrastructure. To achieve control and

management of the underlying infrastructure

through the installation of the forwarding rules, the

switches need to allow dynamic configuration of

their flow table. So, switch manufacturers can easily

open interfaces in switches to allow this

configurability. One of such southbound interface

standards that are widely adopted is OpenFlow [10].

At the top of the SDN controller is the application

layer which allows high-level programs to interact

with the controller for network management and

configuration functions. SDN architecture is

presented in Figure 2.

Through the application layer, the network

programmer can define high-level network policies,

high-end services, and network functions such as

routing, and traffic engineering. Between the

application layer and the controller is the

northbound interface. Currently, the northbound

specific standard is still under development [7]

unlike the southbound which has already witnessed

some level of standardization and adoption.

III. THE SDN ELEMENTS

The SDN architecture consists of three elements:

The controller, Forwarding Elements

(Programmable Switches), and the communication

protocol between them [10]. The controller which is

the central control unit or network operating system

is responsible for gathering and communicating the

network information for the programming needs of

the network administrator or developer through

some standard interfaces. It is also saddled with the

responsibility of dynamic configuration of the

forwarding elements in the network due to the global

view it has gained as a result of topology learning

and discovery. Because of its centralization and

control ability, it eases the task of network

administration which can now be achieved from a

single point and programmatically. The controller

can provide more advanced functionality for the

network such as traffic engineering and network

user abstraction. The switches and routers now act

as mere forwarding elements without the

complication of policy and switching rules in them.

Network policies and security definitions come from

the centralized controller more efficiently [18].

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 587

OpenFlow is the most widely accepted standard

protocol for defining the southbound interface of

SDN [10]. This interface lies between the controller

and the network infrastructure and through it, the

controller is able to communicate with the

OpenFlow enabled switches at the infrastructure

layer of the network. It allows the controller to

control and manage the switches through the

installation of forwarding rules in their flow tables

[14]. Other existing protocols for the southbound

interface such as Simple Network Management

Protocol (SNMP), Border Gateway Protocol (BGP)

and Path Computation Element Protocol (PCEP)

[21]. The reason for OpenFlow wide acceptance is

the fact that it is being promoted by the Open

Network Foundation (ONF) (Open Networking

Foundation, 2021) which makes it the current

dominant standard. The current version of

OpenFlow as at the time of this research is version

1.5 (Open Flow Standard version, 2021). Since the

first released version (1.0) of the OpenFlow

protocol, it has undergone some changes. However,

the differences in the various version do not affect

the implementation of our proposed discovery

scheme as it works for all versions in the same way.

An OpenFlow enabled switch supports basic match-

action, this allows every incoming packet to be

compared against the rules in the switch's flow table

and the associated match-action is executed against

it. Supported OpenFlow match fields includes the

switch ingress port, various packet header fields

such as source and destination MAC addresses,

source and destination IP addresses, UPD/TCP port

numbers.

The SDN need a way of knowing how the network

infrastructure is laid out in the network to provide

basic network functions such as routing, flow

control, basic Match/Action operations on received

packets [11], and even the current functions of some

middleboxes like network load balancing,

firewalling and quality of service. Therefore, there

is the need for up-to-date information of Topology

at the SDN Controller. Only a de facto protocol –

OpenFlow Discovery Protocol (OFDP) which

adopts the layer 2 Link Layer Discovery Protocol

(LLDP) packet format is used for this service in

most of the available controllers and most of them

follow the same structure for topology discovery as

derived from the original SDN controller-

Networking Operating System (NOX). In the OFDP

discovery approach, The SDN controller is required

to generate an LLDP packet for the individual port

on each switch carrying the specific Data Path

Identity (DPID) and Port Identity (PortId) as

applicable [11]. These generated LLDP packets are

sent in a packet-out message to the designated

switches with individual instruction to forward the

packet to the mentioned port. In the OpenFlow

Enabled-Switches, there exist a preconfigured flow

rule that allows for three possible actions on the

received LLDP packet - Broadcasting to all switch

ports, drop the packet, or send to the controller via a

packet-in message which also contains metadata

with necessary parameters for link discovery like the

chases number of the switch, the ingress port where

the LLDP packet was received from and other

details in the Type-Length-Value (TLVs) of the

packet which makes the controller guess the

existence of a link between the LLDP packet source

and destination [11]. Figure 3 illustrates the flow of

this discovery packet in a network comprising of

three switches. While Figure 4 shows how an

adversary can succeed in poisoning the SDN

topology view making use of the static LLDP

packet. The reverse link is learned in another phase

of LLDP propagation and a bidirectional link is

established. This discovery process is performed at

fixed periodic interval typically around 5 seconds to

update the network topology view at the controller

[11] and should incase a link is nonexistent any more

or a new link is added resulting in topology change,

the controller learns this through repetition of the

process.

IV. STRUCTURE OF LLDP PACKET

LLDP exchanges information through specific units

of data called Link Layer Discovery Protocol Data

Unit (LLDPDU). These data unit consists of TLVs

and each TLV field corresponds to a certain type and

length. LLDP standard IEEE 802.1AB has three

TLVs that are mandatory at the beginning of an

LLDPDU in the following order:

• Type 1 = Chassis ID (Identifies the device)

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 588

• Type 2 = Port ID (Identifies the port)

• Type 3 = Time to live (Tells the receiving device

how long the received information should

remain valid)

• Following these mandatory TLVs, an LLDPDU

can include additional, optional TLVs:

• Type 4 = Port description (displays details about

the port)

• Type 5 = System name (displays given name for

the device)

• Type 6 = System description (displays version of

the software)

• Type 7 = System capabilities (tells the primary

function and capabilities of the device)

• Type 8 = Management address (shows the IP or

MAC address of the device)

• At the end of an LLDPDU the following TLV is

mandatory:

• Type 0 = End of LLDPDU (Signals the end of

the data unit)

LLDP Replay Attach: In this type of attack, the

adversary is a host sitting on one of the ports of the

OpenFlow switch connected to the controller. Since

the LLDP packet gets to each port on the switches

[11], the attacker grabs the packet and through a

compromised host on another switch either a

machine or malicious software, inserts the LLDP

packer directly to the second switch without

modification. By default, the switch has been

configured to forward such received LLDP packets

directly to the controller. Therefore, the attacker can

deceive the controller and create a fake link between

switch 1 and switch 3 which was previously non-

existent as shown in Figure 4. The attacker can then

utilize this fake link for malicious activities on the

network like packet sniffing and DDOS attack.

Topology poisoning attacks can be in the form of

link fabrication or host hijacking. Link fabrication is

achieved as explained above by replay or forgery of

the LLDP packet. In the host hijacking type of

topology poisoning, the attacker can create a fake

packet with a source address the same as that of a

real host in the network. This packet is injected into

the network and when the controller received the

LLDP packet, identifies that the host has migrated

and goes ahead to update the flow table with this

new location information. All packets meant for

such host are now diverted to the newly installed

host location on the network.

Fig. 4: LLDP Relay Attack for Topology Poisoning

[11]

V. LITERATURE REVIEW

This study is based on an in-depth review of the

literature, focusing on emerging trends in securing

topology discovery in Software Defined Networking

(SDN) environments. Articles published from 1990

to 2022 were examined, emphasizing OpenFlow-

based security mechanisms and mitigation strategies

against topology-related threats such as topology

poisoning and link fabrication. The primary

keywords used in the search included "SDN

Security," "Topology Discovery," "OpenFlow

Protocol," and "Network Threat Mitigation."

A total of 150 publications were identified through

the literature search, of which 21 were deemed most

relevant to this study. Ensuring secure topology

discovery is critical to enhancing SDN's reliability

in dynamic and large-scale network environments.

Consequently, this study provides valuable insights

into effective security strategies and highlights areas

for further research and development.

Since the introduction of Software Defined Network

(SDN), The research community has constantly put

effort to improve its performance and adoption in

the general networking world. The main protocol

supported by the Open Network (ONF) is the

OpenFlow protocol which adapts the topology

discovery scheme from the legacy layer 2 LLDP.

Concentration is therefore on how to ensure

effective and efficient topology discovery in SDN.

Some of such works included that of [4] where they

attempt to extend the security architecture of the

SDN controller by adding additional attributes (like

the device type and list of hosts) that can guarantee

the legitimacy of topology update requests. With

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 589

such new attributes, it can show if the traffic is

received from a connected host or the switch itself.

It uses encryption authentication to tackle link

fabrication attacks however, their work called

TOPOGUARD is not effective against replay-type

link fabrication attacks because they make use of a

static packet that can be reused by an attacker to

create a fake link in the network. And their

concentration was mainly on SDN poisoning attacks

without much attention to other types of attacks in

the SDN topology discovery protocol. Another

approach called SPHINX [2] uses static mapping of

ports with a host on the network to detect poisoning

attacks. It uses a flow graph to detect anomalous

behavior in the data plane and based on the state of

the traffic, it compares with some set of predefined

or learned 'normal' behavior to alert the system of

any divergence. It is more of an alert system without

much concentration on the technical details of the

attack. Since SPHINX is more of a policy-based

system, it brings about an additional burden on the

network administrator who will have to be writing

and reviewing network security strategies to keep

the system relevant as attacks become more

sophisticated. Alharbi et al. (2015) proposed OFDP-

HMAC which introduces the addition of extra TLVs

in the LLDP packet to ensure its authentication and

packet integrity with Cryptographic Message

Authentication (MAC) that has a random key chosen

for every round of LLDP generation. But the

problem is that they still broadcast to all the switch

ports. Therefore, it is also very easy for adversaries

to have access to their discovery packet for packet

reengineering or direct injection in the network to

create fake links thereby poisoning the network

topology view of the controller. Other models such

as that of [15] proposed to transfer some of the

topology verification tasks to the switch with

additional computational power. Their model is

based on Internet Engineering Task Force’s (IETF)

Forwarding and Control Element Separation

(ForCES) framework. The main focus of their work

is to gather LLDP data directly from the network

devices while the controller queries for the topology

information periodically.

SDN Resource Discovery Protocol (SDN-RDP)

which is a distributed resource discovery protocol

was proposed by [8]. In this approach, more than one

controller is responsible for managing all the

switches in the network, the controller needs to

announce its presence in the network and then join

the switches. It takes a two-phase approach, First the

forwarding phase where the controllers announce

their presence thereby learning the leaf nodes that

are involved in the creation of the control channel.

While the second phase is the backward phase that

allows the individual nodes to select the preferred

link direction to the controller.

[12] proposed a verification strategy that is based on

switch agent. The mode of operation requires that

the controller generates and sends out a multicast

message to the switches in the network. When the

switches receive this message, they are changed

from standby node to either Father node or Active

node. Each of the nodes on the network is tasked

with the collection of neighbor information which is

collated and asynchronously sent to the controller by

a single designated Father node.

[13] suggests a layer two topology discovery that

makes use of an autonomic fault recovery protocol.

A topoRequest message is sent out by the controller

as a multicast. While the nodes operate in four roles,

(non-discovered nodes, leaf nodes, v-leaf nodes, and

core nodes). Each port on the switches too can be in

either of four states (standby state, parent state, child

state, and pruned state). It is able to achieve

automatic fault recovery with the help of some

managed components and an autonomic manager. It

is the task of the autonomic manager to detects the

status of each port and send updated information to

the managed components. SDN Link Discovery

Protocol (SLDP) [11] is another very important

work that was successful in reducing the number of

LLDP packets generated by the controller through

the introduction of what they called an ‘eligible list’

of ports due for LLDP reception. With this concept,

the overhead of LLDP packet generation at a fixed

periodic interval to all the switch ports was reduced

including minimized wasteful LLDP packets as

several criterial like port inactivity after some

specific period can lead to the delisting of such port.

They also introduced a fixed-length positional

packet structure for LLDP. In addition, they used a

token-based approach that generates random source

MAC address for each SLDP packet. Though this

work achieved a reduced number of SLDP packet

generation by gradually learning and maintaining an

eligible list in the controller with a well-written

algorithm for port exclusion due to several factors

such as when a port is not receiving SLDP packet

over some defined period or there is no reversal of

http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0013

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 590

the generated SLDP to the controller from a

particular port, or when a port is flagged for

malicious operation, the controller also checks if a

successful unidirectional link is not completed as a

bidirectional link within a certain period and flags

such source port as malicious and delist. SLDP is

proposed to be lightweight for topology discovery

due to its small size and few numbers of packets

required as a result of eligible list introduction in

their approach. It significantly reduced the packet

processing overhead at the side of the controller

making the network faster in terms of topology

discovery time.

SLDP packet size is limited to the minimum number

of bytes necessary for SDN link discovery. In

contrast to other approaches which use 40bytes to 85

bytes, SLDP uses only 26bytes doing away with

those bytes that are not required for topology

discovery.

It was implemented in the Mininet emulator in the

architecture as shown in Figure 5. Though the

number of SLDP is reduced even while there is no

topology change occurring at the eligible port, they

still receive the SLDP packet and this is still CPU

and memory wastage coupled with the security

demand and MAC creation overhead associated

with this 'wasteful' SLDP packets.

Fig. 5. SLDP System Architecture [11]

[5] proposed a topology verification scheme called

TrustTopo that addresses (1) Host location

verification strategy using path tracking and

asynchronous rollback technique and (2) For Link

verification, uses chaotic model and dynamic

password generation strategy. TrustTopo leverages

on the chaotic model strategy which dynamically

generates the passwords. The nature of the model is

such that an attacker cannot calculate the password

generation space in advance, this approach helps to

maintain the integrity of the information. They also

make use of Fingerprint codes to ensure the

unforgeability of LLDP packets, this gives two

levels of trust in the LLPD generation. First, the

attacker cannot predict the password in advance, and

secondly, statistical learning will also not help in the

forgeability of the packet security components.

Unlike the simple authentication approach (i.e., the

random number scheme), the TrustTopo strategy

can effectively resist brute-force attacks. TrustTopo

combines the chaotic model based on the random

number and the random transformation rules to

obtain the "double random" feature. As a result, the

TrustTopo strategy achieves the dynamic and

unpredictability of the passwords by taking

advantage of the large differences between different

conversion rules. To tackle the problem of host

hijacking, TrustTopo relied on the fact that a host

should not be reachable at its previous location

which forms a corresponding feature event for

verification. Such event is used to judge the

authenticity of the host migration request. They

achieve this with the path tracking and asynchronous

rollback technique. TrustTopo architecture is given

in Figure 6.

Fig. 6. TrustTopo Architecture in the SDN

controller (Huang et. al., 2020).

TrustTopo Link Verification Strategy focused more

on two protective majors, 1) how to achieve

unforgeability of the LLDP packet and 2)

Effectively detect a relayed LLDP packet. The

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 591

authors used chaotic model based on chaotic motion

which is both common and complex in the linear

dynamic systems. In specific terms, the chaotic

motion is complex and non-repetitive movement

which is always confined to a limited area. It has the

characteristics of avalanche effect as any slight

change to the initial condition greatly affects the

system state. Packet hop-count is also used in the

network to verify relay-type link fabrication attack

since the construction and processing of the LLDP

packet will result in packet transmission delay. The

authors also add timeline to the generated passwords

to prevent relayed packet reaching the controller for

topology updates.

The approach of [5] -TrustTopo is able to place

integrity on the generated LLDP packet for topology

change request at the controller, makes use of

dynamic packet at every round of LLDP generation,

and takes care to protect the controller from the three

types of attacks namely: Poisoning, Flooding and

Replay. They have however not solved the problems

with the packet generation overhead that occurs at

the controller. These problems seem to be general

with almost all the research works reviewed.

The primary gap identified across the literature is the

challenge of balancing security with operational

efficiency. While advanced security measures like

encryption and dynamic packet generation help

protect the network, they often come at the cost of

increased resource utilization and network latency.

Future research should focus on developing

lightweight, scalable solutions that minimize packet

overhead while maintaining robust security.

Mechanisms such as on-demand topology

verification, improved bidirectional checks, and

better utilization of existing secure channels (e.g.,

OpenFlow) offer promising directions for

addressing these challenges.

CONCLUSION

This survey has reviewed various approaches aimed

at enhancing topology discovery and security in

Software Defined Networking (SDN) with a focus

on mitigating common vulnerabilities such as

topology poisoning, link fabrication, and replay

attacks. The reviewed literature highlights several

innovative techniques, including TOPOGUARD's

device-type verification, SPHINX's anomaly

detection, OFDP-HMAC's cryptographic integrity

checks, and TrustTopo's dynamic password

generation and path tracking mechanisms. Each

approach contributes, particularly in securing the

topology discovery process in SDN, but of the

approaches still suffer from inefficiencies, such as

excessive resource use due to fixed periodic LLDP

broadcasts or the need for complex key and

password management. Additionally, several of the

models introduce added administrative burden

through policy-based systems or encryption

overhead, which may limit scalability and

performance in larger or more dynamic networks.

REFERENCES

[1] Alharbi T., Portmann M., and Pakzad F. (2015,

October). The (in)security of topology

discovery in software defined networks. In

40th IEEE Conference on Local Computer

Networks, LCN 2015, Clearwater Beach, FL,

USA, pages 502–505.

[2] Dhawan M., Poddar R., Mahajan K., and Mann

V. (2015, January). SPHINX: Detecting

Security Attacks in Software-Defined

Networks. DOI: 10.14722/ndss.2015.23064

[3] Duan, Q., N. Ansari, and M. Toy (2016,

October). Software-Defined Network

Virtualization: An architectural framework for

integrating SDN and NFV for service

provisioning in future networks. IEEE

Network.

[4] Hong S., Xu L., Wang H. and Gu G. (2015,

February). Poisoning Network Visibility in

Software-Defined Networks: New Attacks and

Countermeasures, in: Proc. of Annual Network

and Distributed System Security Symposium

(NDSS'15).

[5] Huang, X., P. Shi, Y. Liu, and F. Xu (2020,

April). TrustTopo, a lightweight and efficient

SDN topology verification scheme. East China

Normal University, Shanghai, China.

Computer Networks 170 (2020), 107119.

[6] Jain, S., A. Kumar, S. Mandal, and J. Ong et al.

(2013, August). B4: Experience with a

globally-deployed Software Defined WAN. In

ACM SIGCOMM Conference. Pages 3–14.

[7] Jammal, M., T. Singh, A. Shami, and R. Asal

et al. (2014, July). Software defined

networking: State of the art and research

challenges. Computer Networks 72 (0), 74–98.

DOI: 10.1016/j.comnet.2014.07.004.

© NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880

IRE 1706608 ICONIC RESEARCH AND ENGINEERING JOURNALS 592

[8] Jimenez, Y., C. Cervello-Pastor, and A. Garcia

(May, 2015). Dynamic resource discovery

protocol for software defined networks. IEEE

Commun. Lett. 19(5), 743–746.

[9] Kloti, R., V. Kotronis, and P. Smith (2013,

October). OpenFlow: A security analysis. In

IEEE International Conference on Network

Protocols (ICNP). Pages 1–6.

[10] McKeown, N., T. Anderson, H. Balakrishnan,

and G. Parulkar et al. (2008, March).

OpenFlow: enabling innovation in campus

networks. ACM SIGCOMM Computer

Communication Review, pages 69–74.

[11] Nehra, M., M. Tripathi, S. Gaur, and R. B.

Battula et al. (2018, December). SLDP: A

secure and lightweight link discovery protocol

for software-defined networking.

[12] Ochoa-Aday, L., C. Cervelló-Pastor, and A.

Fernández-Fernándeza (2016, November).

Discovering the Network Topology: An

efficient approach for software-defined

networks. Advances in Distributed Computing

and Artificial Intelligence Journal. ADCAIJ,

Regular Issue Vol. 5 N. 2. http://adcaij.usal.es.

[13] Ochoa-Aday, L., C. Cervello-Pastor, and A.

Fernandez-Fernandez (March, 2018). Self-

healing topology discovery protocol for

software-defined networks. IEEE Commun.

Lett. 22(5), 1070–1073.

[14] Pakzad, F., M. Portmann, W. Tan, and J.

Indulska (2015, September). Efficient

topology discovery in OpenFlow-based

software defined networks. Computer

Communications, DOI:

10.1016/j.comcom.2015.09.013.

[15] Tarnaras, G., E. Haleplidis, and S. Denazis

(April, 2015). SDN and FORCES-based

optimal network topology discovery.

Proceedings of the 2015 1st IEEE Conference

on Network Softwarization (NetSoft), 1–6.

[16] Wang, H., G. Yang, P. Chinprutthiwong, and

L. Xu et al. (2018, October). Towards fine-

grained network security forensics and

diagnosis in the SDN era. In ACM SIGSAC

Conference on Computer and Communications

Security (CCS), pages 3–16.

[17] Xu, L., J. Huang, S. Hong, and J. Zhang et al.

(2018, August). Attacking the brain: Races in

the SDN control plane. In USENIX Security

Symposium, pages 451–468.

[18] Xue, L., X. Ma, X. Luo, and E. W.W. Chan et

al. (2018, October). LinkScope: Towards

detecting target link flooding attacks. IEEE

Transactions on Information Forensics and

Security (TIFS).

[19] Zhang, M., G. Li, L. Xu, and J. Bi et al. (2018,

September). Control plane reflection attacks in

SDNs: New attacks and countermeasures. In

Symposium on Research in Attacks,

Intrusions, and Defenses (RAID).

[20] Zuo, Z., R. He, X. Zhu, and C. Chang (2019,

May). A novel software-defined network

packet security tunnel forwarding mechanism.

Mathematical Biosciences and Engineering

(MBE), 16(5), 4359–4381. DOI:

10.3934/mbe.2019217.

[21] (2021, March 30). Retrieved from

OpenDaylight: URL

http://www.opendaylight.org/project/technical

-overview.

