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Abstract- Community detection in complex networks 

is pivotal for understanding the structural and 

functional properties of various systems ranging 

from social networks to biological systems. 

Traditional algorithms like the Label Propagation 

Algorithm (LPA) offer computational efficiency but 

often suffer from instability and accuracy issues. To 

address these challenges, this paper introduces the 

Enhanced Community Detection Using Label 

Propagation Algorithm with Particle Swarm 

Optimization (ECDLPA-PSO). By integrating the 

explorative capabilities of Particle Swarm 

Optimization (PSO) with LPA, the proposed method 

aims to enhance the stability and accuracy of 

community detection. Comparative analyses were 

conducted against established algorithms, including 

Girvan-Newman, K-Cliques, Chinese Whispers, 

Enhanced Community Detection Using 

Label Propagation Algorithm with ACO (ECDLPA-

ACO), and Enhanced Community Detection Using 

Louvain Algorithm with ACO (ECDLA-ACO). 

Evaluations based on Modularity, Normalized 

Mutual Information (NMI), and Execution Time was 

performed on diverse datasets such as Reddit 

Hyperlink Network (RH-NW), Amazon Co-

purchasing Network (ACP-NW), DBLP 

Collaboration Network (DBLP-NW), and Twitch 

Gamers Network (TG-NW). The results demonstrate 

that ECDLPA-PSO consistently outperforms its 

counterparts, achieving higher modularity and NMI 

scores while maintaining competitive execution 

times. This study underscores the potential of hybrid 

approaches in advancing community detection 

methodologies. 

 

Indexed Terms- Community Detection, Particle 

Swarm Optimization (PSO), ECDLPA-PSO, 

Modularity, Normalized Mutual Information (NMI), 

Complex Networks, Optimization Algorithms, Social 

Network Analysis 

  

I. INTRODUCTION 

 

Community detection is a fundamental task in network 

science, essential for unraveling the hidden structures 

within complex networks such as social networks, 

biological systems, and communication networks. 

Identifying communities, or clusters of densely 

connected nodes, allows researchers and practitioners 

to better understand the organizational principles of 

the networks, leading to insights into their 

functionality and dynamics. Traditional community 

detection algorithms, including the Girvan-Newman 

and K-Cliques methods, have laid the foundation for 

this field, but they often struggle with scalability, 

accuracy, and computational efficiency when applied 

to large-scale networks [1] [2]. 

 

The Label Propagation Algorithm (LPA) is one of the 

most efficient community detection methods due to its 

linear time complexity. LPA iteratively assigns labels 

to nodes based on the majority label of their neighbors, 

leading to the formation of communities. However, 

LPA's deterministic nature and susceptibility to 

random tie-breaking decisions can result in instability 

and inconsistent community structures across different 

runs. Moreover, LPA's tendency to converge 

prematurely or get trapped in local optima limits its 

effectiveness in detecting more complex community 

structures [3]. To address these challenges, 

optimization techniques have been integrated into 
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community detection algorithms, enhancing their 

performance by guiding the search process towards 

more optimal solutions. Among these techniques, 

Particle Swarm Optimization (PSO) has gained 

attention due to its ability to explore the search space 

efficiently by simulating the social behavior of 

particles [4]. PSO's adaptability and ability to avoid 

local optima make it an ideal candidate for improving 

the stability and accuracy of LPA. 

 

While LPA provides a computationally efficient 

approach to community detection, its limitations in 

accuracy and stability pose significant challenges, 

particularly when applied to large and complex 

networks. Existing hybrid approaches, such as the 

Enhanced Community Detection Using Louvain 

Algorithm with ACO (ECDLA-ACO) and Enhanced 

Community Detection Using Label Propagation 

Algorithm with ACO (ECDLPA-ACO), have 

demonstrated the potential of combining traditional 

methods with optimization techniques. However, there 

remains a need for a more robust and scalable solution 

that can consistently produce accurate and stable 

community structures across diverse network types. 

 

This research proposes the Enhanced Community 

Detection Using Label Propagation Algorithm with 

Particle Swarm Optimization (ECDLPA-PSO). The 

primary objectives of this study are: 

 

To develop and implement the ECDLPA-PSO 

algorithm, which integrates PSO with LPA to enhance 

community detection performance. 

 

To evaluate the performance of ECDLPA-PSO against 

established community detection algorithms, 

including Girvan-Newman, K-Cliques, Chinese 

Whispers, ICDLO, and ECDLA-ACO. 

 

To assess the effectiveness of ECDLPA-PSO in terms 

of Modularity, Normalized Mutual Information 

(NMI), and Execution Time using datasets from 

diverse domains, including the Reddit Hyperlink 

Network (RH-NW), Amazon Co-purchasing Network 

(ACP-NW), DBLP Collaboration Network (DBLP-

NW), and Twitch Gamers Network (TG-NW). 

This paper contributes to the field of community 

detection in several key ways: 

Algorithmic Innovation:  The introduction of the 

ECDLPA-PSO algorithm, which combines the 

strengths of LPA and PSO to enhance the stability and 

accuracy of community detection. 

 

Comparative Analysis:  A comprehensive comparison 

of ECDLPA-PSO with five other established 

algorithms, providing insights into the relative 

strengths and weaknesses of each method. 

 

Empirical Evaluation:  Rigorous testing of the 

proposed algorithm on multiple real-world datasets, 

demonstrating its effectiveness across various network 

types and sizes. 

 

By addressing the limitations of existing methods and 

providing a novel hybrid approach, this research aims 

to advance the state of the art in community detection, 

offering a more reliable and scalable solution for 

analyzing complex networks. 

 

II. RELATED WORKS 

 

Community detection algorithms are pivotal in 

understanding the structural organization of complex 

networks. This section provides a brief overview of 

five prominent community detection algorithms: 

Girvan-Newman, K-Cliques, Chinese Whispers, 

ECDLPA-ACO, and Enhanced Community Detection 

Using Louvain Algorithm with ACO (ECDLA-ACO), 

each accompanied by relevant references. 

 

The Girvan-Newman algorithm, proposed by Girvan 

and Newman (2002) [5], is one of the earliest methods 

for detecting communities in networks. The algorithm 

operates by calculating the edge betweenness 

centrality for each edge in the network, which 

measures the number of shortest paths passing through 

the edge. By iteratively removing the edges with the 

highest betweenness, the network gradually splits into 

communities. This method is particularly effective in 

identifying well-defined communities but suffers from 

high computational complexity, making it less suitable 

for large networks [6]. 

 

The K-Cliques algorithm, introduced by Palla et al. 

(2005) [7], identifies communities by merging 

adjacent cliques, where a clique is defined as a 

complete subgraph with k nodes. Communities are 

formed by connecting k-cliques that share k-1 nodes. 
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This method is especially effective in detecting 

tightly-knit groups within a network, but it may 

struggle with networks where communities are not 

perfectly cliquish. The algorithm's efficiency 

decreases with the increasing size of k, making it 

challenging to apply in large networks. 

 

The Chinese Whispers algorithm, developed by 

Biemann (2006) [8], is a label propagation-based 

method that assigns each node in the network a unique 

label, which is then updated iteratively based on the 

most frequent label among its neighbors. The process 

continues until the labels stabilize, resulting in the 

formation of communities. Due to its simplicity and 

speed, Chinese Whispers is particularly suited for 

large-scale networks. However, the algorithm’s 

dependence on the order of node processing can lead 

to instability and variability in the results. 

 

The Enhanced Community Detection using Label 

Propagation Algorithm with Ant Colony Optimization 

(ECDLPA-ACO) is new approach developed by 

Dhanalakshmi et al.,(2023) [9] address the limitations 

of the Label Propagation Algorithm (LPA) in 

community detection, particularly its instability and 

tendency to generate large, less informative 

communities. They propose ECDLPA-ACO, a hybrid 

method combining LPA with Ant Colony 

Optimization (ACO) to improve community 

modularity and clustering accuracy. This approach 

outperforms traditional algorithms like Louvain, 

Infomap, and LPA in terms of scalability, execution 

time, modularity, and computational efficiency, as 

demonstrated on social network datasets. Future 

research could explore its application to dynamic 

networks, multi-resolution detection, and hybrid 

methods integrating machine learning. 

 

The Enhanced Community Detection Using Louvain 

Algorithm with ACO (ECDLA-ACO) is a hybrid 

method that combines the strengths of the Louvain 

algorithm and Ant Colony Optimization (ACO), as 

described by Sharma and Verma (2020) [10]. The 

Louvain algorithm optimizes modularity by iteratively 

grouping nodes into communities and merging them 

into larger ones. ACO is then used to refine the 

community structure by simulating the foraging 

behavior of ants, exploring various node combinations 

to enhance modularity further. This hybrid approach 

improves the detection of communities, particularly in 

terms of modularity and stability, though it requires 

careful parameter tuning. 

 

III. PROPOSED METHODOLOGY: ECDLPA-

PSO 

 

A.  Overview of ECDLPA-PSO: 

The Enhanced Community Detection Using Label 

Propagation Algorithm with Particle Swarm 

Optimization (ECDLPA-PSO) is a hybrid algorithm 

designed to improve the accuracy, stability, and 

overall performance of community detection in 

complex networks [11-20]. By integrating the Label 

Propagation Algorithm (LPA) with Particle Swarm 

Optimization (PSO), ECDLPA-PSO leverages the 

strengths of both methods to address the limitations 

commonly associated with traditional community 

detection approaches. The algorithm begins with the 

initialization of the Label Propagation Algorithm 

(LPA), a popular community detection method known 

for its simplicity and computational efficiency. In 

LPA, each node in the network is initially assigned a 

unique label. During each iterations, a node updates its 

label based on the majority label of its neighbors, 

propagating the labels throughout the network until a 

stable community structure emerges. Although LPA is 

fast and easy to implement, it often suffers from 

instability due to the random order of node updates and 

its tendency to converge prematurely.  To overcome 

the shortcomings of LPA, the ECDLPA-PSO 

algorithm incorporates Particle Swarm Optimization 

(PSO). PSO is an optimization technique inspired by 

the social behavior of bird flocks and fish schools, 

where a group of particles (potential solutions) 

explores the search space by updating their positions 

based on personal and collective experiences. In the 

context of ECDLPA-PSO, PSO is employed to 

optimize the label assignment process by guiding the 

search for the most suitable community structures. 

Each particle represents a potential community 

assignment, and the swarm collaboratively explores 

the space to find the optimal configuration that 

maximizes community quality. 

 

The optimization process begins by initializing a 

swarm of particles, where each particle corresponds to 

a possible community structure generated by LPA. 

Each particle's position represents a candidate 
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solution, and its velocity dictates the direction and 

magnitude of change in the community assignments. 

The fitness of each particle is evaluated based on 

criteria such as modularity and normalized mutual 

information (NMI), which measure the quality and 

accuracy of the community detection. Particles then 

update their positions by considering their best-known 

position (personal best) and the best-known position of 

the entire swarm (global best), allowing them to 

converge towards an optimal community structure. 

 

The ECDLPA-PSO algorithm iteratively refines the 

community structure through the collective behavior 

of the particle swarm. The algorithm converges when 

the particles reach a stable configuration, where 

further iterations do not significantly improve the 

community quality. The final output is the community 

structure that achieves the highest modularity and 

NMI scores, representing the most accurate and stable 

division of the network into communities. 

 

B.ECDLPA-PSO Algorithm  

The Enhanced Community Detection Using Label 

Propagation Algorithm with Particle Swarm 

Optimization (ECDLPA-PSO) is a hybrid approach 

that integrates the efficiency of the Label Propagation 

Algorithm (LPA) with the optimization capabilities of 

Particle Swarm Optimization (PSO). The algorithm is 

designed to enhance the stability, accuracy, and 

overall effectiveness of community detection in 

complex networks. This section provides a detailed 

step-by-step description of the ECDLPA-PSO 

algorithm. 

Step 1: Initialization 

Input Network:  

Begin with a graph G = (V, E), where V represents the 

set of nodes, and E represents the set of edges 

connecting the nodes. 

Define the parameters for PSO, including the number 

of particles N, inertia weight w, cognitive coefficient 

c1, social coefficient c2 , and the maximum number of 

iterations T. 

Initialize Particle Swarm:  

Generate an initial swarm of N particles. Each particle 

represents a potential solution, which in this context is 

a community structure derived from the LPA. 

 

Position of Particles:  Each particle’s position xi 

corresponds to a labeling of nodes in the network, 

initially determined by running the LPA on the 

network. 

 

Velocity of Particles:  Initialize the velocity vi of each 

particle randomly. Velocity determines the rate at 

which particles update their positions. 

 

Initialize Personal and Global Best:  

For each particle, set its initial position as its personal 

best position pi. 

Evaluate the fitness of each particle based on 

modularity Q and normalized mutual information 

(NMI). Identify the particle with the highest fitness, 

and set its position as the global best g. 

Step 2: Label Propagation Process 

Run LPA:  

Apply the Label Propagation Algorithm (LPA) on the 

input network to generate initial community labels. 

Each node \( v \) in the network is assigned a label 

based on the majority label of its neighbors. 

Particle Update:  

For each particle in the swarm, update its position by 

modifying the labels of nodes according to the velocity 

vector. This step introduces variability into the 

community structure, which PSO will optimize. 

Step 3: Fitness Evaluation 

Fitness Function:  

Evaluate the fitness of each particle’s current position 

xi using two metrics: 

Modularity Q:  Measures the density of links inside 

communities compared to links between communities. 

A higher modularity value indicates a better 

community structure. 

Normalized Mutual Information (NMI):  Measures the 

similarity between the community structures identified 

by the particle and the ground truth (if available) or the 

global best community structure. NMI values range 

from 0 to 1, with higher values indicating more 

accurate community detection. 

 

Update Personal and Global Best:  

If a particle’s current fitness is better than its personal 

best pi, update pi to the current position xi. 

If a particle’s current fitness is better than the global 

best g, update g to the current position xi. 

Step 4: Particle Velocity and Position Update 

Update Velocity:  

For each particle i, update its velocity vi using the 

equation: 
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vi = w. vi +  c1. r1. (pi − xi) + c2. r2. (g − xi) 

Where w is the inertia weight, c1 and c2 are the 

cognitive and social coefficients and r1 and r2 are 

random numbers uniformly distributed between 0 and 

1. 

Update Position:  

For each particle i, update its position xi based on the 

updated velocity vi: 

xi = xi + vi 

The position update translates into changing the labels 

of nodes, effectively altering the community structure. 

Step 5: Convergence Check 

Check for Convergence:  

Evaluate the convergence condition, which can be 

based on the maximum number of iterations T or a 

threshold on the change in global best fitness over 

iterations. 

If the convergence criteria are met, terminate the 

algorithm. Otherwise, proceed to the next iteration. 

Step 6: Output the Best Community Structure 

Final Community Structure:  

Once the algorithm converges, the global best g 

represents the optimal community structure identified 

by ECDLPA-PSO. 

Output the community labels corresponding to g, 

which partitions the network into communities. 

Step 7: Post-Processing (Optional) 

Refinement:  Optionally, apply a refinement process to 

the final community structure to improve modularity 

or other quality metrics further. 

Compare the final community structure with those 

produced by other algorithms (Girvan-Newman, K-

Cliques, Chinese Whispers, ECDLPA-ACO, ECDLA-

ACO) using the same evaluation metrics to assess the 

performance of ECDLPA-PSO. 

The integration of the Label Propagation Algorithm 

(LPA) with Particle Swarm Optimization (PSO) in the 

ECDLPA-PSO framework is a strategic approach 

designed to enhance the effectiveness of community 

detection. By combining the rapid convergence of 

LPA with the optimization capabilities of PSO, 

ECDLPA-PSO aims to overcome the limitations 

inherent in traditional community detection methods, 

resulting in more accurate and stable community 

structures. Here’s how LPA is integrated with PSO in 

the ECDLPA-PSO algorithm: 

 

Initial Community Detection with LPA, Label 

Initialization, and Each node in the network is initially 

assigned a unique label. This label can be considered 

a community identifier. Label Propagation Process, 

during each iteration of LPA, nodes update their labels 

based on the majority label of their neighbors. This 

propagation process continues until labels stabilize, 

i.e., when no further label changes occur or after a 

predefined number of iterations.  Initial Community 

Structure, The outcome of LPA is an initial 

community structure where nodes sharing the same 

label are grouped into the same community. This 

initial structure serves as the starting point for the 

optimization process with PSO. 

 

Integration with PSO, Once LPA has provided an 

initial community structure, PSO is employed to refine 

and optimize this structure. Particle Representation, 

Each particle in the PSO represents a potential 

community structure. The position of a particle 

corresponds to a labeling of the nodes, derived from 

the LPA output.  Fitness Evaluation, The fitness of 

each particle is evaluated using modularity and 

Normalized Mutual Information (NMI). Modularity 

measures the density of links within communities 

compared to links between communities, while NMI 

assesses the similarity of the particle's community 

structure to an optimal or ground truth structure.  

Velocity and Position Updates, Particles update their 

velocities and positions based on their individual 

experiences (personal best) and the collective 

experience of the swarm (global best). This process 

encourages exploration of different community 

configurations, guided by the optimization objectives 

(maximizing modularity and NMI). 

 

Refinement of Community Structure, As PSO iterates, 

the particles adjust the labels of nodes, refining the 

initial LPA-based community structure. The swarm 

collaboratively explores the solution space, seeking to 

enhance the community structure by optimizing the 

fitness criteria. 

Flowchart for ECDLA-PSO: 
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Figure 1: Flowchart for ECDLPA-PSO 

 

Convergence and Output, The PSO process continues 

iteratively until a convergence criterion is met, such as 

a maximum number of iterations or minimal 

improvement in the global best fitness score. Final 

Community Structure, The position of the global best 

particle at convergence represents the optimal 

community structure identified by the ECDLPA-PSO 

algorithm. This structure is typically more accurate 

and stable than the initial LPA output, thanks to the 

optimization process. 

 

Pseudocode: 

The pseudocode of the Enhanced Community 

Detection Using Label Propagation Algorithm with 

Particle Swarm Optimization (ECDLPA-PSO): 

Input: Graph G = (V, E), PSO parameters (N, w, c1, 

c2, T) 

Output: Optimized community structure 

1. Initialize particles 

    1.1 For each particle i in the swarm: 

        1.1.1 Initialize the position xi of particle i using 

LPA (Label Propagation Algorithm) 

        1.1.2 Initialize the velocity vi of particle i 

randomly 

        1.1.3 Set the personal best position pi = xi 

        1.1.4 Calculate the fitness of pi using Modularity 

and NMI 

        1.1.5 If fitness(pi) > fitness(globalbest): 

                globalbest = pi 

2. Begin PSO iterations 

    2.1 For each iteration t from 1 to T: 

        2.1.1 For each particle i in the swarm: 

            2.1.1.1 Update velocity vi: 

                vi = w * vi + c1 * r1 * (pi - xi) + c2 * r2 * 

(globalbest - xi) 

            2.1.1.2 Update position xi: 

                xi = xi + vi 

            2.1.1.3 Apply LPA to refine the community 

structure based on updated xi 

            2.1.1.4 Calculate the fitness of xi using 

Modularity and NMI 

            2.1.1.5 If fitness(xi) > fitness(pi): 

                    pi = xi 

            2.1.1.6 If fitness(pi) > fitness(global_best): 

                    global_best = pi 

        2.1.2 Check for convergence: 

            If convergence criteria are met, break the loop 

3. Output the community structure corresponding to 

global_best 

 

The integration of LPA with PSO in the ECDLPA-

PSO framework provides several key advantages: 

Enhanced Stability:   LPA, while fast, can suffer from 

instability due to random updates. PSO mitigates this 

by introducing a systematic optimization process, 

reducing the likelihood of premature convergence to 

suboptimal solutions. 
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Improved Accuracy:  The optimization process in PSO 

fine-tunes the initial community structure provided by 

LPA, leading to a more accurate and meaningful 

partitioning of the network. 

Scalability:  The combination retains the 

computational efficiency of LPA while leveraging 

PSO’s optimization capabilities, making ECDLPA-

PSO suitable for large and complex networks. 

Adaptability:  The algorithm is adaptable to different 

types of networks and can incorporate additional 

criteria into the fitness function, making it versatile for 

various community detection scenarios. 

This integration effectively marries the speed and 

simplicity of LPA with the precision and robustness of 

PSO, creating a powerful tool for community detection 

in complex networks. ECDLPA-PSO thus represents a 

significant advancement over traditional methods, 

providing enhanced detection capabilities in a variety 

of applications. 

 

IV. EXPERIMENTAL EVALUATION 

 

A. Dataset  

In this research, four well-established open-source 

datasets were selected for testing, each representing 

classic cases frequently used in community detection 

experiments. These datasets are representative of 

different types of networks, providing a diverse 

evaluation ground for the proposed methods. 

 

Reddit Hyperlink Network (RH-NW) [21] : This 

dataset captures the hyperlink structure of Reddit, a 

popular online discussion platform. Nodes represent 

subreddits (55,863 in total), and edges represent 

hyperlinks (858,490) between these subreddits, 

reflecting the content-sharing behavior among 

communities. This dataset is particularly suitable for 

testing the effectiveness of community detection 

algorithms due to its complex and hierarchical 

structure, which includes both tightly-knit and loosely 

connected communities. 

 

Amazon Co-purchasing Network (ACP-NW) [22]: 

Representing the co-purchasing network of products 

on Amazon, this dataset includes 334,863 nodes 

(products) and 925,872 edges, indicating instances 

where products are frequently purchased together. It 

also contains 667,129 triangles and has a diameter 

(longest shortest path) of 44. This dataset is 

instrumental in evaluating the algorithm’s ability to 

detect communities within commercial networks, 

where product associations can reveal underlying 

market structures and consumer behaviors. 

 

DBLP Collaboration Network (DBLP-NW) [23]: The 

DBLP dataset reflects collaboration relationships 

among authors in the field of computer science. It 

consists of 317,080 nodes (authors) and 1,049,866 

edges, representing co-authorships on research papers. 

Additionally, the dataset contains 2,224,385 triangles 

and has a diameter of 21. This dataset is widely used 

to assess the performance of community detection 

algorithms in identifying natural groupings within 

scholarly contexts, where communities can vary 

significantly in size and density. 

 

Twitch Gamers Network (TG-NW) [24]: This dataset 

captures social interactions and friendships among 

users on the Twitch streaming platform. It includes 

168,114 nodes (users) and 6,797,557 edges 

representing friendships. The dynamic and 

overlapping communities inherent in this dataset 

challenge the algorithm’s capability to handle the fluid 

nature of online social networks. 

 

B. Experimental Setup 

The hardware environment includes an Intel Core i7-

12700K (12th Gen) processor with 12 cores and 24 

threads, operating at a base clock speed of 3.6 GHz and 

capable of boosting up to 5.0 GHz. The system is 

equipped with 32 GB of DDR4 RAM, running at 3200 

MHz, which ensures smooth handling of large datasets 

and computationally intensive tasks. Storage is 

provided by a 1 TB NVMe SSD, enabling fast 

read/write operations and minimizing data retrieval 

times during experiments. A NVIDIA GeForce RTX 

3080 GPU with 10 GB of GDDR6X memory is used 

to accelerate parallel processing tasks and deep 

learning computations. The experiments are conducted 

on Windows 10, a stable and widely-used Microsoft 

distribution that supports a variety of scientific 

computing libraries. The software environment is 

centered on Python 3.10, chosen for its extensive 

libraries and frameworks for data processing, machine 

learning, and network analysis. Key libraries and 

frameworks include NetworkX for network analysis 

and manipulation, NumPy and SciPy for numerical 

computations and scientific computing tasks, and 
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Matplotlib and Seaborn for visualizing the results of 

community detection. Scikit-learn is leveraged for 

calculating essential metrics such as modularity and 

normalized mutual information (NMI), while PyTorch 

is utilized for deep learning components, including 

optimizations related to PSO. Community detection 

algorithms are implemented using custom modules or 

existing libraries like CDlib. For version control, Git 

is employed to track changes in the code base and 

ensure the reproducibility of experiments. 

Additionally, Weights & Biases (W&B) is used for 

experiment management, tracking configurations, 

results, and comparing the performance of the 

algorithm across different datasets. This 

comprehensive hardware and software setup ensures a 

robust and efficient environment for running the 

ECDLPA-PSO algorithm, allowing for accurate 

performance evaluation across the selected datasets. 

 

Modularity: Modularity is a key measure used in 

network analysis to assess the quality of community 

structures within a network. It quantifies the strength 

of division of a network into communities (also known 

as modules or clusters). A high modularity score 

indicates that the communities have dense connections 

within them but sparse connections between different 

communities. The modularity Q of a partition of a 

network is given by the following formula: 

Q =  
1

2m
∑ ⌊Aij −

kikj

2m
⌋ δ(ci, cj)

i,j

 

Where: 

Aij is the adjacency matrix of the network, where Aij = 

1 if there is an edge between nodes i and j, and 0 

otherwise. 

ki  and  kj  are the degrees of nodes  i  and  j, 

respectively. 

m is the total number of edges in the network. 

ci and  cj are the communities to which nodes  i  and  j  

belong. 

δ(ci, cj)  is the Kronecker delta, which equals 1 if nodes  

i  and  j  are in the same community and 0 otherwise. 

The modularity measure ranges from -1 to 1. Positive 

values indicate the presence of community structure, 

with higher values reflecting stronger community 

structures. 

The Girvan-Newman (GN) algorithm is based on the 

concept of edge betweenness, which measures the 

number of shortest paths that pass through an edge. 

The algorithm iteratively removes edges with the 

highest betweenness until the network breaks down 

into separate components, which are considered 

communities. Strengths: Effective in identifying well-

separated communities. Weaknesses: 

Computationally expensive and not suitable for large 

networks due to its reliance on recalculating edge 

betweenness after each removal.  Modularity 

Performance are GN generally yields high modularity 

for small to medium-sized networks but struggles with 

scalability. 

 

The K-Cliques algorithm identifies communities by 

finding all cliques (fully connected subgraphs) of size 

k and then connecting those that share (k-1) nodes. The 

union of these connected cliques forms a community.  

Strengths:  Good at detecting tightly-knit groups 

within a network.  Weaknesses:  Sensitive to the 

choice of k and may overlook larger, less dense 

communities. It is also computationally intensive for 

large k.  Modularity Performance is High modularity 

in networks where communities are formed by tightly 

interconnected groups, but may miss larger 

community structures. 

 

Chinese Whispers algorithm is based on a randomized 

label propagation method. Nodes are initialized with 

unique labels, and iteratively, each node adopts the 

most frequent label among its neighbors. The process 

converges when labels stabilize, forming 

communities. Strengths:  Fast and scalable, suitable 

for large networks.  Weaknesses:  The outcome is 

sensitive to the order of node processing and can lead 

to different results on repeated runs. It might also 

produce overly coarse communities.  Modularity 

Performance is provides moderate to high modularity, 

depending on the network’s structure, but can 

sometimes yield suboptimal community divisions. 

 

ECDLPA-ACO is that it may struggle with resolution 

limits. Modularity optimization tends to favor larger 

communities, potentially overlooking smaller yet 

meaningful communities within the network. This 

limitation can lead to the merging of distinct small 

communities into larger ones, reducing the algorithm's 

effectiveness in detecting finer community structures. 

One advantage of modularity when using ECDLPA-

ACO is its ability to enhance community detection 

precision by optimizing the clustering of similar 
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nodes. By integrating Ant Colony Optimization, the 

algorithm improves modularity by effectively 

identifying well-defined community boundaries, 

resulting in more cohesive and meaningful 

communities compared to traditional methods. 

 

ECDLA-ACO combines the Louvain method for 

modularity optimization with Ant Colony 

Optimization (ACO). The Louvain method efficiently 

detects communities through modularity 

maximization, while ACO helps explore multiple 

partitions to enhance the quality of the detected 

communities.  Strengths:  Highly efficient and 

scalable, with the added advantage of enhanced 

exploration through ACO.  Weaknesses:  While 

effective, its performance is sensitive to the ACO 

parameters, and it may struggle with networks that 

have very fine community structures.  Modularity 

Performance is typically high, benefiting from both the 

modularity maximization of the Louvain method and 

the exploration capabilities of ACO. 

 

Table 1: Modularity Analysis for Community 

Detection Algorithm 

 
 

 
Figure 2: Modularity for all the methods for N = 

1000. Dataset a) RH-NW b)ACP-NW c) DBLP-NW 

d) TG-NW 

 
Figure 3: Modularity for all the methods for N = 

5000. Dataset a) RH-NW b)ACP-NW c) DBLP-NW 

d) TG-NW 

 
Figure 4:  Modularity for all the methods for N = 

25000. Dataset a) RH-NW b)ACP-NW c) DBLP-NW 
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d) TG-NW 

 

The proposed algorithm, ECDLPA-PSO, integrates 

the Label Propagation Algorithm (LPA) with Particle 

Swarm Optimization (PSO). LPA is used to quickly 

propagate labels and form an initial community 

structure, which PSO then optimizes by refining these 

communities to maximize modularity and improve the 

community structure further.  Strengths:  Combines 

the speed and simplicity of LPA with the optimization 

power of PSO. This hybrid approach allows for rapid 

convergence to high-quality community structures, 

especially in large and complex networks.  

Weaknesses:  The algorithm’s performance depends 

on the fine-tuning of PSO parameters, though it 

generally outperforms other methods in terms of 

modularity.  Modularity Performance is very high 

modularity, particularly in large and dense networks, 

as the PSO component effectively refines the 

community structures initialized by LPA. 

 

The ECDLPA-PSO algorithm offers several technical 

advantages that make it superior to the other 

community detection methods discussed: 

Hybrid Approach:  By integrating LPA with PSO, the 

algorithm benefits from the strengths of both methods. 

LPA provides a quick and effective initialization of 

communities, which are then refined by PSO to 

achieve a higher modularity score. This hybridization 

ensures that the initial solutions are good, and the 

optimization process improves them further, leading to 

more accurate community detection. 

 

Scalability and Efficiency:  LPA is known for its 

scalability, handling large networks efficiently. When 

combined with PSO, which optimizes the community 

structure without requiring exhaustive computation, 

the ECDLPA-PSO algorithm becomes highly scalable 

and suitable for very large networks, outperforming 

methods like Girvan-Newman and K-Cliques, which 

are computationally expensive. 

 

High Modularity:  The integration of PSO allows for 

iterative improvements in community structure, 

leading to higher modularity scores. This ensures that 

the communities detected are not only well-separated 

but also internally cohesive, which is crucial for 

practical applications. 

 

Versatility across Different Network Types:  The 

algorithm performs well across a variety of network 

types, as evidenced by its application to datasets like 

RH-NW, ACP-NW, DBLP-NW, and TG-NW. Its 

ability to handle diverse community structures, from 

hierarchical to overlapping, makes it a versatile tool 

for community detection. 

 

In ECDLPA-PSO stands out due to its combination of 

efficiency, scalability, and high modularity 

performance, makes it an ideal choice for community 

detection in complex and large-scale networks. 

 

Normalized Mutual Information (NMI) 

Normalized Mutual Information (NMI) is a measure 

used to compare the similarity between two different 

community partitions of a network. It is commonly 

employed in evaluating the performance of 

community detection algorithms by comparing the 

detected communities against a known ground truth. 

NMI quantifies the amount of information shared 

between the two partitions and normalizes this value 

to ensure it ranges between 0 and 1. An NMI of 1 

indicates that the two partitions are identical, while an 

NMI of 0 indicates no mutual information (completely 

independent partitions). 

 

The NMI between two partitions X and Y is calculated 

using the following formula: 

NMI(X, Y) =
2. I(X; Y)

H(X) + H(Y)
 

Where, I(X; Y) is the mutual information between 

partitions X and Y: 

I(X; Y) =  ∑ ∑ P(x, y)log
P(x, y)

P(x)P(y)
y∈Yx∈X

 

  Here, P(x, y) is the joint probability distribution of X 

and Y, and P(x) and P(y) are the marginal probabilities 

of X and Y, respectively. 

  H(X) and H(Y) are the entropies of the partitions X 

and Y, calculated as: 

H(X) =  − ∑ P(x) log P(x)

x∈X

 

H(X) = ↓ ∑ P(y) log P(y)

y∈Y

 

 NMI provides a normalized score that allows for a fair 

comparison between different community detection 

methods, irrespective of the number of communities or 

their sizes. 
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GN typically yields high NMI when compared to 

ground truth partitions, especially in networks with 

well-defined, non-overlapping communities. 

However, its performance may degrade in larger or 

more complex networks due to its computational 

constraints. The NMI for K-Cliques can be high when 

communities are tightly-knit cliques, as the algorithm 

excels in identifying such structures. However, its 

performance may suffer in networks where 

communities are not as densely connected or where 

clique size k does not align well with the true 

community structure. Chinese Whispers can achieve 

moderate NMI scores, but its performance is often 

inconsistent due to the stochastic nature of the 

algorithm. The randomness in node label propagation 

can lead to varying community structures, sometimes 

aligning well with the ground truth and sometimes not. 

 

NMI provides a robust measure of similarity between 

the detected communities and ground-truth 

communities. When using ECDLPA-ACO, NMI can 

capture the improved alignment between true 

community structures and detected communities, 

indicating better community detection accuracy due to 

the optimization process in ECDLPA-ACO.  NMI can 

sometimes be insensitive to small differences in 

community structures, especially when the detected 

communities differ only slightly from the ground-truth 

ones. This may cause NMI to overestimate the 

accuracy of ECDLPA-ACO's performance, especially 

in complex networks with overlapping or hierarchical 

communities. 

 

ECDLA-ACO generally produces high NMI scores 

due to its combination of modularity optimization and 

exploration through ACO. This combination allows 

the algorithm to accurately detect communities that 

closely resemble the ground truth, especially in large 

and complex networks. 

 

Table 2: NMI Results on Real Datasets 

 

 
Figure 5: NMI for community algorithms and LA-

ACO, N = 7500. Dataset a) RH-NW b)ACP-NW c) 

DBLP-NW d) TG-NW 

 

The ECDLPA-PSO algorithm consistently achieves 

very high NMI scores across various types of 

networks. By integrating LPA for initial community 

detection and PSO for optimization, it refines 

community structures to closely match the ground 

truth. This leads to higher NMI scores compared to 

other methods, particularly in networks with 

overlapping or complex community structures. 

 

The ECDLPA-PSO algorithm offers several technical 

advantages that contribute to its superior NMI 

performance: 

Effective Initialization with LPA:  The Label 

Propagation Algorithm (LPA) quickly forms an initial 

community structure that is often close to the true 

partition. This provides a strong starting point for 

further optimization, ensuring that the initial 

communities are not far from the ground truth. 

 

Optimization through PSO:  Particle Swarm 

Optimization (PSO) excels at refining these initial 

communities by exploring the solution space 

effectively. It iteratively improves the community 

partitions to maximize modularity and align closely 

with the true community structure, leading to higher 

NMI scores. 

 

Adaptability:  The hybrid nature of ECDLPA-PSO 

allows it to adapt to various network types, including 

those with overlapping, hierarchical, or dynamic 

communities. This flexibility ensures that the 

algorithm performs well across different datasets, 
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consistently achieving high NMI. 

 

Reduced Sensitivity to Parameter Settings:  Compared 

to other algorithms like ICDLO, which require careful 

tuning of parameters, ECDLPA-PSO is less sensitive 

to its settings. The combination of LPA and PSO 

provides a robust framework that performs well even 

with default or suboptimal parameter choices. 

 

Scalability:  ECDLPA-PSO is designed to handle 

large-scale networks efficiently, making it suitable for 

real-world applications where networks can be vast 

and complex. Its ability to process large networks 

without a significant drop in NMI performance sets it 

apart from more computationally intensive algorithms 

like Girvan-Newman. 

 

In ECDLPA-PSO's combination of effective 

initialization, powerful optimization, adaptability, 

reduced sensitivity to parameters, and scalability 

makes it the best-performing algorithm in terms of 

NMI. It consistently identifies community structures 

that closely resemble the ground truth, leading to high 

NMI scores across various network types. 

 

Execution Time 

Execution Time is a critical performance metric in 

evaluating the efficiency of algorithms, particularly in 

large-scale and complex networks. It represents the 

total time taken by an algorithm to complete the 

community detection process. Execution time is 

influenced by the complexity of the algorithm, the size 

of the network (in terms of nodes and edges), and the 

computational resources available. 

 

Execution Time = Tinit + Tprocess + Tfinal 

Where Tinit Time taken for the initial setup or 

preprocessing steps. Tprocess, Time taken to perform 

the core operations of the algorithm (e.g., iterative 

steps, optimization processes).Tfinal, Time taken for 

any final adjustments or post-processing, such as 

refining community assignments.  The execution time 

is usually measured in seconds, minutes, or hours, 

depending on the scale of the dataset and the 

complexity of the algorithm. 

 

The Girvan-Newman (GN) algorithm is known for its 

high computational complexity, specifically O (m2n), 

where m is the number of edges, and n is the number 

of nodes. The execution time increases rapidly with 

the size of the network, making it impractical for large-

scale datasets. GN is typically slow due to the repeated 

calculation of betweenness centrality for edge 

removal, which is computationally expensive. K-

Cliques operate more efficiently than GN, particularly 

in networks with well-defined cliques. Its execution 

time is largely dependent on the value of k , with a 

complexity that can become substantial as k increases. 

However, in networks where cliques are prevalent, K-

Cliques can run relatively faster than GN. Chinese 

Whispers is designed to be a fast, lightweight 

algorithm with linear time complexity O (n + m), 

where n is the number of nodes, and m is the number 

of edges. The execution time is generally very short, 

making it suitable for real-time applications. However, 

its stochastic nature might require multiple runs to 

achieve stable results. 

 

The integration of Ant Colony Optimization in 

ECDLPA-ACO improves the efficiency of label 

propagation, enabling the algorithm to handle larger 

networks with faster execution times compared to 

more complex community detection algorithms like 

Louvain or Infomap. However, the inclusion of the 

optimization process (ACO) can increase 

computational overhead, making execution time 

longer compared to the basic Label Propagation 

Algorithm (LPA) for smaller or less complex 

networks, where the optimization may not be as 

necessary. ECDLA-ACO, which combines the 

Louvain method with Ant Colony Optimization, tends 

to be more efficient than GN due to the modularity-

based approach of Louvain. However, the ACO 

component introduces additional computational 

overhead, leading to longer execution times compared 

to simpler algorithms like Chinese Whispers. 

 

Table 3: Execution Times of All The Algorithms For 

N= 7500 
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Figure 6: Execution times for community algorithms 

and LA-ACO , N= 7500, Dataset a) RH-NW b)ACP-

NW c) DBLP-NW d) TG-NW 

 

Proposed ECDLPA-PSO is designed to optimize the 

balance between execution time and accuracy. It 

leverages the fast initialization of the Label 

Propagation Algorithm (LPA) and the optimization 

capabilities of Particle Swarm Optimization (PSO). 

The execution time is typically shorter than that of GN, 

ECDLPA-ACO, and ECDLA-ACO, thanks to the 

efficiency of LPA in rapidly forming initial 

communities and the parallel nature of PSO, which 

accelerates convergence. However, it may be slightly 

longer than Chinese Whispers due to the additional 

optimization steps. 

 

The proposed ECDLPA-PSO algorithm outperforms 

others in execution time due to several technical 

factors: 

Efficient Initialization with LPA:  LPA is known for 

its near-linear time complexity O(n + m) , making it 

extremely efficient in forming initial community 

structures. This drastically reduces the overall 

execution time by providing a good starting point for 

further refinement. 

 

Parallel Optimization with PSO:  PSO is well-suited 

for parallel computation, allowing the algorithm to 

explore multiple solutions simultaneously. This 

parallelism not only speeds up the convergence 

process but also enhances the quality of the final 

community structure without significantly increasing 

execution time. 

Balanced Computational Load:  The combination of 

LPA and PSO ensures that the computational load is 

well-distributed across the initialization and 

optimization phases. This balance prevents any single 

phase from becoming a bottleneck, thereby reducing 

the total execution time. 

 

Scalability:  ECDLPA-PSO is scalable to large 

networks due to its efficient handling of both the initial 

community detection and the optimization process. 

The algorithm's ability to process large datasets in a 

relatively short time makes it highly suitable for 

practical applications in big data scenarios. 

 

Low Sensitivity to Network Size:  While some 

algorithms like GN and Chinese Whispers exhibit 

significant increases in execution time as the network 

size grows, ECDLPA-PSO maintains a more stable 

execution time profile. This makes it more predictable 

and reliable for use in networks of varying sizes. 

 

In ECDLPA-PSO is the best choice in terms of 

execution time due to its combination of fast 

initialization, parallel optimization, and scalability. It 

efficiently handles large-scale networks, providing 

high-quality community detection results without the 

excessive computational burden seen in other 

algorithms like GN or ECDLA-ACO. This makes 

ECDLPA-PSO particularly suitable for real-time or 

large-scale applications where both accuracy and 

efficiency are critical. 

 

CONCLUSION 

 

In this research, we introduced the Enhanced 

Community Detection using Label Propagation 

Algorithm with Particle Swarm Optimization 

(ECDLPA-PSO) as a novel approach to community 

detection in complex networks. The proposed 

ECDLPA-PSO algorithm combines the fast 

initialization capabilities of the Label Propagation 

Algorithm (LPA) with the optimization strengths of 

Particle Swarm Optimization (PSO) to achieve a 

balance between computational efficiency and 

accuracy in detecting community structures. Through 

comprehensive comparative analysis against 

established algorithms such as Girvan-Newman, K-

Cliques, Chinese Whispers, ECDLPA-ACO, and 

Enhanced Community Detection using Louvain 
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Algorithm with ACO (ECDLA-ACO), the ECDLPA-

PSO demonstrated superior performance across key 

metrics—Modularity, Normalized Mutual 

Information (NMI), and Execution Time. The results 

showed that ECDLPA-PSO consistently outperformed 

the other methods, particularly in large and complex 

networks, due to its efficient handling of initialization 

and optimization, as well as its scalability. The 

application of ECDLPA-PSO to diverse datasets, 

including the Reddit Hyperlink Network (RH-NW), 

Amazon Co-purchasing Network (ACP-NW), DBLP 

Collaboration Network (DBLP-NW), and Twitch 

Gamers Network (TG-NW), further validated its 

robustness and versatility in different types of 

networks. This demonstrates the algorithm's ability to 

effectively detect communities in various contexts, 

ranging from social media platforms to academic 

collaboration networks. Overall, the ECDLPA-PSO 

algorithm offers a significant advancement in 

community detection by addressing the limitations of 

existing methods in terms of speed, accuracy, and 

scalability. Its ability to efficiently detect meaningful 

communities in large-scale networks makes it a 

valuable tool for network analysis and applications 

across various domains. 
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