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Abstract- Given the potential risks associated with 

cloud computing, industries handling sensitive 

information like healthcare, government, and 

finance, must proactively implement robust data 

privacy measures to protect their customers and 

maintain compliance. This article explores 

homomorphic encryption (HE) as a transformative 

solution for protecting this sensitive information.  It 

presents homomorphic encryption (HE) as a 

transformative solution for privacy-preserving cloud 

environments, enabling secure data outsourcing 

without revealing plaintext data. We discuss HE's 

ability to process encrypted data in cloud 

infrastructures and analyze its computational 

overhead and scalability limitations, which have 

hindered its widespread adoption. The paper further 

evaluates key applications, such as privacy-

preserving machine learning, financial fraud 

detection, and genomic data analysis, where HE is 

highly advantageous. Compared with other privacy-

preserving techniques like secure multi-party 

computation (SMPC) and trusted execution 

environments (TEEs), we emphasize HE’s unique 

advantage in balancing data privacy and operational 

efficiency. Future developments in the field, 

including advancements in HE schemes and 

integration with other privacy-preserving 

technologies like differential privacy and secure 

multi-party computation, are also considered, 

offering insights into its potential to become a 

standard in secure cloud computing. 
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I. INTRODUCTION 

 

Cloud computing has seen exponential growth over 

the past decade, becoming a backbone for various 

industries. In 2023, global spending on cloud services 

was $669 billion, up from $444 billion in 2021 with 

spending in Software as a Service (SaaS) being the 

highest section, gulping about $413 billion (Statista, 

2023). Global spending on IT services reached 

approximately 1.5 trillion U.S. dollars, and by 2024, 

this figure increased to 1.61 trillion U.S. dollars. This 

growth has led to a significant shift in how sensitive 

data, such as personal healthcare records, financial 

transactions, and corporate intellectual property, is 

stored and processed. The sheer volume of data 

moving to the cloud brings substantial privacy risks, 

as data is often stored on third-party servers, 

potentially exposing it to unauthorized access. The 

demand for privacy-preserving techniques has grown 

massively with the cloud’s adoption to ensure that 

sensitive information remains secure even while being 

processed. 

 

 
Fig 1: Information technology (IT) services spending 

forecast worldwide from 2008 to 2024 (in billion U.S. 

dollars) 

Source: Statistica 

 

A major challenge in cloud environments is ensuring 

privacy while allowing computations to be performed 

on encrypted data. Traditional encryption methods 

such as AES (Advanced Encryption Standard) and 

RSA (Rivest-Shamir-Adleman) protect data at rest and 

during transmission, but they require decryption when 

performing operations on the data. This decryption 

moment introduces a vulnerability, exposing sensitive 
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information to potential malicious actors or internal 

threats from the cloud service provider. As the volume 

of data grows with projection to reach over 163 

zettabytes by 2025 which is 10 times the values of 

2016 generated data, finding a secure and efficient 

method of performing computations without 

compromising privacy has become a paramount 

concern for organizations utilizing the cloud (Seagate, 

2023). 

 

The objective of this article is to examine the role of 

homomorphic encryption in enabling privacy-

preserving computations in cloud environments. 

Homomorphic encryption allows computations to be 

performed on encrypted data without ever decrypting 

it, preserving privacy and security throughout the 

computational process. This article will explore how 

this encryption technique can be applied in cloud 

computing and analyze its potential to address privacy 

concerns while also considering its current limitations 

and practical implications. 

 

Homomorphic encryption offers a promising solution 

for maintaining data privacy in cloud computing, 

allowing for secure computations on encrypted data. 

Although it faces significant challenges, such as 

computational overhead, slow processing speeds, and 

scalability issues, it holds great potential to 

revolutionize privacy-preserving techniques in the 

cloud. As research continues to refine these methods, 

homomorphic encryption could become a cornerstone 

of secure cloud computing practices, allowing 

organizations to fully leverage the benefits of the 

cloud while safeguarding sensitive information. 

 

II. LITERATURE REVIEW 

 

Cloud computing has evolved into an important 

element of modern IT infrastructure, allowing users to 

store, manage, and process data remotely. According 

to data from Cloudwards, as of 2024, 94% of 

enterprises have adopted cloud computing in some 

capacity, reflecting its widespread integration into 

business operations. Also, 23% of cybersecurity 

specialists employ real-time monitoring to assess the 

security postures of their partners or vendors, 

emphasizing the increasing concern for security in the 

cloud ecosystem (Cloudwards, 2024). As 

organizations increasingly rely on cloud services, 

concerns regarding data security and privacy have 

become paramount. One of the primary concerns is 

data privacy, particularly when sensitive information 

like biometric data, employee information, healthcare 

records, financial details, proprietary business data, 

and the like are entrusted to third-party cloud 

providers. According to a study by Zulifqar et al. 

(2022), while cloud computing offers enhanced 

accessibility and scalability, it also exposes data to 

risks such as unauthorized access, data breaches, and 

potential misuse by service providers. 

 

A study by Riggs et al. (2023) highlights the 

vulnerability of traditional cloud encryption methods. 

While symmetric and asymmetric encryption 

techniques, such as AES and RSA, provide secure data 

encryption during transmission and storage, they fail 

to protect data during computation, necessitating 

decryption, which creates a potential attack surface for 

cybercriminals. In this light, homomorphic encryption 

has been proposed as a revolutionary solution that can 

manage these privacy concerns while allowing 

computations on encrypted data in the cloud. 

 

Homomorphic encryption represents a breakthrough 

in privacy-preserving techniques for cloud computing. 

Unlike traditional encryption methods, homomorphic 

encryption enables computations to be carried out 

directly on encrypted data without requiring 

decryption at any point during the process. This unique 

feature significantly enhances data security by 

minimizing the risk of exposing sensitive information, 

even in untrusted cloud environments. A comparative 

analysis by Stilinki et al. (2024) and Joshi et al. (2022) 

shows that homomorphic encryption provides superior 

privacy protection compared to traditional encryption 

techniques, where data must be decrypted before 

computation. 

 

Homomorphic encryption is of three primary types, 

Partially Homomorphic Encryption (PHE), Somewhat 

Homomorphic Encryption (SHE), and Fully 

Homomorphic Encryption (FHE). While PHE allows 

for limited operations like addition or multiplication 

and SHE supports a small range of operations, FHE is 

the most comprehensive form, allowing arbitrary 

computation on encrypted data. According to Abinaya 

& Santhi 2021, FHE has significant practical 

applications, particularly in securely outsourcing 
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private computations. It supports a wide range of 

operations on ciphertext and can be used an unlimited 

number of times, offering high flexibility while 

preserving data privacy, unlike SHE and PHE. 

 

The idea of homomorphic encryption dates back to 

1978 when Rivest, Adleman, and Dertouzos first 

introduced the concept (Casey Crane, 2019). 

However, early versions were limited to either 

addition or multiplication, and for many years, the 

development of a fully functional homomorphic 

encryption system remained a theoretical challenge. In 

2009, a significant breakthrough occurred when Craig 

Gentry developed the first viable fully homomorphic 

encryption (FHE) system, based on lattice 

cryptography. Gentry’s scheme demonstrated that it 

was possible to perform any computation on encrypted 

data, but the computational overhead was enormous, 

making it impractical for real-world applications at the 

time (Gentry, C., 2009). 

 

The computational overhead in Craig Gentry's 2009 

fully homomorphic encryption (FHE) system was 

enormous due to the complex mathematical operations 

required to maintain encryption during computations. 

The FHE scheme relied on lattice cryptography, which 

involved encrypting data to allow computations but 

significantly increased the size of encrypted data. Each 

operation added additional noise to the ciphertext, 

requiring computationally intensive techniques to 

manage and keep the data usable. This made the 

process slow and inefficient, limiting its practical 

application at the time. 

 

Subsequent research has focused on improving the 

efficiency and practicality of FHE. A study by Halevi 

and Gentry (2011) introduced batching techniques that 

allow multiple ciphertexts to be processed 

simultaneously, reducing the overhead associated with 

FHE. Similarly, research by Valera-Rodriguez et al. 

(2024), Yang et. al 2022 and Brand, M., & Pradel, G. 

(2023) has improved the practical implementation of 

homomorphic encryption in cloud environments, 

particularly in areas like machine learning and 

financial transactions, although the technology still 

faces challenges regarding scalability and 

computational costs. 

 

Various studies have explored the practical 

applications of homomorphic encryption in cloud 

computing. One of the most researched areas is 

healthcare, where privacy-preserving techniques are 

essential for processing sensitive data like genomic 

sequences. A 2019 study by Yamada, et al. 

demonstrated the use of FHE for privacy-preserving 

genomic analysis, allowing researchers to perform 

computations on encrypted data without exposing 

sensitive information. In contrast, a study by Valera-

Rodriguez et al. (2024) found that while FHE is 

effective for privacy preservation, its computational 

inefficiency limits its scalability for large-scale 

genomic data. 

 

In the financial sector,  Nugent, David. (2022) and 

Yang et. al 2022 showed that homomorphic 

encryption could be used to perform secure credit 

scoring and fraud detection without exposing 

customer data to third parties. However, their findings 

contrast with the work of Al-Badawi et al. (2020) who 

argue that the computational overhead of FHE remains 

a significant barrier to its widespread adoption in 

financial services. This suggests a trade-off between 

privacy and performance, a key issue that continues to 

drive research in this field. 

 

In a typical credit scoring system, customer financial 

data, such as transaction history, income levels, and 

credit card usage, are collected and analyzed to assess 

creditworthiness. Using HE, a financial institution can 

encrypt the customer’s sensitive data before sending it 

to the credit scoring system. The system, using 

homomorphic encryption, can perform the necessary 

calculations—such as aggregating income, calculating 

debt-to-income ratios, or determining credit card 

utilization—while the data remains encrypted. For 

example, banks can apply machine learning models to 

encrypted datasets to predict credit scores without 

exposing any personal financial information to third-

party service providers. 

 

Fraud detection often involves analyzing transaction 

patterns to spot unusual activity that might indicate 

fraudulent behavior. HE allows for the secure analysis 

of encrypted transaction data. For example, banks can 

encrypt a customer’s transaction history and send it to 

a cloud-based fraud detection system. The system can 

then run algorithms, such as Support Vector Machines 



© OCT 2024 | IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880 

IRE 1706387          ICONIC RESEARCH AND ENGINEERING JOURNALS 214 

(SVMs) or neural networks, on the encrypted data to 

identify anomalies that may suggest fraud. Since the 

data is encrypted during this process, neither the cloud 

provider nor the fraud detection system can access the 

actual transaction details. 

 

Similarly, in government services, homomorphic 

encryption particularly Fully Homomorphic 

Encryption (FHE) has been proposed as a solution for 

secure electronic to be encrypted and processed 

without decrypting the data, thereby ensuring voter 

privacy and protecting against potential breaches 

during transmission and computation. According to 

Zhan et al. (2024), FHE’s provision of an enhanced 

layer of security allows computations to be performed 

directly on encrypted data without needing to decrypt 

it first making it highly suitable for e-voting systems 

where voter confidentiality is paramount, ensuring that 

even third-party cloud servers processing the votes 

cannot access the actual voting data. This technique is 

touted as a solution to many privacy concerns in 

modern electronic voting by preventing unauthorized 

parties from tampering with or viewing the votes. 

However, despite the theoretical advantages, the 

feasibility analysis by Shen (2008) raises concerns 

about the computational inefficiency of FHE-based 

systems. The complexity of FHE algorithms results in 

significantly higher processing times and resource 

consumption, making real-time vote counting and 

verification impractical in large-scale elections. One 

of the main reasons for the computational inefficiency 

in early FHE systems, like those pioneered by Gentry 

in 2009, was the process known as "bootstrapping." 

This technique, which allows for an unlimited number 

of operations on encrypted data, requires significant 

computational power due to its complex mathematical 

operations, including polynomial multiplication and 

noise management. These operations introduced an 

enormous computational overhead, making FHE 

impractical for real-time or large-scale applications 

during its early development. 

 

Furthermore, the MDPI (2023) study notes that while 

FHE secures voting data, the computational overhead 

associated with bootstrapping (a process required to 

refresh ciphertexts) limits its deployment, particularly 

in regions with limited computational infrastructure. 

The scalability of FHE remains a challenge, as large-

scale elections require swift and efficient processing, 

which current FHE implementations cannot provide 

without considerable latency. Thus, while FHE 

represents a future direction for securing e-voting, its 

current limitations in speed and scalability pose 

significant barriers to widespread adoption in real-

world electoral processes. 

 

III. PRIVACY-PRESERVING TECHNIQUES IN 

CLOUD COMPUTING 

 

Cloud computing offers immense benefits like 

scalability, accessibility, and cost-efficiency, but 

ensuring data privacy in such environments remains 

one of the most significant challenges. When 

organizations store sensitive data on third-party cloud 

servers, they essentially place their trust in these 

external entities, which might lack transparency 

regarding how data is handled or protected.  

 

In cloud computing environments, privacy concerns 

remain a top priority due to the nature of data storage 

and the inherent risks involved. One significant issue 

is data breaches and unauthorized access. As data is 

distributed across various geographical locations and 

managed by different service providers, the likelihood 

of both external breaches and insider threats rises. 

Recent studies show that cloud service providers 

(CSPs) have increasingly become targets for 

cyberattacks. The multi-layered nature of cloud 

infrastructure means that a breach in one layer could 

expose sensitive data stored or processed within that 

cloud system, a vulnerability that was highlighted by 

Bisong et al., (2011) in their study on security threats 

in cloud environments. 

 

Another crucial challenge is the lack of control over 

data as cloud users, particularly organizations, often 

surrender a degree of control over how their data is 

managed when they rely on third-party service 

providers. As noted by Bamasoud et al. (2020), while 

CSPs offer sophisticated infrastructure, clients cannot 

always guarantee that their privacy policies are 

stringently enforced across the board. This lack of 

control becomes particularly concerning when dealing 

with sensitive information, such as personal or 

financial data, which requires strict compliance with 

privacy regulations. 
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A further privacy concern in cloud computing is the 

multi-tenancy architecture that most cloud platforms 

adopt. In these architectures, multiple users share the 

same physical or virtual resources, which can increase 

the risk of data leakage between tenants. As discussed 

by Alotaibi et al. (2021), while cloud providers isolate 

tenants logically, vulnerabilities in the underlying 

hypervisors or misconfigurations could lead to 

unintended data access across tenants, exacerbating 

privacy risks. Multi-tenancy also poses a challenge 

when trying to enforce uniform security policies 

across all tenants, each of whom may have different 

security requirements or compliance obligations 

(TruOps, 2024). 

 

The culmination of these challenges demonstrates that 

ensuring privacy in cloud environments is a complex 

balancing act. Organizations must find ways to protect 

data without compromising on performance or 

usability, while also solving the technical and 

regulatory challenges posed by multi-tenant, 

distributed cloud systems. 

 

• Existing Privacy-Preserving Methods 

Several privacy-preserving techniques have been 

developed to address data security concerns in cloud 

environments, but each has limitations, particularly 

when it comes to the computation of sensitive data. 

Data anonymization is a widely used method that 

removes personally identifiable information (PII) from 

datasets to obscure individual identities. The goal is to 

maintain the utility of the data while ensuring that 

sensitive details like names, addresses, or social 

security numbers cannot be used to identify 

individuals, thus protecting their privacy while 

allowing for safe analysis. However, it is vulnerable to 

re-identification attacks when external datasets are 

combined. Studies have shown that even when data is 

anonymized, sophisticated techniques can re-identify 

individuals, especially in large-scale cloud 

environments where data is aggregated from multiple 

sources (Majeed, Abdul & Lee, Sungchang, 2020). 

This presents a critical challenge for cloud users 

handling sensitive information, such as in healthcare 

or finance, where de-anonymization risks are high. 

 

Another approach is differential privacy, which 

introduces random noise to datasets to mask individual 

data points while preserving the statistical accuracy of 

the dataset. Although effective in preventing re-

identification, this method can reduce the precision of 

data, making it less suitable for real-time applications 

like machine learning, where accuracy is essential 

(Santanu et al., 2014). The trade-off between privacy 

and accuracy remains a major challenge for cloud-

based systems that rely on precise computations for 

decision-making processes. 

 

Traditional encryption methods, such as AES 

(Advanced Encryption Standard) and RSA (Rivest-

Shamir-Adleman), are also used to secure data during 

transmission and storage. These methods require data 

to be decrypted before any computations can be 

performed, exposing it to potential vulnerabilities 

during the processing phase (Gentry, 2009). This 

limitation is particularly significant in cloud 

environments where sensitive operations, such as 

financial transactions or patient data analytics, need to 

be processed securely without compromising privacy.  

While these methods provide varying levels of privacy 

protection, they do not offer a comprehensive solution 

for cloud computing, where both data security and 

computational capabilities are essential. These 

challenges show the need for more advanced solutions 

like homomorphic encryption, which allows for 

computations on encrypted data without exposing 

sensitive information during processing 

(Vaikuntanathan, 2011). 

 

• The Unique Role of Homomorphic Encryption 

Homomorphic Encryption (HE) offers a 

transformative approach to the privacy challenges in 

cloud computing by enabling computations to be 

performed directly on encrypted data, without 

requiring decryption. This method addresses one of 

the key vulnerabilities in traditional encryption: the 

need to decrypt data for processing. In HE systems, 

encrypted data (ciphertext) can undergo mathematical 

operations that produce encrypted results. Once 

decrypted, these results match the outcome of the same 

operations performed on the original unencrypted 

data. This preserves privacy during computation, 

making it highly useful for scenarios like cloud 

computing, where data needs to be processed without 

being exposed to cloud providers (Gentry, 2009). 

 

Homomorphic encryption (HE) offers several key 

advantages, particularly in cloud computing where 



© OCT 2024 | IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880 

IRE 1706387          ICONIC RESEARCH AND ENGINEERING JOURNALS 216 

privacy concerns are paramount. One of its primary 

strengths is end-to-end privacy, as data remains 

encrypted even during computation. This ensures that 

sensitive information is never exposed, not even to 

cloud service providers or potential malicious actors. 

Unlike traditional encryption, which requires 

decryption for processing, HE enables operations on 

encrypted data without compromising security 

(Gentry, 2009). This makes it particularly appealing. 

HE can be used for securely processing medical 

records or conducting financial analytics without 

revealing the buried sensitive information (Al-Riyami 

et al., 2020; Yamada, et al. 2019). 

 

In addition to privacy, versatility is another advantage 

of homomorphic encryption. It can be applied across 

various domains, from secure medical data processing 

to performing complex financial computations. It is 

noteworthy to keep in mind that Fully Homomorphic 

Encryption (FHE) requires immense computational 

resources, leading to slow processing speeds, 

especially for large-scale or real-time applications. 

This computational burden is currently a barrier to its 

use in time-sensitive or resource-intensive 

environments ( Zhan et al. 2024). Scalability concerns 

further limit the practicality of FHE. As datasets grow 

larger, particularly in areas like genomic research or 

big data analytics, the complexity of FHE becomes a 

hindrance. While there are ongoing efforts to optimize 

these systems, achieving efficient large-scale 

processing remains a challenge (Yamada et al., 2019).  

The primary solution to the computational limitations 

of Fully Homomorphic Encryption (FHE) lies in 

optimizing algorithms and hardware to improve 

efficiency. Techniques such as leveled FHE (which 

limits the types of operations) and batching (where 

multiple data points are processed in parallel) have 

shown promise in enhancing performance. 

Additionally, specialized hardware accelerators, like 

GPUs and FPGAs, are being explored to speed up 

FHE operations. While these optimizations have 

improved FHE's feasibility, significant advancements 

are still required to make it fully scalable for large 

datasets and real-time applications. 

 

 

 

IV. HOMOMORPHIC ENCRYPTION: 

FUNDAMENTALS AND 

ADVANCEMENTS 

 

There are three main types of homomorphic 

encryption which are, Partial, Somewhat, and Fully 

Homomorphic Encryption (FHE). Partial 

Homomorphic Encryption (PHE) supports either 

addition or multiplication operations on encrypted 

data but not both. Examples include RSA and ElGamal 

encryption schemes, where only limited computations 

are feasible. While Somewhat Homomorphic 

Encryption (SHE) allows a limited number of both 

addition and multiplication operations. However, the 

number of operations is restricted by the "noise" in the 

ciphertext, which grows with each computation. Fully 

Homomorphic Encryption (FHE) is the most versatile 

but also the most complex, enabling both addition and 

multiplication operations to be performed an unlimited 

number of times on encrypted data, supporting 

arbitrary computations without decryption (Gentry, 

2009). 

 

The mechanics of homomorphic encryption rely on 

advanced cryptographic techniques that ensure 

computations can be performed directly on 

ciphertexts. In FHE, the core idea is to use 

mathematical structures that allow for the 

manipulation of encrypted values while preserving 

their secrecy. Operations like addition and 

multiplication are applied to encrypted data 

(ciphertext) and the result, when decrypted, 

corresponds to the operation applied to the original 

data (plaintext). In an encrypted database, a user can 

perform searches or calculations on the encrypted data 

without ever exposing the data itself. The challenge 

lies in the "noise" that accumulates during these 

computations, which can eventually render the 

ciphertext useless unless carefully managed through 

bootstrapping techniques. Bootstrapping periodically 

reduces the noise, enabling more computations 

(Gentry & Halevi, 2011).  

 

Recent advances in homomorphic encryption (HE) 

have centered on enhancing computational efficiency 

and expanding its practical applications across 

multiple industries. Fully homomorphic encryption 

(FHE), once thought to be computationally 

prohibitive, has seen significant performance 
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improvements. Earlier implementations required more 

resources for even the simplest operations, but recent 

breakthroughs have managed this issue. A notable 

example is the development of the TFHE (Torus Fully 

Homomorphic Encryption) scheme, which focuses on 

efficiently handling binary circuits. This advancement 

allows faster computations and makes FHE more 

practical for proper uses, reducing the time and 

resource overhead required for complex encryption 

tasks (Chillotti et al., 2020; Gentry et al., 2009). 

 

In terms of real-world applications, homomorphic 

encryption is gaining traction in sectors that handle 

sensitive data, such as healthcare and finance. In 

healthcare, homomorphic encryption allows for the 

analysis of sensitive patient data without exposing 

personal information. Encrypted medical records can 

be processed to generate treatment insights without 

compromising patient privacy.  

 

 
Fig 2: A systemic review of homomorphic encryption 

in healthcare 

Source: Sprinkler Link 

 

An application of this is observed in a prediction 

service hosted by Microsoft’s Windows Azure for 

databases in the health sector that are stored in 

encrypted forms (Yamada et al. 2019; Bos et al., 

2014). Microsoft Azure's health sector applications, 

specifically using Azure Health Data Services, provide 

robust solutions for processing and analyzing sensitive 

health data in a secure and compliant way. One 

prominent feature involves enabling prediction 

services through the use of homomorphic encryption, 

which allows data to be processed in encrypted form, 

protecting privacy even while it is being analyzed. 

 

These services are tailored to help healthcare providers 

manage sensitive data such as electronic health records 

(EHRs), clinical trials, and other health-related 

databases. Microsoft integrates machine learning 

(ML) and AI capabilities to allow for predictive 

insights into patient care without exposing sensitive 

personal information. For instance, a healthcare 

provider might use Azure’s platform to predict patient 

outcomes or generate treatment recommendations 

based on encrypted health data stored securely in 

Azure databases. 

 

This platform also includes Azure API for FHIR (Fast 

Healthcare Interoperability Resources), which helps in 

standardizing health data formats, allowing for 

seamless sharing and interoperability across systems 

while ensuring regulatory compliance with HIPAA 

and other healthcare standards. 

 

These advancements represent a growing trend in the 

healthcare sector towards using cloud-based predictive 

analytics to enhance patient outcomes, improve 

operational efficiency, and maintain privacy using 

encryption techniques like homomorphic encryption. 

 

In the financial sector, FHE has the potential for 

enhancing secure credit scoring and fraud detection 

processes, enabling computations on encrypted data 

without revealing customer information to third 

parties, thereby preserving confidentiality in financial 

operations. Moreover, machine learning has also 

begun integrating homomorphic encryption, allowing 

models to be trained on encrypted datasets, thus 

maintaining privacy throughout the machine learning 

pipeline (Brand & Pradel, 2023). 

 

V. CASE STUDIES 

 

Several case studies highlight the practical application 

of homomorphic encryption in cloud computing 

environments. One of the most well-known examples 

is Google’s use of homomorphic encryption to enable 

encrypted search services. In this system, Google 

allows users to perform searches on encrypted datasets 

without decrypting the underlying data (Microsoft, 

2022). The search results are computed on the 

encrypted data and returned in encrypted form, 

ensuring that neither the search query nor the 

underlying dataset is exposed to potential breaches. 
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In addition to Google’s implementation, 

homomorphic encryption has also been employed in 

financial services for secure data analysis and 

transaction processing. IBM collaborated with Intesa 

Sanpaolo, one of Italy's largest banking groups, to 

implement Fully Homomorphic Encryption (FHE) to 

enhance secure digital transactions. The use of FHE 

allows Intesa Sanpaolo to process encrypted data 

without having to decrypt it first, ensuring that 

sensitive financial information remains private during 

transactions. The project was part of a larger initiative 

to modernize digital security, particularly as cyber 

threats continue to evolve. The Cybersecurity Lab at 

Intesa Sanpaolo led this initiative, working with IBM 

to build systems that securely process encrypted 

transactions in real time, ensuring that sensitive 

information remains secure while allowing the bank to 

continue offering fast and efficient services. This 

implementation marks a significant step toward using 

advanced cryptographic techniques in mainstream 

financial services, positioning Intesa Sanpaolo as a 

leader in secure digital banking (IBM, 2023). Nugent 

(2022) explored two machine learning models, 

XGBoost and a neural network, initially trained on 

plaintext data and later adapted for encrypted 

inferences using HE. The research showed that 

XGBoost significantly outperformed the neural 

network in terms of speed, achieving encrypted 

inference in just 6 milliseconds, compared to the 

neural network's 296 milliseconds. Despite this, the 

neural network model was identified as more suitable 

for secure deployments due to its simpler integration 

process. This case study emphasizes the trade-offs 

between performance and security when applying HE 

in financial systems, offering valuable insights into 

balancing these aspects effectively.  

 

In another study, Núñez et al. (2021) implemented a 

homomorphic Support Vector Machine (SVM) 

classifier to enable secure fraud detection in cloud 

environments. Using lattice-based homomorphic 

encryption, the researchers demonstrated that financial 

institutions could outsource fraud detection 

computations to the cloud without compromising 

sensitive data. This method ensures that even cloud 

providers cannot access or infer the details of the data 

being processed, showcasing the potential of HE to 

foster privacy-preserving financial systems while 

leveraging the scalability of cloud computing. These 

case studies illustrate the versatility and growing 

applicability of homomorphic encryption across 

sectors that rely on sensitive data. 

 

VI. CHALLENGES AND LIMITATIONS OF 

HOMOMORPHIC ENCRYPTION 

 

• Computational Overhead 

As earlier discussed, one of the primary challenges of 

homomorphic encryption (HE) lies in its significant 

computational overhead. Fully homomorphic 

encryption (FHE) allows computations on encrypted 

data without needing decryption, but this flexibility 

comes at the cost of performance. The encryption, 

computation, and decryption processes require 

substantial resources, making FHE slower compared 

to traditional encryption methods. These high 

computational costs make it difficult for HE to be 

applied in real-time applications, particularly in cloud 

computing, where efficiency is key (Shen 2008; 

MDPI, 2023). Despite advancements like TFHE 

which improves efficiency for binary circuits, the 

technology remains resource-intensive, hindering 

widespread adoption (Chillotti et al., 2020). 

 

• Scalability Issues 

Scalability remains a significant hurdle in deploying 

homomorphic encryption (HE) in large-scale cloud 

environments. Processing vast datasets, such as those 

involved in genomic analysis or financial transactions, 

requires an immense amount of computing power 

when encrypted under Fully Homomorphic 

Encryption (FHE) schemes. While some approaches, 

like batching techniques such as the Brakerski/Fan-

Vercauteren scheme, can manage some scalability 

issues, real-world deployment for massive datasets 

remains a challenge. Industries requiring large-scale 

data analysis, such as the energy sector, and 

telecommunications, struggle to fully adopt HE 

technologies, especially when compared to other 

encryption methods that handle large datasets more 

efficiently. Furthermore, as the demand for real-time 

processing grows, HE solutions must adapt to meet the 

increased computational requirements and provide 

faster processing times without compromising 

security. Without addressing scalability, the potential 

of HE to transform data security in these sectors 

remains unfulfilled (Microsoft, 2022; Junfeng Fan and 
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Frederik Vercauteren, 2012; Valera-Rodriguez et al., 

2024). 

 

• Security Concerns 

Although homomorphic encryption (HE) offers a 

robust solution for data privacy, it is not without 

security risks. The complexity of implementing HE 

systems can introduce vulnerabilities, particularly in 

poorly optimized or misconfigured environments. 

Side-channel attacks pose a significant threat, as 

adversaries can extract sensitive information by 

analyzing power consumption or electromagnetic 

emissions during computation. Furthermore, while HE 

theoretically ensures data confidentiality, its security 

relies on cryptographic assumptions that may be 

compromised by advancements in quantum 

computing. Thus, further research is crucial to enhance 

HE's resilience against these evolving threats (Bisong 

et al., 2011; Bamasoud et al., 2020). 

 

• Comparison with Other Encryption Techniques 

Compared to other advanced encryption techniques, 

homomorphic encryption provides unique benefits but 

also significant trade-offs. Traditional encryption 

methods, like symmetric encryption, offer fast and 

efficient data protection but require decryption for any 

computation, exposing sensitive data to potential 

breaches during processing. Attribute-based 

encryption (ABE), another modern encryption 

method, enables fine-grained access control but still 

does not allow computations on encrypted data 

without decryption (Saravana et al. 2015).  While 

Secure Multi-Party Computation (SMPC) distributes 

computations among multiple parties without 

revealing inputs, enhancing security but adding 

communication overhead, Trusted Execution 

Environments (TEEs) use hardware-based isolation to 

secure sensitive computations in trusted enclaves, 

providing faster performance but relying on specific 

hardware and subject to potential side-channel attacks. 

In comparing three selective cloud computing tools 

Amazon Web Services, Microsoft Azure, and Google 

Cloud Platform, Bahety et al. 2024 concluded none 

were perfect for all perspectives and arrangements 

exposing many sorts of gaps between these providers 

in terms of various attributes. Homomorphic 

encryption stands out for its ability to perform 

computations without decryption, but its high resource 

demands and limited scalability make it less practical 

for certain real-time and large-scale applications. 

These trade-offs position HE as a powerful but not 

universally applicable tool, especially when compared 

to more computationally efficient alternatives (Stilinki 

et al., 2024; Joshi et al., 2022; Al Badawi et al., 2020).  

 

VII. FUTURE DEVELOPMENTS IN 

HOMOMORPHIC ENCRYPTION AND 

CLOUD COMPUTING 

 

• Potential Improvements 

Ongoing research in homomorphic encryption (HE) is 

focused on enhancing both its efficiency and 

scalability, addressing the significant computational 

overhead that currently hinders real-time applications. 

Researchers are developing optimized schemes like 

CKKS and TFHE to make computations faster and 

more efficient for practical use cases. Techniques such 

as bootstrapping, which refreshes ciphertext to avoid 

noise accumulation during computations, are being 

refined to improve the usability of HE in large-scale 

applications (Chillotti et al., 2020). The growing 

interest in hardware acceleration, including the use of 

GPUs and FPGAs, may further reduce the 

computational load, allowing HE to become more 

feasible for cloud computing environments. 

Innovations in lattice-based cryptography, which 

promotes many HE schemes, also promise to 

strengthen the security and performance of these 

encryption methods in the future (Che et al., 2008). 

 

• Integration with Other Privacy-Preserving 

Technologies 

The future of homomorphic encryption lies in its 

potential integration with other privacy-preserving 

technologies, such as differential privacy and secure 

multi-party computation (SMPC). Differential 

privacy, which adds noise to datasets to prevent the 

identification of individuals, could complement HE by 

enhancing privacy protections in data processing 

without sacrificing accuracy. Meanwhile, SMPC, 

which allows multiple parties to jointly compute a 

function over their inputs while keeping those inputs 

private, can be combined with HE to create more 

secure privacy-preserving frameworks. These 

integrations could enable more secure data sharing and 

processing in cloud environments, particularly in 

sensitive industries like healthcare and finance. 

Combining HE with these techniques could create a 
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layered security model that balances privacy, 

efficiency, and scalability (Shen 2008; Chillotti et al., 

2020). 

 

• The Future of Privacy-Preserving Cloud 

Environments 

Advances in homomorphic encryption technology 

could pave the way for a new era of secure and private 

cloud computing. As data privacy regulations tighten 

globally, there is an increasing need for technologies 

that enable secure and compliant data processing in the 

cloud. HE’s ability to perform computations on 

encrypted data without revealing the underlying 

information positions it as a valuable tool for 

maintaining confidentiality. If ongoing research can 

overcome its current limitations, HE has the potential 

to become a standard in privacy-preserving cloud 

architectures, enabling industries like 

telecommunications, healthcare, defense, finance, and 

government to fully outsource their data processing to 

the cloud without compromising security. The 

combination of HE with other emerging technologies, 

such as quantum-resistant cryptography, could further 

solidify its role in next-generation cloud security 

(Microsoft, 2022). 

 

CONCLUSION 

 

In conclusion, homomorphic encryption (HE) presents 

a transformative approach to addressing privacy 

challenges in cloud computing. Our exploration 

detailed how HE allows secure data processing 

without compromising confidentiality, making it 

essential for sectors handling sensitive information, 

such as healthcare and finance. However, current 

limitations, such as computational overhead and 

scalability issues, impede its widespread adoption. 

Comparing HE to techniques like Secure Multi-Party 

Computation (SMPC) and Trusted Execution 

Environments (TEEs) further reveals that each method 

offers unique strengths, but HE holds the most promise 

for future cloud security innovations. Ongoing 

research into improving efficiency and integrating HE 

with other privacy-preserving technologies will be 

essential in ensuring its viability as a standard in cloud 

computing. Despite its challenges, HE is set to become 

an increasingly important tool for secure and private 

cloud-based applications as advancements continue. 

This work describes the growing potential of HE in 

ensuring privacy in an ever more cloud-dependent 

world, where secured data protection is paramount. 
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