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Abstract- This study analyzes the application of 

machine learning (ML) and deep learning (DL) 

models to forecast hourly national energy 

consumption. As energy demand grows increasingly 

complex, accurate forecasting is crucial for 

maintaining grid stability, optimizing costs, and 

ensuring efficient resource management. The study 

evaluates various models, including Random 

Forest, XGBoost, Long Short-Term Memory 

(LSTM), and Temporal Convolutional Networks 

(TCN), as well as a hybrid model combining TCN 

with XGBoost. XGBoost had the best performance, 

achieving a Root Mean Squared Error (RMSE) of 

393.48 and a Mean Absolute Percentage Error 

(MAPE) of 1.16%. The research also employed 

SHAP (SHapley Additive exPlanations) to interpret 

the model's decision-making process, highlighting 

the significance of features like lagged demand and 

temporal elements (e.g., hour of the day). These 

insights confirm the model's reliability for short-

term energy forecasting, offering valuable tools for 

energy providers and operators. Using the XGBoost 

model, a forecast for the upcoming week was 

generated, demonstrating the model’s ability to 

maintain accuracy in short-term predictions. 

Residual analysis indicates the model's predictions 

are unbiased, further supporting its operational 

reliability. 

 

Indexed Terms- Energy Demand Forecasting, 

Machine Learning, Deep Learning, XGBoost, 

LSTM, TCN, SHAP Analysis, Time Series Analysis 

 

I. INTRODUCTION 

 

The energy sector is one of the most critical areas 

that require accurate forecasting for efficient 

management and planning. Time series forecasting, 

which analyzes time-ordered data points to predict 

future values, is crucial for ensuring reliable energy 

supply, reducing operational costs, and enhancing 

grid stability. In recent years, machine learning and 

deep learning techniques have gained significant 

traction in the work of research in different domains, 

this is because traditional methods often fall short of 

giving accurate predictions. Energy is an important 

aspect in terms of economic growth and as the world 

population grows and economies develop, the energy 

demand is increasing at an unprecedented rate. 

According to IEA (2018), global energy demand is 

expected to rise by 25% in 2040 because of 

expanding economies and population growth most 

especially in developing countries. This rise in 

demand has presented challenges that require precise 

and reliable forecasts to ensure a stable and efficient 

power system. Zhao and Magoulès (2017). described 

energy demand forecasting as the process of 

predicting future energy usage by using historical 

data and other contributing factors. He raised the 

need for accurate forecasting which are: supply and 

demand balance (to avoid shortages and surpluses), it 

supports the integration of renewable energy sources 

into the power grid, and they are also crucial for 

planning and optimizing infrastructure investments 

thereby ensuring that the energy system can meet 

future demands without resource wastage. 

 

Traditional forecasting methods, which often rely on 

statistical techniques and historical data trends, face 

limitations in capturing the complex, nonlinear 

patterns inherent in energy consumption data. This 

has led to the exploration of more advanced 

approaches, deep learning, to improve forecasting 

accuracy and robustness. Advanced models, such as 

LSTM networks, CNN, and hybrid models, have 

demonstrated remarkable success in capturing 

temporal dependencies and intricate patterns in time 

series data. These models use historical data to 

predict future energy demand with higher precision, 

accommodating the dynamic nature of modern 

energy consumption influenced by factors such as 

weather conditions, economic activities, and societal 

behaviours. 
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The integration of deep learning techniques is not 

merely a technological advancement but have also 

demonstrated significant improvements in time-series 

forecasting for energy demand. However, there is still 

a need for comparative studies that evaluate the 

performance of these models in energy demand 

forecasting, particularly when combined with feature 

importance analysis using SHAP. This study aims to 

fill that gap by comparing the performance of various 

ML and DL models in predicting energy demand in 

Great Britain, using historical data from the National 

Grid ESO. 

 

II. LITERATURE REVIEW 

 

Traditional and statistical methods have been used in 

the early years of prediction and there has been a 

noticeable gap in the use of models such as 

autoregressive integrated moving average (ARIMA), 

exponential smoothing as they are often based on 

linear assumptions and may not be able to reflect the 

complex relationships between factors such as 

weather, economic activity, and consumer behaviour 

(J Hyndman & Athanasopoulos, 2021). This led to 

the use of Machine learning techniques for energy 

demand prediction. According to Hussein Al-bayaty 

et al. (2019), four machine learning algorithms were 

used to forecast the short-term demand load for 

kirkur based on hourly real-time data. The study used 

weather data as a function of electrical energy 

demand and validated the models using 6 months as 

the sample data. Among the four machine learning 

techniques, ANN and Decision Trees showed better 

predictive capabilities by achieving lower MAPE of 

3.8% and 4.2%. Okakwu et al. (2019) did a 

comparative analysis of different algorithms to 

predict energy demand in Nigeria to identify the most 

accurate and reliable models. Several techniques like 

ARIMA, SARIMA, and ANN were used to train and 

test the models. The results show that the ANN 

model outperformed the ARIMA and SARIMA in 

accuracy and concluded that models like ARIMA and 

SARIMA failed to represent the intricacies of 

Nigeria’s energy consumption patterns.  

 

Jin et al. (2022) offered a highly accurate energy 

consumption forecasting model that made use of 

parallel LSTM which gave a significant improvement 

over single LSTM models and a reduction in the 

prediction error. The study highlighted the challenges 

faced which involve the need for large computing 

resources for training and deployment which is due to 

the model’s complexity and availability of high-

quality datasets, which are difficult to access. It 

proposed that for future research, exploring hybrid 

models that combine LSTM networks with additional 

machine learning techniques could improve accuracy. 

The study by Ahmad and Chen (2018) analyzed 

several machine learning models for forecasting 

short-term energy demand. The authors analyze the 

effectiveness of models such as SVM, RF, and neural  

networks, considering accuracy, computational 

efficiency, and simplicity of implementation. SVM 

had an MAE of 0.045 and RMSE of 0.065; Random 

Forests had an MAE of 0.038 and RMSE of 0.054; 

Neural Networks had an MAE of 0.041 and RMSE of 

0.060. Their findings show that machine learning 

models outperform traditional statistical approaches, 

providing better prediction capabilities and flexibility 

to shifting demand patterns. The study's findings 

highlight the need to implement sophisticated 

machine learning algorithms for better energy 

demand forecasts and resource management. Harish 

Amarasundar (2019) gave an in-depth examination of 

supervised machine learning techniques for short-

term load forecasting by investigating the 

effectiveness of approaches such as decision trees, 

random forests, and support vector machines in 

estimating energy demand. The work uses extensive 

experiments and performance evaluations to identify 

critical elements impacting the correctness of these 

models. It evaluated Decision Trees with an MAE of 

0.052 and RMSE of 0.071; Random Forests had an 

MAE of 0.037 and RMSE of 0.049; SVM had an 

MAE of 0.041 and RMSE of 0.058. The study 

suggests that machine learning approaches, 

particularly ensemble methods, have strong and 

dependable forecasting skills, making them 

appropriate for real-time energy management and 

planning. 

 

Somu et al. (2021) introduced a deep learning system 

to improve the forecast accuracy of building energy 

demand. It used advanced deep learning algorithms 

to identify complex patterns like CNNs, LSTM to 

create hybrid techniques to improve the model’s 

capacity by analyzing historical energy consumption 

data from multiple buildings to train and evaluate the  
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models by using metrics such as MAE of 0.015 and 

RMSE of 0.109 for evaluation. The result of the 

findings shows that the parallel LSTM model 

outperformed the standard forecasting approaches 

and single LSTM models in terms of accuracy. It 

incorporated complex connections in the data, the 

parallel LSTM model significantly reduced the 

prediction errors. The study stated that future 

research should concentrate on refining the deep 

learning framework to decrease the cost of computing 

and investigate real-time prediction capabilities and 

adaptive learning processes that would improve the 

framework's usefulness. 

 

(Shirzadi et al., 2021) compared the use of machine 

learning and deep learning approaches to medium-

term regional power load forecasting. It made use of 

models such as support vector machines, random 

forests, and LSTM networks, examining their 

accuracy. SVM had an MAE of 0.048 and RMSE of 

0.064; Random Forests had an MAE of 0.042 and 

RMSE of 0.057; LSTM had an MAE of 0.034 and 

RMSE of 0.046 The study shows that deep learning 

models, particularly LSTM networks, outperform 

classical machine learning approaches in terms of 

predicting accuracy and resilience. Bhoj and Singh 

Bhadoria (2022) used an advanced method to forecast 

energy usage by combining CNNs and RNN. The 

hybrid model utilized CNNs to extract spatial 

features from time series data and RNNs to capture 

temporal dependencies, addressing the non-linear and  

dynamic nature of energy consumption patterns. The 

study compared SVR, LSTM, GRU, CNN-LSTM, 

and CNN-GRU models for predicting energy 

consumption data from smart residential dwellings. 

CNN-GRU performed 17.4% better in terms of Mean 

Absolute Error (MAE) with a value of 0.151 

compared to the LSTM, which has a value of MAE 

equal to 0.183 which exceeded LSTM by 0.4% in 

terms of MAE, where the CNN-GRU has MAE of 

0.229 and the LSTM had an MAE of 0.228. Also, 

CNN-LSTM and LSTM models were found effective 

in identifying outliers. The major challenges faced 

was managing the complexity of model training and 

the need for large datasets to achieve high accuracy. 

The study further suggested the optimization of 

accuracy by adding other features and exploring real-

time prediction capabilities. 

 

However, despite the advances in model accuracy, 

there remains a lack of comprehensive studies 

comparing these methods with a focus on their 

interpretability. The integration of SHAP analysis 

into ML models has gained attention to better 

understand model outputs by highlighting the 

contribution of individual features. This study builds 

on existing literature by comparing several ML and 

DL models and incorporating SHAP analysis to 

provide insights into the key drivers of energy 

demand. 

 

III. METHODOLOGY 

 

The research methodology used the CRISP-DM 

(Cross-Industry Standard Process for Data Mining) 

framework, which is an approach used for data 

science projects. The process has six phases: business 

understanding, data understanding, data preparation, 

model development, and evaluation. 

 

Business Understanding 

The objective of this study is to develop models for 

forecasting hourly energy demand in Great Britain, 

assess the effectiveness of machine learning and deep 

learning models, such as Random Forest, XGBoost, 

LSTM, and TCN, and to determine which model 

performs best in terms of prediction accuracy and 

interpretability. 

 

Data Understanding 

The dataset used in this study was sourced from the 

National Grid ESO Data Portal 

(https://www.nationalgrideso.com/data-portal), who 

is the electricity system operator for Great Britain, 

and provides a wide range of information on 

electricity demand, generation, and other related 

metrics. It acts as a dependable resource for 

researchers, policymakers, and industry professionals 

to have access to historical and real-time data. For 

this study, data was collected from the portal for a 

period of five (5) years from 2019 to 2023. This 

dataset includes detailed 30 minutes interval 

electricity demand readings measured in megawatts 

(MW), which gives a comprehensive perspective on 

usage patterns over time. This data had 87, 648 

observations which were recorded at 30 mins 

interval. For indept analysis, it was resampled hourly 

and had a count of 43,824. It was examined for 
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missing values, seasonality, trends, and outliers. The 

dataset provides insights into temporal patterns and 

fluctuations in energy consumption over time, 

incorporating key temporal features such as a 

datetime which was formed by combining the 

settlement date and period, and the energy demand 

(ND), which serves as the target variable for 

prediction. The following insights were gotten: 

Energy Demand Trend: A line plot was used to 

visualize the trend in electricity demand over time. 

  

Figure 1: Trend of National Demand 

 

As observed in figure 1, the energy demand trend 

was downward in mid-2019, which may be due to 

reduced industrial activity and energy efficiency 

improvements. The trend shows a sharp decline in 

early 2020, reaching a low of 27,000 MW which may 

be due to the COVID-19 pandemic. The trend then 

experienced a gradual recovery, peaking at nearly 

28,500 MW by mid-2021 and stabilized then 

recorded a gradual decline phase, dropping to around 

26,000 MW by early 2023. Recent study suggests 

transitional dynamics as the energy market adapts to 

new emerging trends like renewable energy 

integration and decentralized energy systems. 

 

Histogram was also used to show the distribution of 

hourly demand values to reveal the key 

characteristics about the energy consumption pattern 

at the national level. 

 
Figure 2: Distribution of Energy Demand 

 

The histogram in figure 2 displays the distribution of 

hourly National Demand (ND) for energy, indicating 

a right-skewed pattern. Most demand values are 

within the range of 20,000 MW to 30,000 MW, with 

a peak around 25,000 MW, which suggests regular 

energy consumption levels. As demand rises, it 

becomes less frequent, gradually decreasing to 

around 46,000 MW. This is likely due to peak 

periods such as extreme weather. Lower demand 

values, especially below 20,000 MW, indicate 

periods of decreased activity, like nighttime or 

holidays. 

 

Demand patterns: Box plots were used to show the 

daily and weekly cycles. 

 
Figure 3: Distribution of Energy Demand 
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From figure 3 

a. Box Plot of Energy Demand by Hour of the Day: 

Energy demand shows a decrease during the early 

hours of the day and gradually rises as the day 

progresses, reaching its highest point in the late 

afternoon to early evening (around 16:00 to 

19:00). During peak hours, the demand shows a 

high level of fluctuations. There is a wider range 

of values and Outliers (high demands). 

b. Box Plot of Energy Demand by Day of the Week: 

Energy demand exhibits a consistent pattern 

throughout the weekdays, with a slight decrease 

in demand over the weekends, specifically on 

Sundays. There are outliers present across all 

days, with Saturday and Sunday showing a higher 

frequency of low-demand outliers, which may be 

due to reduced industrial and commercial activity. 

c. Box Plot of Energy Demand by Month of the 

Year: There is a seasonal fluctuation in demand, 

which is high during the colder months (January, 

February, and December) and low during the 

warmer months (June to September). January and 

December exhibit a higher number of outliers on 

the upper end, suggesting occasional surges in 

energy usage, potentially caused by extreme 

weather conditions. 

d. Box plot of Yearly Energy Demand: Based on the 

annual trend, there are minor fluctuations in the 

distribution over the years. However, it is worth 

noting that the demand in 2021 and 2022 appears 

to be more stable compared to other years, as 

indicated by a narrower interquartile range. There 

are high-demand outliers in all years, but 2022 

stands out with a particularly pronounced spread. 

This could be due to the lasting impact of the 

COVID-19 pandemic on energy consumption 

patterns. 

 

Outliers in a dataset, such as extreme weather 

conditions, can have a significant impact on other 

observations, making it important to consider them 

when analyzing and predicting energy demand 

spikes. By including these outliers in the dataset, the 

model becomes better equipped to handle real-world 

situations and accurately predict a wide range of 

outcomes, resulting in a more reliable and efficient 

energy demand forecasting system. For this study, the 

outliers were not removed because eliminating them 

may result in the loss of significant data. 

Time Series Analysis: Time series analysis is 

important to understand temporal data, identify 

trends, seasonal patterns and cyclic behaviors. A 

subset of a year (2023) was used to get a clearer view 

of the trends and patterns. 

 

 
Figure 4: Time Series Decomposition Analysis 

 

From figure 4 above: 

a. Observed: The data that has been observed 

displays the real-time energy demand on an 

hourly basis throughout the year. It captures the 

fluctuations that occur daily and seasonally, with 

noticeable variations corresponding to different 

times of the year. Peak demand is typically 

observed during the winter months, with lower 

demand seen during the mid-year period. 

b. Trend: The trend focusses on capturing the 

overall, long-term patterns in energy demand, 

with its fluctuational movements. The graph 

illustrates a decrease in energy demand from 

January to May, followed by a period of stability 

during the summer months. There is a noticeable 

increase in energy usage during the colder 

months, with a significant upward trend starting 

around September and peaking in November and 

December. The trend starts to decrease slightly as 

it nears the new year. 

c. Seasonal: The seasonal component captures the 

repeating patterns within the data, specifically the 

daily and weekly cycles of energy consumption. 

This graph displays a regular pattern that repeats 

throughout the year, with demand increasing 

during the daytime and decreasing at night. 

d. Residual: After removing the trend and seasonal 

components, the residual component is left, which 

captures any remaining irregularities or noise. 

This plot displays different levels of residuals, 
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with certain periods, especially around the middle 

of the year, showing increased irregularity. 

Towards the end of the year, the residuals become 

more noticeable. This could be attributed to 

anomalies in energy consumption patterns, like 

extreme weather events or sudden shifts in energy 

demand. 

 

Data Preparation 

The data preprocessing stage involved cleaning and 

transforming dataset to ensure its suitability for 

model training. The following steps were taken: 

• Handling Missing Values: Missing values were 

addressed using forward fill or interpolation 

techniques, depending on the nature of the 

missing data. 

• Feature Engineering: New features were created 

based on temporal patterns (e.g., hour of the day, 

day of the week) and historical lagged demand 

features. 

• Train-Test Split: The process of data splitting is 

very important in time series forecasting for 

effective and accurate evaluation. It separates the 

datasets into two – train and test, this is done so 

that the model can learn from one part of the data 

and be evaluated on another, unseen set. The 

dataset was divided, with 80% of the data set for 

training and 20% for testing. The data splitting 

was done in a chronological order, this is because 

in time series analysis, order is very important as 

it preserves the temporal order of the data to 

reflect accurately the real word sequence of 

events, which is why random splits were not used. 

The training set has majority of the data for the 

model to be fitted in. The model will learn the 

underlying trends, patterns and seasonal effects 

(from the low demands of energy during spring to 

the peak demands in summer and the winter 

which will see higher energy demand) while the 

Testing set will be used to evaluate the 

performance of the model on unseen data. The 

testing portion should be different from the 

training so this can help in understanding how the 

model would perform in a real-world scenario 

where future data is not known. 

• Normalization: The target variable was scaled to a 

range between 0 and 1 using a MinMaxScaler to 

standardize the input range for the models which 

ensures that all features contribute equally to the 

models learning process to prevent other features 

from dominating the other. After predictions with 

the models, inverse transformation was used to 

scale the data into the original form (MW). 

 

Software and Tools 

This study made use of various tools and libraries to 

handle data preprocessing, model implementation, 

and analysis. Python was the primary programming 

language due to its versatility and extensive 

collection of data science libraries. Data manipulation 

and numerical computations were done using Pandas 

and NumPy, allowing for efficient handling of large 

datasets. Scikit-learn made it easier to implement 

machine learning models like Random Forest and 

XGBoost. It was also used for data preprocessing and 

hyperparameter tuning. TensorFlow and Keras were 

used in the development and training of deep learning 

models, such as LSTM, and TCN. These powerful 

tools offer scalability and a user-friendly interface for 

constructing and refining intricate neural networks. 

To ensure model interpretability, SHAP was used to 

analyze feature importance, providing insights into 

the factors driving model predictions. Matplotlib and 

Seaborn were used for visualisation of results, 

enabling the creation of informative charts and plots 

Jupyter Notebook served as the development 

environment, providing an interactive platform for 

coding and documentation. The best model was 

deployed using RShiny with libraries like shiny, 

ggplot2, and plotly to make it interactive. 

 

Model Implementation 

Each model used in forecasting energy demand was 

chosen because of its unique strength in capturing 

different aspect of time series data. Due to the 

complexity of energy demand patterns that are mostly 

influenced by seasonal trends, daily cycles and non-

linear relationships, various set of models are used: 

Random Forest and XGBoost, which are machine 

learning models known for their robustness and 

interpretability and deep learning models such as 

LSTM, CNN, and TCN were employed due to their 

capability to capture complex temporal dependencies. 

Lastly, a hybrid model combining TCN with 

XGBoost was developed to leverage the strengths of 

both approaches. 



© OCT 2024 | IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880 
 

IRE 1706377          ICONIC RESEARCH AND ENGINEERING JOURNALS 121 

1. Random Forest: Random Forest is an ensemble 

learning method which uses multiple decision 

trees for training and outputting the mode of 

individual trees. It is well used because of its 

ability to capture complex, non-linear 

relationships and reduce the risk of overfitting 

(James et al., 2023). It was implemented using 

scikit-learn’s RandomForestRegressor and Hyper 

parameters tuning to optimise the performance of 

the model using GridsearchCV with a 3fold cross-

validation, which identified the best model 

parameters as a max depth of 20, 100 estimators, 

and minimum samples for splitting an internal 

node. The model was trained on the scaled 

features, and predictions were made on the test 

set. 

2. XGBoost: XGBoost or Extreme Gradient 

Boosting, is another machine learning algorithm 

that is based on decision trees. For structured 

data, it gives high performance and is very 

efficient. The model works in a stage-wise 

manner and optimises them by using gradient 

boosting, which in turn minimizes the prediction 

error (Aurélien Géron, 2022). The model was 

tuned using GridsearchCV to identify the optimal 

parameters. The parameters such as learning rate, 

maximum depth, and number of estimators were 

used to reduce overfitting and improve the 

accuracy of the model. 

3. LSTM: LSTMs is a popular type of RNN that can 

capture long term dependencies in sequential 

data. They are effective in performing time series 

data with complex temporal dependencies 

because of the ability it has in retaining 

information over long sequencies (François 

Chollet, 2021). The selection of LSTMs for 

analysis was due to the ability to effectively 

model long-term dependencies, which were 

present in energy demand data. The LSTM model 

was built using two LSTM layers with 50 units 

each, followed by two dense layers for final 

prediction. The model was compiled with the 

Adam optimizer and mean squared error loss 

function and trained with 20 epochs and a batch 

size of 32. After training, the model's predictions 

were made on the test data. 

4. TCN: TCN is specifically designed for analysing 

sequence data. This model utilizes dilated 

convolutions and casual padding to effectively 

address long-term dependencies thereby avoiding 

the issue of vanishing gradients which are 

commonly encountered in traditional recurrent 

neural networks (Auffarth, 2021). This model was 

selected because of its ability to capture 

dependencies relationships in time series data 

while still maintaining computational efficiency 

and can effectively analyse historical data in 

various time scales. the model was constructed 

using a TCN layer followed by a dense layer, with 

the model being compiled using the Adam 

optimizer and mean squared error loss function. 

The model was trained for 20 epochs with a batch 

size of 32. After training, predictions were made 

on the test set. The model was designed to handle 

long sequences effectively. 

5. Hybrid Model (TCN + XGBoost): Hybrid models 

combine the strength of different forecasting 

models which will result in improved predictive 

performance. They are done by combining 

traditional models with machine learning models 

and deep learning networks to benefit from 

statistical properties and complex pattern 

recognition (Jorge Vargas Florez et al., 2022). 

This model was selected to leverage the unique 

strengths of various techniques. In this study, 

TCN and XGBoost were combined: as mentioned 

above TCNs are effective at capturing both short 

and long-term dependencies in sequential data 

using dilated convolutions while XGBoost is a 

machine learning model can handle complex non-

linear relationships and interactions among 

features. By combining the two models, hybrid 

model aims to leverage TCNs strength in 

modelling the temporal structure of the data, 

while utilising XGBoost’s abilities in enhancing 

predictions by capturing residual non-linearities 

and interactions. the TCN model was first built 

using a convolutional layer followed by dense 

layers, designed to capture temporal patterns from 

the time series data. The input data was reshaped 

to match the TCN model's requirements, and the 

model was trained over 20 epochs. Predictions 

were generated using the trained TCN model. 

These predictions were then combined with the 

original test features to serve as input for the 

XGBoost model. The XGBoost model was 

trained on this combined feature set to further 

refine the predictions. 
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Model Evaluation 

The models were by using the actual data to see how 

well it will perform by assessing the performance 

using key metrics such as Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean 

Absolute Percentage Error (MAPE) to determine 

their accuracy and reliability in predicting energy 

demand. Cross Validation was used to ensure the 

reliability of model and comparisons were made to 

identify the best performing technique. In addition to 

these metrics, SHAP analysis was applied to interpret 

the models and identify the most important features 

influencing the predictions. 

 

Deployment 

The models were integrated into a framework, this is 

done to allow real-time forecasting and scalability, 

and a user interface was created to allow stakeholders 

interact with the forecasting system, view predictions 

and make informed decisions. 

 

 
Figure 6: CRISP-DM 

 

IV. RESULTS AND DISCUSSION 

 

Model Performance Overview 

The performance of each model was evaluated using 

the test dataset, and the results were compared based 

on the Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE) and Mean Absolute 

Percentage Error (MAPE). Visual comparisons were 

also made between the actual energy demand and the 

predicted values for each model. 

 

Random Forest: The Random Forest model was 

trained using the default parameters, with 100 

decision trees. The model captured the general trend 

of the energy demand but showed limitations in 

predicting sudden spikes or drops. 

• MAE: 546.32 

• RMSE: 702.15 

• MAPE: 1.87% 

Figure 7: Actual vs. Predicted Energy Demand using 

Random Forest Model 

 

Figure 7 illustrates the comparison between the 

actual and predicted energy demand using the 

Random Forest model over a selected period. 

 

XGBoost: The XGBoost model underwent 

hyperparameter tuning using grid search to optimize 

parameters such as learning rate, max depth, and the 

number of estimators. The optimized model showed 

superior performance compared to the Random 

Forest. 

• MAE: 309.25 

• RMSE: 393.48 

• MAPE: 1.16% 

Figure 8: Actual vs. Predicted Energy Demand using 

XGBoost Model 

 

Figure 8 displays the actual versus predicted energy 

demand using the XGBoost model. The model 

closely follows the actual demand, accurately 

capturing the peaks and troughs. 

 

Long Short-Term Memory (LSTM): The LSTM 

model was constructed with two LSTM layers 

containing 50 neurons each, followed by a dense 

layer. The model was trained over 50 epochs with a 

batch size of 72. 

• MAE: 482.67 

• RMSE: 620.54 

• MAPE: 1.65% 
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Figure 9: Actual vs. Predicted Energy Demand using 

LSTM Model 

 

As shown in Figure 9, the LSTM model was able to 

capture the general pattern but struggled with sudden 

changes in energy demand, indicating a need for 

more tuning or additional data. 

 

Temporal Convolutional Network (TCN): The TCN 

model was designed with residual blocks and dilated 

convolutions to capture temporal patterns. 

• MAE: 455.12 

• RMSE: 598.76 

• MAPE: 1.58% 

Figure 10: Actual vs. Predicted Energy Demand 

using TCN Model 

 

Figure 10 shows that the TCN model performed 

slightly better than the LSTM but was still less 

accurate than XGBoost. 

 

Hybrid Model (TCN + XGBoost): The hybrid model 

utilized the TCN model for feature extraction and fed 

these features into the XGBoost model for final 

prediction. 

• MAE: 325.40 

• RMSE: 410.82 

• MAPE: 1.21% 

Figure 11: Actual vs. Predicted Energy Demand 

using Hybrid Model 

The hybrid approach improved performance over the 

standalone TCN but did not surpass the XGBoost 

model. 

 

Comparative Analysis 

The performance of each model was evaluated using 

the test dataset, and the results were compared based 

on the Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE) and Mean Absolute 

Percentage Error (MAPE). Visual comparisons were 

also made between the actual energy demand and the 

predicted values for each model. 

 

Performance Metrics Comparison: A comparison of 

the performance metrics across all models is 

presented in Table 1. 

Model MAE RMSE MAPE 

Random Forest 546.32 702.15 1.87% 

XGBoost 309.25 393.48 1.16% 

LSTM 482.67 620.54 1.65% 

TCN 455.12 598.76 1.58% 

Hybrid (TCN+XGB) 325.40 410.82 1.21% 

Table 1: A comparison of MAE, RMSE, and MAPE 

across all models. 

 

The XGBoost model achieved the lowest MAE, 

RMSE, and MAPE, indicating superior predictive 

performance. The hybrid model also performed well 

but did not outperform XGBoost. 

 

Figure 12: Visual trend comparison of all Models 

 

Figure 12 shows a comparative visualization of a 

subset of the model’s trend. All models follow the 

actual trend but the ability to respond to changes 

varies with XGBoost and hybrid model aligning well 

with the actual peaks and lows, LSTM and TCN 

showed some differences in the predictions.  
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Model Efficiency and Scalability 

In terms of computational efficiency, the XGBoost 

model required less training time compared to deep 

learning models like LSTM and TCN. This efficiency 

makes XGBoost more suitable for real-time 

applications where quick retraining might be 

necessary. 

 

Interpretability and Accuracy 

While deep learning models often act as "black 

boxes," the XGBoost model's decision trees allow for 

better interpretability. The use of SHAP analysis 

further enhances understanding by quantifying 

feature importance. 

 

SHAP Analysis and Model Interpretability 

To interpret the XGBoost model's predictions, SHAP 

analysis was conducted. The SHAP summary plot 

(Figure 12) highlights the impact of each feature on 

the model's output. 

Figure 12: SHAP Summary Plot for Feature 

Importance 

 

The analysis revealed that lagged energy demand 

(previous hours’ demand) and temporal variables, 

particularly the hour of the day, significantly 

influenced the model's predictions. By breaking down 

the model’s output into contributions from individual 

features, SHAP made it easier to explain the rationale 

behind each prediction, enhancing the transparency 

of the XGBoost model. For example, Figure 6 

(SHAP summary plot) shows that the hour of the day 

consistently had a high positive or negative impact, 

depending on energy demand patterns. 

 

 

 

Residual Analysis 

Residual analysis was performed to assess the 

model's errors. The residuals were approximately 

normally distributed around zero, indicating no 

significant bias in the predictions (Figure 13). 

Figure 13: Residual Distribution of XGBoost Model 

 

Forecasting Future Values 

Using the XGBoost model, energy demand was 

forecasted for the next week beyond the test data. 

The model maintained accuracy, suggesting its 

reliability for short-term forecasting. 

Figure 14: Forecasted Energy Demand for the Next 

Week 

 

The Figure (14) above shows the trend of the future 

value of the next seven days. The last seven days was 

used to back test the next seven days, this way the 

trends can be seen to have been followed and aligned 

properly. The predictions indicate a continuation of 

the observed seasonal patterns, with an expected peak 

demand toward the end of the month. 
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Figure 14: Best Model (XGBoost) Forecast Table 

 

Deployment 

The Energy Demand Dashboard is a dynamic Shiny 

web application that shows a comprehensive 

visualisation and analysis of forecasted energy 

demand data. The development process started by 

creating a suitable environment with the required R 

packages, including shiny, ggplot2, dplyr, readxl, and 

plotly. The UI was designed with a fluid page layout 

that includes a sidebar for selecting data type, date 

range, and confidence intervals. The main panel 

showcases an interactive line plot and a data table, 

providing a seamless user experience. The server 

logic incorporates reactive expressions to filter data 

according to user inputs, generate an interactive 

plotly plot for visualisation, and enable data 

downloads. Following extensive local testing, the app 

was effectively deployed to shinyapps.io using the 

rsconnect package, enabling online accessibility. This 

dashboard is designed to provide valuable insights 

into energy demand trends. It offers real-time 

interactivity, adjustable confidence levels, and data 

download options. 

Figure 15: Energy Demand Dashboard 

 

Figure 15 shows the energy demand interactive 

dashboard where historical data and future dates can 

be viewed in both tabular and graphics to show the 

trends. It is user-friendly and can be viewed here. 

 

Discussion 

The objective of this project is to develop and 

evaluate machine learning and deep learning models 

for accurately predicting energy demand. The project 

aimed to compare models such as RF, XGBoost, 

LSTM, TCN and a hybrid model combining TCN 

with XGBoost using real energy demand data and 

using the best performing model to develop a user-

friendly, interactive RShiny dashboard to visualising 

the forecast results. Based on the analysis, it is 

evident that XGBoost consistently outperformed 

other models in terms of Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) and 

Mean Absolute Percentage Error (MAPE). The 

performance of the XGBoost model was compared to 

results from other studies to provide a wider context. 

Velasquez et al. (2022) employed various models 

such as RS, ES, and ARIMA to predict energy 

demand in Brazil. Although RS consistently 

demonstrated strong performance, the mean percent 

errors were still higher when compared to the MAPE 

achieved by XGBoost in this study. In a recent study, 

Jin et al. (2022) utilised LSTM networks to predict 

energy consumption and achieved significant 

improvements in accuracy. Nevertheless, the 

drawbacks of LSTM models were quite significant in 

terms of complexity and computational demands, 

especially when compared to the remarkable 

computational efficiency of XGBoost observed in 

this study. Ahmed et al. (2021) also conducted a 

comparison between deep learning models such as 

LSTM and GRU and ensemble methods like 

XGBoost for the purpose of energy demand 
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forecasting. Although LSTM and GRU models have 

shown impressive capabilities in capturing long-term 

dependencies, XGBoost stands out for its faster 

training times and superior performance on smaller 

datasets. The study found that XGBoost can be a 

suitable option for deep learning models, especially 

when there are constraints on computational 

resources. The comparisons highlight the efficiency 

and accuracy of XGBoost, particularly when dealing 

with large datasets that have intricate temporal 

dependencies. It manages to strike a good balance 

between computational efficiency and predictive 

performance. The hybrid TCN + XGBoost model 

also demonstrated great potential, indicating that the 

combination of different model types could 

potentially yield even more impressive outcomes. 

The SHAP analysis provided valuable insights into 

the factors influencing energy demand. 

Understanding that lagged demand and temporal 

features are significant predictors allows energy 

providers to focus on these areas for demand 

management. 

 

CONCLUSION 

 

In conclusion, this study demonstrated the 

effectiveness of machine learning and deep learning 

models in forecasting energy demand. Among the 

models tested, XGBoost consistently outperformed 

others in terms of accuracy and interpretability, with 

SHAP analysis providing key insights into the drivers 

of energy consumption. 

 

Future research could explore the integration of real-

time data streams and advanced ensemble techniques 

to improve model performance further. Additionally, 

exploring the application of other deep learning 

architectures, such as Transformer networks, could 

yield even better results in time-series forecasting 

tasks. 
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