
© SEP 2024 | IRE Journals | Volume 8 Issue 3 | ISSN: 2456-8880

IRE 1706236 ICONIC RESEARCH AND ENGINEERING JOURNALS 13

A Comparative Analysis of Software Life Cycle Models:

Phases, Activities, and Order of Execution

VRUSHALI WADKAR1, SNEHAL GHORPADE2
1, 2Department of Computer Science, Karmveer Bhaurao Patil College

Abstract- Software development life cycle (SDLC)

models offer a systematic approach to software

development, guiding from conception to

deployment and maintenance [4]. This paper

compares five prominent SDLC models: Waterfall,

V-Model, Incremental, Spiral, and Agile, analyzing

their phases, activities, and execution order, to

provide insights into selecting the most suitable

model for a project. The analysis focuses on the

phases, activities, and the order of execution

inherent in each model, highlighting their

respective strengths and weaknesses. The

comparison aims to offer guidance on selecting the

most suitable model based on project requirements,

risks, and flexibility needs.

Indexed Terms- Software Development Life Cycle

(SDLC), Waterfall, V-Model, Incremental Model,

Spiral Model, Agile Model, Phases, Activities, Order

of Execution.

I. INTRODUCTION

Software development is a complex process that

requires careful planning and execution. SDLC

models have been developed to structure this process,

each offering unique approaches to managing the

various stages of software development. The choice

of an SDLC model can significantly impact the

success of a project, making it crucial to understand

the differences between them [3], [4]. The analysis

focuses on their phases, activities, and execution

order, highlighting the importance of understanding

the differences between them.

1. Waterfall Model

1.1 Overview

The Waterfall model is one of the earliest and most

traditional software development life cycle (SDLC)

methodologies. It follows a linear and sequential

approach, where each phase of the development

process is completed before the next phase begins

[1]. This model is characterized by its structured,

stage-by-stage progression through the phases of

requirements gathering, system design,

implementation, testing, deployment, and

maintenance.

1.2 Phases and Activities

Requirement Analysis: Gathering detailed software

requirements. System Design: Transforming

requirements into a system architecture.

Implementation: Coding the software based on the

design. Integration and Testing: Combining and

testing all components. Deployment: Delivering the

final product to the client. Maintenance: Providing

ongoing support and updates [1].

1.3 Order of Execution

• Strictly sequential with clear start/end.

• Avoids backtracking for cost and difficulty [1].

1.4 Strengths and Weaknesses

Strengths:

Simplicity and Ease of Use: The Waterfall model is

straightforward, with clearly defined stages and

milestones. Its linear approach is easy to understand

and implement, especially for small projects with

well-defined requirements [1].

Structured Documentation: This model emphasizes

documentation at each stage, which provides a clear

and detailed record of the project’s progress and

decisions. This can be particularly useful for

maintenance and future project phases [1].

Ease of Management: The sequential nature of the

Waterfall model makes it easier to manage since the

project progresses through well-defined phases with

specific deliverables and milestones [1].

© SEP 2024 | IRE Journals | Volume 8 Issue 3 | ISSN: 2456-8880

IRE 1706236 ICONIC RESEARCH AND ENGINEERING JOURNALS 14

Weaknesses:

Rigidity: The Waterfall model is inflexible when it

comes to handling changes. Once a phase is

completed, it is difficult and costly to go back and

make changes [1].

Late Testing: Testing only occurs after the

development phase, meaning that issues or defects

are often detected late in the process, which can lead

to expensive and time-consuming fixes [1].

Poor Suitability for Complex or Evolving Projects:

The model assumes that all requirements can be

identified upfront, which is often not the case in

complex or evolving projects. This can result in

significant rework or project failure if requirements

change [1].

Image 1: Waterfall Model

II. V-MODEL

2.1 Overview

The V-Model, also known as the Verification and

Validation Model, is a software development life

cycle (SDLC) framework that extends the traditional

Waterfall model by emphasizing a parallel

relationship between development and testing

activities [6]. Structured as a “V” shape, the model

highlights the correlation between each development

phase and its corresponding testing phase, thereby

ensuring that verification and validation are integral

parts of the process.

2.2 Phases and Activities Requirement Analysis:

Understanding and documenting requirements.

System Design: High-level design of the system

architecture. High-Level Design (HLD): Designing

system components and interfaces. Low-Level

Design (LLD): Detailed component design.

Implementation: Coding based on the detailed design.

Unit Testing: Testing individual components.

Integration Testing: Testing the integration of

components. System Testing: Validating the entire

system. Acceptance Testing: Ensuring the system

meets user requirements [6].

2.3 Order of Execution Sequential Parallel focus on

testing activities. Forms V-shape [6].

2.4 Strengths and Weaknesses Strengths:

Emphasis on Testing: The V-Model incorporates

testing at each stage of development, ensuring that

verification and validation are conducted early in the

process. This can lead to higher-quality outputs and

fewer defects [6]. Clear and Structured Approach:

Like the Waterfall model, the V-Model has a

structured approach with well-defined phases,

making it easy to manage and implement [6].

Strong Documentation: The model provides detailed

documentation throughout the project, which is

beneficial for future reference and project continuity

[6].

Weaknesses:

Inflexibility: Similar to the Waterfall model, the V-

Model is rigid, making it difficult to accommodate

changes once a phase is completed [6].

High Cost of Changes: Any changes that are needed

require revisiting and revising earlier phases, which

can be costly and time-consuming [6].

Not Suitable for Uncertain or Evolving

Requirements: The V-Model works best when

requirements are well understood from the outset. It

is less effective for projects where requirements are

expected to evolve over time [6].

Image 2: V-Model

© SEP 2024 | IRE Journals | Volume 8 Issue 3 | ISSN: 2456-8880

IRE 1706236 ICONIC RESEARCH AND ENGINEERING JOURNALS 15

III. INCREMENTAL MODEL

3.1 Overview

The Incremental Model is a software development

approach that divides the project into smaller,

manageable segments or increments, each of which is

developed and delivered sequentially [3]. Unlike

traditional linear models, the Incremental Model

allows for the progressive development of a system

by building upon previous iterations. Each increment

adds functional capabilities, providing partial system

functionality early in the development process and

enabling continuous user feedback [3].

3.2 Phases and Activities Requirement Analysis:

Prioritizing and breaking down requirements.

System Design: Developing an overall architecture.

Implementation and Testing: Developing, integrating,

and testing in increments.

Incremental Integration: Gradually adding new

functionality. Deployment: Deploying the system

once usable increments are complete.

Maintenance: Providing ongoing support as new

increments are added [3].

3.3 Order of Execution Cyclic and iterative Each

increment passes through design, development, and

testing phases [3].

3.4 Strengths and Weaknesses Strengths: Flexibility:

The Incremental Model allows for partial

implementation of the system and adds features or

modules in increments, making it more flexible than

the Waterfall or V-Model [3].

Early Functionality: Since the system is developed in

increments, the user gets to see some functionality

early in the development process, allowing for early

feedback and adjustments [3].

Risk Management: By breaking the project into

smaller, manageable increments, the model reduces

risks and allows for easier management of changes

[3].

Weaknesses:

Integration Challenges: Combining the increments to

form a complete system can be challenging and may

lead to integration issues [3].

Complexity: Managing multiple increments can add

complexity to the project, requiring careful planning

and coordination [3].

May Lead to Scope Creep: Since the project is

developed in increments, there is a risk of scope

creep as users may request additional features that

were not originally planned [3].

Image 3: Incremental Model

IV. SPIRAL MODEL

4.1 Overview

The Spiral Model is structured as a series of iterative

cycles, each of which involves four key phases:

planning, risk analysis, engineering, and evaluation

[2]. At the beginning of each cycle, project goals and

constraints are defined during the planning phase.

This is followed by a rigorous risk analysis phase,

where potential risks are identified, assessed, and

mitigation strategies are developed [2]. The

engineering phase then focuses on the actual

development and testing of the software, while the

evaluation phase involves customer feedback and the

refinement of the project [2].

4.2 Phases and Activities

Planning: Defining objectives, alternatives, and

constraints.

Risk Analysis: Identifying and mitigating risks.

Engineering: Developing and testing the software.

Evaluation: Reviewing the progress and planning the

next iteration [2].

© SEP 2024 | IRE Journals | Volume 8 Issue 3 | ISSN: 2456-8880

IRE 1706236 ICONIC RESEARCH AND ENGINEERING JOURNALS 16

4.3 Order of Execution Iterative with multiple cycles.

Includes planning, risk analysis, engineering,

evaluation [2].

4.3 Strengths and Weaknesses Strengths:

Risk Management: The Spiral Model is highly

effective in managing risks, as it emphasizes risk

analysis and mitigation at each iteration of the

project [2].

Flexibility: The model is adaptable to changes and

can accommodate evolving requirements, making it

suitable for complex and large-scale projects [2].

Continuous Refinement: Through iterative cycles, the

model allows for continuous refinement of the

product, leading to higher quality and better

alignment with user needs [2].

Weaknesses:

Complexity: The Spiral Model is more complex to

manage and implement compared to other models,

requiring expertise in risk assessment and

management [2].

High Cost: The iterative nature and extensive risk

management activities can make the model

expensive, especially for small or less critical

projects [2].

Difficult to Manage: Due to its complexity and

flexibility, managing the Spiral Model can be

challenging, requiring highly skilled project

managers [2].

Image 4: Spiral Model

V. AGILE MODEL

5.1 Overview

The Agile model is a dynamic and iterative approach

that allows for continuous refinement and adaptation

throughout the development process [5]. It is

particularly suited for projects with evolving

requirements, where customer needs and market

conditions are likely to change [5].

5.2 Phases and Activities Requirement Gathering:

Collecting and prioritizing user stories.

Iteration Planning: Planning short development

cycles (sprints).

Design and Development: Designing, coding, and

testing in each sprint.

Testing: Continuous testing throughout the

development cycle.

Review: Reviewing progress with stakeholders after

each sprint.

Deployment: Potentially deploying after each sprint.

Maintenance: Ongoing adaptation and support based

on feedback [5].

5.3 Order of Execution

• Iterative with short cycles.

• Allows continuous adaptation and frequent

releases [5].

5.4 Strengths and Weaknesses

Strengths:

High Flexibility and Adaptability: Agile is highly

adaptable to changes, allowing teams to respond

quickly to evolving requirements and market

conditions [5].

Customer Collaboration: Agile emphasizes close

collaboration with the customer, ensuring that the

final product closely meets user needs and

expectations [5].

Early and Continuous Delivery: Agile promotes the

early and continuous delivery of functional software,

allowing users to benefit from the product sooner and

providing frequent opportunities for feedback [5].

Weaknesses:

Less Predictable: The iterative nature of Agile can

make it difficult to predict timelines, costs, and

© SEP 2024 | IRE Journals | Volume 8 Issue 3 | ISSN: 2456-8880

IRE 1706236 ICONIC RESEARCH AND ENGINEERING JOURNALS 17

project scope, especially in the early stages [5].

Requires Strong Team Collaboration: Agile relies

heavily on effective communication and

collaboration within the team, which can be

challenging if the team is not co-located or lacks

experience with Agile practices [5].

Scope Creep Risk: The flexibility of Agile can lead to

scope creep if changes are not carefully managed,

potentially resulting in delays or budget overruns [5].

Image 5: Agile Model

Comparative Analysis:

Image 6: Comparative analysis of all SDLC Models

CONCLUSION

The selection of an SDLC model is crucial for a

successful software project. Each model possesses

unique characteristics that render it suitable for

specific types of projects [2], [3], [5]. The Waterfall

and V-Model are ideal for projects with well-defined

requirements and minimal changes [1], [6]. In

contrast, the Incremental, Spiral, and Agile models

offer greater flexibility, making them more

appropriate for complex and evolving projects [2],

[3], [5]. Understanding the phases, activities, and

sequential execution inherent in these models helps in

making informed decisions that align with the

project's goals and constraints.

REFERENCES

[1] W. Royce, “Managing the Development of

Large Software Systems,” in Proceedings of

IEEE WESCON, 1970, pp. 1–9.

[2] B. Boehm, “A Spiral Model of Software

Development and Enhancement,” ACM

SIGSOFT Software Engineering Notes, vol. 11,

no. 4, pp. 14-24, 1986.

[3] J. W. Satzinger, R. B. Jackson, and S. D. Burd,

Systems Analysis and Design in a Changing

World, 7th ed. Boston, MA: Cengage Learning,

2015.

[4] I. Sommerville, Software Engineering, 10th ed.

Boston, MA: Pearson, 2015.

[5] K. Beck et al., Manifesto for Agile Software

Development, 2001. [Online]. Available:

https://agilemanifesto.org/.

[6] M. R. Lyu, “Software Reliability Engineering:

A Roadmap,” in Future of Software

Engineering, IEEE Computer Society, 2007, pp.

153–170.

