Evaluation of Power System Stability for Load Scheduling of Plaza A Building

FIDEL M. SEÑA

Graduate School, Adamson University, Manila, Philippines

Abstract- The study mainly focused on the analysis of the as-built electrical system and as- found electrical system of Plaza A located at Northgate Ave, Alabang, Muntinlupa, Metro Manila. The evaluation of the electrical parameters, settings, and electrical protective devices was conducted. The building is supported by utility power and emergency power and with the addition of a new generator. The researcher verified the modification of the electrical system if it still complies with the standard set by the Philippine Electrical Code. He conducted simulations and study based on actual settings and rating using ETAP software. The analysis involved Load Flow Analysis, Arc Flash Analysis, and Short Circuit Analysis. The results of the simulations are within acceptable ranges. Thus, this study recommends synchronizing the three generators to ease burden of operation, conducting regular inspection and audit of the electrical system of the building, and regular training of workers.

Indexed Terms- Power system stability, Arc flash analysis, Load flow analysis, Short circuit analysis, Electrical load schedule.

I. INTRODUCTION

Continuous upgrade of its building components and provide better machination, automation, or modernization are tasks of a facility engineer. The continuous modification of the building components is necessary to ensure business is round the clock.

Updating the existing layout or plan of the building is often neglected, especially the load schedule of the building, most of the time resulting in an unbalanced load. Power system oscillations are a primary cause of unexpected power blackouts. A fault or a series of faults can disrupt the system, leading to oscillations in the power network [1].

Generators are connected by a network that functions similarly to weights linked by rubber bands. In this analogy, the weights represent the rotating inertia of the turbine generators, while the rubber bands symbolize the inductance of the transmission lines. When a person pulls on one weight and releases it, it creates an oscillation that affects several interconnected weights. Disturbing a single weight causes all the weights to oscillate. Over time, the system will settle down, depending on its damping characteristics [2]. Identifying unbalanced phase currents is crucial for control and fault alarm rates in power grids, especially in urban distribution networks. The zero-sequence current transformer, specifically designed for phase currents, measuring unbalanced offers advantages in measurement range, identity, and size, compared to using three separate current transformers [3]. Unbalanced load occurs when there is significantly more power drawn on one phase of a system which can lead to overheating of electrical components and overheating, and increase power losses and is insufficient in operation. Making the reliability of the electrical system decrease with respect to time. Equipment in these facilities is subject to fast wear and tear.

Thus, it is important to regularly evaluate and update the electrical system whenever there is modification to make sure ample power supply of the building and avoid equipment breakdown.

Decisions on maintenance policies encompass operational considerations related to machinery and facilities, including failure modes. They also involve strategic aspects concerning the organization's requirements for availability, safety, and quality, all aimed at optimizing the total life cycle cost [4].

II. DESIGN OPTION

The evaluation of this project was verified and checked by a Professional Electrical Engineer. However, it depends on the management if it will be implemented or retain the current electrical system. Actual testing with the help of test device can verify and check the result of the study if the management intends to.

III. DESIGN SPECIFICATIONS

The electrical system of the building served as basis of this study, including the one - line diagram and load schedule. The output or design plan was presented including the one-line diagram, riser diagram, and the simulated result of the load flow, arc flash, and short circuit analysis for comparison of its parameters.

IV. ASSUMPTIONS FOR SIMULATIONS

The electrical design was based on the regulation of the latest edition of Philippine Electrical Code (PEC) 2017

Basic Design Codes: Section 4.30.2.2 (A) PEC 2017, pg.347-348 Computation of branch circuit conductors in single motor Section 4.30.2.4 PEC 2017, pg.349-350 Computation of branch circuit motors and other loads Section 4.40.4.3 PEC 2017, pg.356-357 Computation of branch circuit conductors for air conditioning equipment Section 4.30.4.2 PEC 2017, pg.354-356 Selection of branch circuit short circuit and ground fault protection for individual motor circuit Section 4.30.4.3 (C) (4) PEC 2017, pg.356-357 Selection of branch circuit short circuit and ground fault protection for the group of motor

V. BASIS OF THE ANALYSIS

The basis of the simulations is the Philippine Electrical Code (PEC) incorporated with the ETAP software and in line with other international standards, such as the International Electrotechnical Commission, American National Standard Institute, and Institute of Electrical and Electronics Engineering standards.

VI. SUMMARY OF LOAD FLOW USING UTILITY SUPPLY

TABLE I. SUMMARY OF LOADS USING UTILITY SUPPLY

			LOAD FLOW USING UTILITY SUPPLY											
		load	input	Output	voltage	Voltage	Size (mm	Cableline		Power	Cable per	Wire	Wire	
From			Voltage	Voltage		Drop			Length (m)	Factor	phase	Resistanc	Reactance	
UTILITY BUS	BUS A	2028.3	460	454.1258	1.277	5.8742	240	THHN	8	0.85	8	0.029	0.048	Passed
UTILITY BUS	BUS 64	516.79	460	455.1792	1.048	4.8208	150	THHN	10	0.85	4	0.15	0.085	Passed
UTILITY BUS	BUS 26	50	460	459,4894	0.111	0.5106	50	THHN	15	0.85	3	0.12	0.055	Passed
BUS A	BUS 19	107.2	460	453.9602	1.313	6.0398	120	THHN	10	0.85	2	0.054	0.052	Passed
BUS A	BUS 20	127.83	460	453.56	1.4	6.44	120	THHN .	14	0.85	2	0.197	0.0846	Passed
BUS A	8US 21	127.81	460	453.7532	1.358	6.2468	120	THHN	18	0.85	2	0.197	0.0846	Passed
BUS A	8US 22	127.78	460	453.6658	1.377	6.3342	120	THHN	22	0.85	2	0.197	0.0846	Passed
BUS A	BUS 23	127.76	460	453.583	1.395	6.417	120	THHN	26	0.85	2	0.197	0.0846	Passed
BUS A	BUS 24	125.42	460	453.514	1.41	6.485	120	THHN	30	0.85	2	0.197	0.0846	Passed
BUSA	BUS 39	207.7	460	454.1258	1.277	5.8742	240	THHN	20	0.85	3	0.029	0.048	Passed
BUS A	8US 42	131.49	460	454.1258	1.277	5.8742	120	THHN	20	0.85	2	0.054	0.052	Passed
BUS A	8US 43	1092	460	454.1258	1.277	5.8742	240	THHN	20	0.85	3	0.029	0.048	Passed

Shows the simulation for the load flow analysis of as built diagram using the utility or the normal supply of the building and, that the losses in the system are within acceptable limit of the standard indicated in the Philippine electrical code with a maximum loss of 5%. Above this, the system must be re-evaluated to comply with the standard. It also shows that the largest value of voltage drop is at 1.41% which is the bus for 6th floor. While the lowest voltage drop is at 0.11% which is for the fire pump equipment.

VII. SUMMARY LOAD FLOW USING EMERGENCY SUPPLY

TABLE II. SUMMARY OF LOADS USING EMERGENCY SUPPLY

		Aburdle r						LOADITON	COMPER-	REPORTALY.				
Connect	kons:	Load	Input	Output	Voltage	Voltage	Steleum	CableType		Power	Cable per	Wre	Wire	Evaluatio
			Voltage	Voltage		Excp				Factor	phase		Reactance	
EMERGENCY BUS	BUS B	2028.3	460	458.6292	0.298	1.3708	240	THEN	8	0.85	8	0.029	0.048	Passed
EMERGENCY BUS	8US 26	50	460	458.9788	0.222	1.0212	50	THHN	15	0.85	3	0.12	0.055	Passed
BUS B	8US 13	107.2	460	458.4544	0.336	1.5456	120	THHN	10	0.85	2	0.054	0.052	Passed
BUS B	BUS 14	127.83	460	458.3348	0.362	1.6652	120	THHN	14	0.85	2	0.157	0.0546	Passed
BUS B	8US 15	127.81	460	458.252	0.38	1.748	120	THHN	18	0.85	2	0.197	0,0846	Passed
BUS B	8US 16	127.78	460	458.1692	0.398	1.8308	120	THHN	22	0.85	2	0.197	0.0846	Passed
BUS B	8US 17	127.76	460	458.0864	0.416	1.9136	120	THHN	26	0.85	2	0.197	0.0846	Passed
BUS B	8US 18	125.42	450	458.0128	0.432	1.9872	120	THHN	30	0.85	2	0.197	0.0845	Passed
BUS B	BUS 39	207.7	460	458.6292	0.298	1.3708	240	THHN	20	0.85	3	0.029	0.048	Passed
BUS B	8US42	131.49	460	458.6292	0.298	1.3708	120	THHN	20	0.85	2	0.054	0.052	Passed
BUS B	8US 43	1092	450	458.6292	0.258	1.3708	240	THHN	20	0.85	3	0.029	0.048	Passed

shows the simulation for the load flow analysis of as built diagram using the emergency or the generator one and generator two working together to supply the power of the building and, shows that the losses in the system is within acceptable limit of the standard indicated in the Philippine electrical code with a maximum loss of 5%. Above this the system must be re-evaluated to comply with the standard. It also shows that the largest value of voltage drop is at 0.432% which is the bus for 6th floor. While the lowest voltage drop is at 0.22% which is for the fire pump equipment.

VIII. SUMMARY OF LOADS USING GENERATOR 3

TABLE III. SUMMARY OF LOADS USING GENERATOR 3

		Voltage E	Irop Analy	ii			LOAD FLOW USING GENSET 3 BUS							
Connect	tions	Load	Input	Output	Voltage	Voltage	Size (mm	CableTyp	Length	Power	Cable per	Wire	Wire	Kalustin
From	To	Current	Voltage	Voltage	Drop (%)	Drop	<u>sq.)</u>	e	(13)	Factor	phase	Resistanc	Reactanc	E-BIUCIN
GENSET 3 BUS	BUS B	2028.3	450	458.4958	0.327	1.5042	240	THHN	10	0.85	6	0.0998	0.0843	Passed
GENSET 3 BUS	BUS 26	50	450	459.3376	0.144	0.6624	50	THHN	15	0.85	3	0.12	0.055	Passed
BUS B	BUS 13	107.2	450	458.321	0.365	1.679	120	THHN	10	0.85	2	0.054	0.052	Passed
BUS B	BUS 14	127.83	450	458.2014	0.391	1.7986	120	THHN	14	0.85	2	0.197	0.0846	Passed
BUS B	BUS 15	127.81	450	458.1186	0.409	1.8814	120	THHN	18	0.85	2	0.197	0.0846	Passed
BUS B	BUS 16	127.78	450	458.0312	0.428	1.9688	120	THHN	22	0.85	2	0.197	0.0846	Passed
BUS B	BUS 17	127.76	450	457.9484	0.446	2.0516	120	THHN	26	0.85	2	0.197	0.0846	Passed
BUS B	BUS 18	125.42	450	457.8748	0.462	2.1252	120	THHN	30	0.85	2	0.197	0.0846	Passed
BUS B	BUS 39	207.7	450	458.4958	0.327	1.5042	240	THHN	20	0.85	3	0.029	0.048	Passed
BUS B	BUS 42	131.49	450	458.4958	0.327	1.5042	120	THHN	20	0.85	2	0.054	0.052	Passed
BUS B	BUS 43	1092	450	458.4958	0.327	1.5042	240	THHN	20	0.85	3	0.029	0.048	Passed

Shows the simulation for the load flow analysis of as built diagram using the generator three to supply the power of the building. The losses in the system are within acceptable limit of the standard indicated in the Philippine electrical code with a maximum loss of 5%. Above this the system must be re-evaluated to comply with the standard. It also shows that the largest value of voltage drop is at 0.462% which is the bus for 6th floor. While the lowest voltage drop is at 0.144% which is for the fire pump equipment.

IX. ARC FLASH – ASBUILT

shows the arc flash simulation of the utility bus using the utility supply or the normal supply. The arc flash boundary is 5.2ft. The incident energy at working distance is 14.368 Cal/cm2 at 18 inches of working distance.

Shows the arc flash simulation of Bus A using the utility supply or the normal supply. The arc flash boundary is 5.1ft. The incident energy at working distance is 14.033 Cal/cm2 at 18 inches of working distance.

Shows the arc flash simulation of the emergency bus using the emergency power or generator 1 and generator 2 working together.

The arc flash boundary is 5.1ft. The incident energy at working distance is 14.033Cal/cm2 at 18 inches of working distance.

Shows the arc flash simulation of the emergency bus using the emergency power or the generator 1 and generator 2 working together to supply power. The arc flash boundary is 7.3ft. The incident energy at working distance is 28.513 Cal/cm2 at 18 inches of working distance.

© AUG 2024 | IRE Journals | Volume 8 Issue 2 | ISSN: 2456-8880

Fig. 5. Arc flash at bus A using emergency power

Shows the arc flash simulation of the bus A using the emergency power or the generator 1 and generator 2 working together to supply power. The arc flash boundary is 7.3ft the incident energy at working distance is 28.44 Cal/cm2 at 18 inches of working distance.

Shows the arc flash simulation of the bus B using the emergency power or the generator 1 and generator 2 working together to supply power. The arc flash boundary is 7.3ft. The incident energy at working distance is 28.44 Cal/cm2 at 18 inches of working distance.

X. SHORT CIRCUIT ANALYSIS – ASBUILT

TABLE IV. SHORT CIRCUIT ANALYSIS USING UTILITY SUPPLY

		S	HORT CIRC	UIT SUMN	IARY USING	UTILITY SUR	PPLY		
1		I	MPEDANCE					Havingan	Basammandad
BUS	VOLTAGE (kV)	Z ₁	Z	Zo	l _{sc sø} (kA)	I _{scug} (kA)	I _{stit} (kA)	kAIC Rating	kAICRating
UTILITY BUS	0.46	0.0082	0.0082	0.00796	32.393	32.706	28.053	32.393	≥ 35
BUS A	0.46	0.00852	0.00852	0.00878	31.178	30.869	27.001	31.178	≥ 35
BUS B	0.46	0.00852	0.00852	0.00878	31.178	30.869	27.001	31.178	≥35

Shows short circuit analysis of the as built electrical system using the utility power supply. Faults are simulated on different main buses. The maximum fault is 32.939 kAIC for utility bus; 31.178kAIC for Bus A which is same with Bus B, respectively. It also shows the total impedance per bus.

TABLE V. SHORT CIRCUIT ANALYSIS USING EMERGENCY SUPPLY

		SHO	ORT CIRCUI	T SUMMAI	RY USING EF	MERGENCY S	WPPLY					
IMPEDANCE Less (kA) Less (kA) Less (kA) Maximum Recommende												
BUS	VOLTAGE	Z	2	Zo	15C3(0 (NOR)	ISCEG (RM)	ARTE INHI	kAIC Rating	kAIC Rating			
EMERGENCY BUS	0.46	0.01886	0.01799	0.00751	14.081	17.974	12.487	17.974	≥ 35			
BUS A	0.46	0.01917	0.01831	0.00833	13.856	17.42	12.28	17.42	≥35			
BUS B	0.46	0.01917	0.01831	0.00833	13.856	17.42	12.28	17.42	≥ 35			

Shows short circuit analysis of the as built electrical system using the utility power supply. Faults are simulated on different main buses. The maximum fault is 32.939 kAIC for utility bus; 31.178kAIC for for Bus A which is same with Bus B, respectively.

XI. LOAD FLOW ANALYSIS - ASFOUND

TABLE VI. SHORT CIRCUIT ANALYSIS USING UTILITY SUPPLY

	Voltage Drop Analysis								LOAD FLOW USING UTILITY SUPPLY							
Conner		Load	Input	Output	Voltage	Voltage	Side (mm	CableTyp	Length	Power	Cable per	Wire	Wire			
From		Current	Voltage	Voltage	Drop (%)	Drop	343		(m)	Factor	phase	Resistanc	Reactanc			
UTILITY BUS	BUS A	2028.3	460	454.9354	1.101	5.0646	240	THHN	8	0.85	8	0.029	0.048	Passed		
UTILITY BUS	BUS 64	516.79	460	455.9704	0.876	4.0296	150	THHN	10	0.85	4	0.16	0.085	Passed		
UTILITY BUS	BUS 26	50	460	455.7772	0.918	4.7228	50	THHN	15	0.85	3	0.12	0.055	Passed		
BUS A	BUS 19	107.2	460	454.7698	1.137	5.2302	120	THHN	10	0.85	2	0.054	0.052	Passed		
BUS A	BUS 20	127.83	460	454.6456	1.164	5.3544	120	THHN	14	0.85	2	0.197	0.0845	Passed		
BUS A	BUS 21	127.81	460	454.5628	1.182	5.4372	120	THHN	18	0.85	2	0.197	0.0845	Passed		
BUS A	BUS 22	127.78	460	454.4754	1.201	5.5246	120	THHN	22	0.85	2	0.197	0.0846	Passed		
BUSA	BUS 23	127.76	460	454.3926	1.219	5.6074	120	THHN	26	0.85	2	0.197	0.0846	Passed		
BUS A	8US 24	125.42	460	454.3235	1.234	5.6764	120	THHN	30	0.85	2	0.197	0.0845	Passed		
BUS A	BUS 39	207.7	460	454.9354	1.101	5.0646	240	THHN	20	0.85	3	0.029	0.048	Passed		
BUS A	8US 42	131.49	460	454.9354	1.101	5.0646	120	THHN	20	0.85	2	0.054	0.052	Passed		
BUS A	BUS 43	1092	460	454.9354	1.101	5.0646	240	THHN	20	0.85	3	0.029	0.048	Passed		

Shows the simulation for the load flow analysis of as built diagram using the generator three to supply the power of the building. The losses in the system are within acceptable limit of the standard indicated in the Philippine electrical code with a maximum loss of 5%. Above this the system must be re-evaluated to comply with the standard. It also shows that the largest value of voltage drop is at 0.462% which is the bus for 6th floor. While the lowest voltage drop is at 0.144% which is for the fire pump equipment.

TABLE VII. SHORT CIRCUIT ANALYSIS USING GENERATOR 1 AND 2

		Voltage D	rop Analys	jiš			LOAD FLOW USING EMERGENCY SUPPLY							
Connectio	ons	Load	Input	Output	Voltage	Voltage	Size (mm	Size (mm CableTyp		Power	Cable per	Wire	Wire	
From		Current	Voltage	Voltage	Drop (%)	Drop	sq.)	e	(m)	Factor	phase	Resistanc	Reactanc	Evaluation
EMERGENCY BUS	BUS B	2028.3	460	458.6614	0.291	1.3386	240	THHN	8	0.85	8	0.029	0.048	Passed
EMERGENCY BUS	8US 26	50	460	459.5032	0.108	0.4968	50	THHN	15	0.85	3	0.12	0.055	Passed
BUS B	BUS 13	107.2	450	458.4958	0.327	1.5042	120	THHN	10	0.85	2	0.054	0.052	Passed
BUS B	BUS 14	127.83	460	458.367	0.355	1.633	120	THHN	14	0.85	2	0.197	0.0846	Passed
BUS B	BUS 15	127.81	450	458.2842	0.373	1.7158	120	THHN	18	0.85	2	0.197	0.0845	Passed
BUS B	BUS 16	127.78	460	458.1968	0.392	1.8032	120	THHN	22	0.85	2	0.197	0.0846	Passed
BUS B	BUS 17	127.76	460	458.114	0.41	1.886	120	THHN	26	0.85	2	0.197	0.0845	Passed
BUS B	BUS 18	125.42	460	458.0404	0.426	1.9596	120	THHN	30	0.85	2	0.197	0.0846	Passed
BUS B	BUS 39	207.7	450	458.6614	0.291	1.3386	240	THHN	20	0.85	3	0.029	0.048	Passed
BUS B	BUS 42	131.49	460	458.6614	0.291	1.3386	120	THHN	20	0.85	2	0.054	0.052	Passed
BUS B	BUS 43	1092	450	458.6614	0.291	1.3386	240	THHN	20	0.85	3	0.029	0.048	Passed

Shows the simulation for the load flow analysis of as built diagram using the emergency or the generator one and generator two working together to supply the power of the building. The losses in the system is within acceptable limit of the standard indicated in the Philippine electrical code with a maximum loss of 5%. Above this the system must be re-evaluated to comply with the standard. It also shows that the largest value of voltage drop is at 0.41% which is the bus for 6th floor. While the lowest voltage drop is at 0.108% which is for the fire pump equipment.

TABLE VIII. SHORT CIRCUIT ANALYSIS USING GENERATOR 3

		Voltage D				LQAD	FLOW USI	NG GENSET	3 BUS					
Connect	tions	Load	Input	Output	Voltage	Voltage	Size (mm	CableTyp	Length	Power	Cable per	Wire	Wire	-
From	To	Current	Voltage	Voltage	Drop (%)	Drop	30.)	e	(m)	Factor	phase	Resistanc	Reactand	CYCIUSIIU
GENSET 3 BUS	BUS B	2028.3	460	458.4958	0.327	1.5042	240	THHN	10	0.85	6	0.0998	0.0843	Passed
GENSET 3 BUS	BUS 26	50	460	459.3376	0.144	0.6624	50	THHN	15	0.85	3	0.12	0.055	Passed
BUS B	BUS 13	107.2	460	458.321	0.365	1.679	120	THHN	10	0.85	2	0.054	0.052	Passed
BUS B	BUS 14	127.83	460	458.2014	0.391	1.7986	120	THHN	14	0.85	2	0.197	0.0846	Passed
BUS B	BUS 15	127.81	460	458.1186	0.409	1.8814	120	THHN	18	0.85	2	0.197	0.0846	Passed
BUS B	BUS 16	127.78	460	458.0312	0.428	1.9688	120	THHN	22	0.85	2	0.197	0.0846	Passed
BUS B	BUS 17	127.76	460	457.9484	0.446	2.0516	120	THHN	26	0.85	2	0.197	0.0846	Passed
BUS B	BUS 18	125.42	460	457.8748	0.462	2.1252	120	THHN	30	0.85	2	0.197	0.0846	Passed
BUS B	BUS 39	207.7	460	458.4958	0.327	1.5042	240	THHN	20	0.85	3	0.029	0.048	Passed
BUS B	BUS 42	131.49	460	458.4958	0.327	1.5042	120	THHN	20	0.85	2	0.054	0.052	Passed
BUS B	8US 43	1092	460	458.4958	0.327	1.5042	240	THHN	20	0.85	3	0.029	0.048	Passed

Shows the simulation for the load flow analysis of as built diagram using the generator three to supply the power of the building. The losses in the system are within acceptable limit of the standard indicated in the Philippine electrical code with a maximum loss of 5%. Above this the system must be re-evaluated to comply with the standard. It also shows that the largest value of voltage drop is at 0.462% which is the bus for 6th floor. While the lowest voltage drop is at 0.144% which is for the fire pump equipment.

XII. ARC FLASH - ASFOUND

asfound

Shows the arc flash simulation of the utility bus using the utility supply or the normal supply. The arc flash boundary is 4.8ft. The incident energy at working distance is 12.26 Cal/cm2 at 18 inches of working distance.

Shows the arc flash simulation of the utility bus using the utility supply or the normal supply. The arc flash boundary is 4.8ft. The incident energy at working distance is 12.26 Cal/cm2 at 18 inches of working distance

Shows the arc flash simulation of Bus A using the utility supply or the normal supply. The arc flash boundary is 4.7ft. The incident energy at working distance is 11.879 Cal/cm2 at 18 inches of working distance.

Fig. 10. Arc flash at emergency bus generator 1 and 2 -asfound

Shows the arc flash simulation of the emergency bus using the emergency power or generator 1 and generator 2 working together.

The arc flash boundary is 6.2ft. The incident energy at working distance is 20.792 Cal/cm2 at 18 inches of working distance.

Fig. 11. Arc flash at bus B generator 3 -asfound

Shows the arc flash simulation of the generator 3 bus using generator 3 as power supply. The arc flash boundary is 3.3ft. The incident energy at working distance is 5.86 Cal/cm2 at 18 inches of working distance.

asfound

Shows the arc flash simulation of the Bus B using generator 3 as power supply. The arc flash boundary is 3.3. The incident energy at working distance is 5.86 Cal/cm2 at 18 inches of working distance.

XIII. SHORT CIRCUIT ANALYSIS - ASFOUND

TABLE IX. SHORT CIRCUIT ANALYSIS USING UTILITY SUPPLY

			SHORT CI	RCUIT SUI	MMARY US	ING UTILIT	YSUPPLY			
		0	MPEDANCE					Unioning LAIC	December 1 Mar	
BUS	VOLTAGE (kV)	Z	Z,	Zo	l _{sc 30} (kA)	l _{seug} (ka)	l _{ici-1} (kA)	Rating	Rating	
UTILITY BUS	0.46	0.00808	0,00808	0.00767	32.864	33.43	28.461	32.864	2 35	
BUS A	0.46	0.0084	0.0084	0.00848	31.621	32.525	27.384	32.525	235	
BUS B	0.46	0.0084	0.0084	0.00848	31.621	32.525	27.384	32.525	235	

Shows the short circuit analysis of the as built electrical system using the utility power supply. Faults are simulated on different main busses. The maximum fault is 32.864 kAIC for utility bus; 32.525 kAIC for Bus A which is same with Bus B, respectively. It also shows the total impedance per bus.

TABLE X. SHORT CIRCUIT ANALYSIS USING GENERATOR 1 AND 2

		5	HORT CIRC	UIT SUMA	ARY USIN	G EMERGEI	NCY SUPPL	Y		
		1	MPEDANCE					Maximum kAIC	Recommended kAIC	
BUS	VOLTAGE	Z	2	Zo	1 _{56.30} (KA)	L _{SEL-G} (KA)	I _{SCL-L} (KA)	Rating	Rating	
EMERGENCY BUS	0.46	0.01054	0.01026	0.00751	25.201	28.164	22.125	28.164	≥ 35	
BUS A	0.46	0.01057	0.0103	0.00833	25.131	27.328	22.05	27.328	≥ 35	
BUS B	0.46	0.01057	0.0103	0.00833	25.131	27.328	22.05	27.328	≥ 35	

Shows the short circuit analysis of the as built electrical system using the utility power supply. Faults are simulated on different main busses. The maximum fault is 28.164 kAIC for utility bus; 27.328 kAIC for Bus A which is same with Bus B respectively.

TABLE XI. SHORT CIRCUIT ANALYSIS USING GENERATOR 3

			SHORT CIR	ROUIT SUM	MARY USH	NG GENSET	3 SUPPLY			
		1	APEDANCE		or soon		1. 000	Maximum kAIC	Recommended kAlo	
BUS	VOLTAGE	Z ₁	Ζ,	Zo	1230 (KA)	Late (KA)	ISTER (KA)	Rating	Rating	
GENSET 3 BUS	0.46	0.01108	0.01079	0.00831	23.974	26.41	21.035	26.41	2 35	
BUS A	0.46	0.01109	0.01082	0.00913	23.941	25.697	20.994	25.697	≥ 35	
BUS B	0.46	0.01109	0.01082	0.00913	23.941	25.697	20.994	25.697	≥ 35	

Shows short circuit analysis of the as built electrical system using generator 3 as supply. Faults are simulated on different main busses. The maximum fault is 26.41 kAIC for utility bus; 25.697 kAIC for Bus A which is same with Bus B, respectively.

XIV. SUMMARY

The electrical system of the building is within standard and within minimum requirement as required by the Philippine Electrical Code. Using E-tap software, simulations of load flow analysis, arc flash analysis, and short circuit analysis of the electrical system of the building, the electrical system is within standard and safe to operate. Update the single line diagram and load schedule of the building. The significant findings of the study guide the recommendations.

XV. RECOMMENDATIONS

- *A.* To improve an existing electrical system in compliance with the Philippine Electrical Code 2017, the proponent recommends the following:
- *B.* Generator 3 is must also supply Bus A to further increase the reliability of the emergency power, while currently exclusively supplying the bus B.
- *C.* The three generators must operate in load sharing condition to ease burden on the generator's operation, currently generators 1 and 2 only are on load sharing.
- *D*. Regular and periodic reviews of the short circuit analysis, protection and coordination study, and arc flash analysis for an electrical distribution system must be conducted to ensure the continued safe and efficient operation of the system and allow for anticipation of retrofitting, load expansion, and electrical system modifications.
- *E.* Regular training for workers in manufacturing operations must be considered essential to ensure safety, enhance productivity, and minimize electrical hazards. Training must cover a range of topics, including electrical safety, hazard identification, quality monitoring, and preventive and predictive maintenance procedures.
- F. below for more information on proofreading, spelling and grammar.

Keep your text and graphic files separate until after the text has been formatted and styled. Do not use hard tabs, and limit use of hard returns to only one return at the end of a paragraph. Do not add any kind of pagination anywhere in the paper. Do not number text heads-the template will do that for you.

G. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

REFERENCES

- N. N. Islam, M. A. Hannan, A. Mohamed, and H. Shareef, "Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller," 2016.)
- [2] "Understanding power system stability," in Proc.
 58th Annu. Conf. Protective Relay Engineers, 2005, pp. xxx-xxx.
- [3] S. Liang, M. Yang, G. Yang, L. Wang, X. Cai, and Y. Zhou, "Unbalanced Current Identification of Three-Core Power Cables Based on Phase Detection of Magnetic Fields," Sensors (Basel), vol. 23, no. 12, p. 5654, Jun. 2023. doi: 10.3390/s23125654.

[https://pubmed.ncbi.nlm.nih.gov/37420820/]

- [4] C. Wang, Y. Wang, and X. Chen, "Energy management of hybrid electric vehicles: A review," *Energy Conversion and Management*, vol. 151, pp. 74-86, Jul. 2017. Available:
- [5] S. F. Waterer, "Assessing the Health of a Facility's Electrical Power Distribution System," IEEE Transactions on Power Systems
- [6] Consulting-Specifying Engineer, "Assessing Replacement of Electrical Systems," Consulting-Specifying Engineer, March 15, 2021.
- [7] J. Propst and D. Doan, "Improvements in Modeling and Evaluation of Electrical Power System Reliability," IEEE Transactions on Power Systems, vol. 16, no. 1, pp. 12-18, Feb. 2001.
- [8] C. Tzong Zu, C. Fan, and J. Wong, "System load points reliability evaluation for electric power system," IEEE Transactions on Power Systems, vol. 22, no. 1, pp. 396-402, Feb. 2007.
- [9] M. N. Absar, M. F. Islam, and A. Ahmed, "Power quality improvement of a proposed gridconnected hybrid system by load flow analysis using static var compensator," IEEE Transactions on Power Systems, 2023.
- [10] S. M. Gaya, O. Sokunbi, and I. O. Habiballa, "Recent Review On Load/power Flow Analysis," ResearchGate, 2020.
- [11] M. Maddhav, R. S. Kumar, P. Mittal, and N. Singh, "Review of Forward Backward Sweep Method for Load Flow Analysis of Radial Distribution System," ResearchGate, 2015.

- [12] A. Saputro, A. I. Santoso, and H. Setyawan, "Implementation of Load Frequency Control System using Particle Swarm Optimization in Multi-area Power System," Journal of Engineering and Scientific Research, vol. 2, no. 1, pp. 9-13, 2020.
- [13] W. F. Tinney and C. E. Hart, "Power Flow Solution by Newton's Method," *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-86, no. 11, pp. 1449-1460, Nov. 1967.
- [14] P. D. Sutherland, "Improved Method for Arc Flash Hazard Analysis," Mersen, White Paper, Nov. 2018.
- [15] D. A. Doan and R. P. Neitzel, "Comparative Study of Arc Modeling and Arc Flash Incident Energy Exposures," NEI Electric Power Engineering, White Paper, Jun. 2015.
- [16] J. C. Das, "Arc Flash Analysis: IEEE 1584 Methods and Applications," IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1165-1173, Sept.- Oct. 2006.
- [17] IEEE. (2003). "IEEE Guide for Performing Arc-Flash Hazard Calculations." IEEE Std. 584-2002. IEEE.
- [18] Liu, Y., & Lin, X. (2005). "Arc flash hazard analysis and mitigation." IEEE Transactions on Industry Applications, 41(3), 644-652.
- [19] A. Arizaldi, M. Muhammad, and S. Salahuddin,
 "Short Circuit Analysis on Distribution Network 20 kV Using Etap Software." Journal of Renewable Energy Electrical and Computer Engineering 1(2):49, September 2021.
- [20] D. Strobl and M. Krüger, "Short-Circuit Calculation in Power Systems—Review and Outlook," Schneider Electric, Cahiers Techniques, 2005.
- [21] J. Arrillaga, "Advanced Symmetrical Components Method," ResearchGate, 2011.
- [22] L. Zhao, L. Fan, Z. Li, and Y. Huang, "An Effective Methodology for Short-Circuit Calculation of Power Systems Dominated by Power Electronics Converters Considering Unbalanced Voltage Conditions and Converter Limits," IEEE Transactions on Power Delivery, vol. 40, no. 4, pp. 2756-2766, June 2024.
- [23] Q.Lai, Z. Zhang, J. Han, and X.Yin. "Short Circuit Calculation Method of Power System with Renewable Energy Sources and

Experimental Verification", IEEE Xplore, Feb. 2022.

- [24] H. T. N. Bui, T. T. Nguyen, T. V. Huynh, H. M. Le and V. T. Pham, "Optimization methods for power scheduling problems in smart home: Survey," International Conference on System Science and Engineering (ICSSE), 2019, pp. 362-367.
- [25] A. T. Nguyen, T. H. Nguyen, and L. T. Tran, "Energy management in smart homes: A review of methods and applications," Procedia Computer Science, vol. 22, pp. 596-603, 2013.
- [26] S. Mohammadi-Ivatloo, M. Fotuhi-Firuzabad, M. Salehi, and A. Yazdani, "Optimizing
- [27] D. Mariano-Hernández, L. Hernández-Callejo, A. Zorita-Lamadrid, O. Duque-Pérez, and F. Santos García, "A review of strategies for building energy management system", Elsevier, Journal of Building Engineering, Volume 33, January 2021.
- [28] A. Davari, and K. Thyagarajan, "Load sharing control in distributed generation system." IEEE, Proceedings of the Thirty-Seventh Southeastern Symposium, April 2005.
- [29] J. Jung, and M. Marwali, "Control of Distributed Generation Systems— Part II: Load Sharing Control. ", IEEE Transactions on Power Electronics 19(6):1551 - 1561, Dec. 2004.
- [30] A. Aboti, and V. Subhash, "Review on Industrial Generators Load Sharing System along Withgrid Momentry Synchronization and Setup A Backup Unit for Auxiliary Power for Generators. " International Journal For Technological Research In Engineering Volume 5, Issue 8, April-2018.