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Abstract- Glioblastoma multiforme (GBM) is the 

primary and most malignant form of brain tumor 

with an unexceptionally low prognosis and a 

highly variable genome. The cancer's 

multifactorial nature and variable response to the 

stated therapy preclude the use of standard 

prognostic factors. We can improve prognosis and 

the individual therapeutic management plan by 

utilizing the domain of multimodal imagining and 

a new approach in machine learning. Here, the 

author wonders how the different modes of the 

image, such as MRI, PET, and CT, the therapeutic 

characteristics incorporated with the features 

linked to therapy, and the ML models can give a 

system check of GBM. The integrated data of 

anatomy, metabolism, and clinical picture 

enhances the accuracy of prognosis and facilitates 

the selection of further treatment methods for the 

patient. This paper examines various factors such 

as current techniques and approaches, the 

advantages of utilizing data in diverse ways, and 

how machine learning handles all types of data. 

The increased accuracy reveals facts that 

contribute to the model's clinical relevance, 

indicating a better prognosis and subsequent better 

treatment. The paper looks at the issue regarding 

handling model heterogeneity and interpretability. 

Future work in this field will deal with finer tuning 

of the learning algorithms, data communication 

protocols, and new real-time monitoring 

instruments. Therefore, integrating MMC and 

MTT with features and ML is valuable in 

improving the prognosis and treatment of GBM to 

optimize patients’ results.  

 

Indexed Terms- Glioblastoma Multiforme (GBM), 

Multimodal Imaging, Machine Learning, 

Prognostication, Magnetic Resonance Imaging, 

Clinical Implications. 

 

 

I. INTRODUCTION 

 

Glioblastoma multiforme (GBM) turns out to be one 

of the most aggressive, most immature primary brain 

tumor types, with high proliferation rates and 

resistance to conventional therapy. However, at 

present, GBM remains one of the most life-

threatening primary brain tumor entities, with a 

median survival duration ranging from 12 to 15 

months, even with the use of new types of treatment. 

Scientists characterize GBM as a genetic and 

cellular tumor, observing its heterogeneity at 

multiple disease stages. Therefore, clinicians are 

usually confused or have a poor idea of the likely 

patient outcomes. In this regard, evaluating the 

prognosis is critical in response to the interventions 

and patients' expectations. 

 

We have used several of the more traditional 

prediction paradigms for GBM, such as age, 

performance status, or tumor grade. Such 

approaches must be more specific due to the 

disorder. Consequently, incorporating other more 

contemporary techniques and the data accrued from 

therapy has the prospect of improving the estimate 

of the survival probabilities. Besides structural 

imaging, including MRI and CT images, we also 

have functional imaging with PET and molecular 

imaging, which gives information on tumor 

morphological appearance, metabolic activity, and 

molecular features. These imaging features, when 

combined with data gathered from therapeutic 

interventions, will provide more comprehensive 

information on the tumor's nature and treatment 

response. 

 

Machine learning, as one of the subdivisions of 

artificial intelligence, has opened up a new 

perspective on dealing with medical data. Big data, 

for example, enables not only the identification of 

traditional patterns and correlations through 
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traditional statistical tools, but also the definition of 

unpredictable patterns and correlations by a machine 

learning algorithm. We have also developed 

machine learning models using GBM, which depict 

patients' potential outcomes based on data extracted 

from imaging, clinical, and treatment responses. 

These improvements are significant because they 

incorporate imaging and therapy features into these 

models, resulting in more precise and accurate 

prognosis assessments [16]. 

 

As a result, this review article will specifically focus 

on the current literature on multimodal imaging and 

therapy feature fusion and its integration into 

machine learning-based predictive models for GBM. 

The strategies that underline this integrated 

approach are reviewing the literature and capturing 

knowledge from formally published works. This 

paper will critically review the findings of the study 

to show the advantages of this approach, the likely 

challenges that any organization is bound to 

encounter when implementing the solution, and the 

possible recommendations for future studies. Thus, 

in its totality, the work contributes to an 

understanding of a spectrum of opportunities to 

apply the current innovations in prognostic 

assessment and the overall treatment of GBM 

patients to improve their condition. 

 

II. OVERVIEW OF MULTIMODAL 

IMAGING IN GBM 

 

Combining two or more imaging techniques to 

analyze the data has greatly improved the GBM 

diagnosis and subsequent therapeutic management 

strategies. Artifacts with intrinsic characteristics can 

be classified as having high value. Traditionally, we 

regard GBM as heterogeneous, making it 

challenging to define the tumor's extent, nature, and 

response to treatment. Conventional imaging studies 

typically only depict the anatomical or functional 

trait of the tumor, providing minimal information 

about the lesion. However, new changes in imaging 

techniques, particularly multimodal imaging, which 

combines several imaging methods to form a new 

process, provide a new way of approaching the 

GBM, allowing for more information about the 

tumor [25]. 

 

MRI is the most used imaging modality in the 

management of GBM, and most clinicians like it due 

to its accuracy in diagnosis. For the representation of 

the location and extent of the tumor concerning the 

brain tissues, the modality provides excellent image 

contrast of the soft tissues and high spatial 

resolution. We use T1 and T2 weighted MRI 

sequences to provide detailed structural information. 

In comparison, the study uses DWI and PWI to 

elucidate the function of the body part. Therefore, 

we can use DWI to determine the density of the 

tumor cells. At the same time, by entering the tumor, 

PWI provides information on blood flow within the 

tumor that can help to define its malignancy and 

probable reaction to a treatment [26]. 

 

Since PET provides metabolic information on the 

tumor, MRI frequently pairs with PET. PET scans 

use substances like 18F-fluorodeoxyglucose (FDG), 

which labels the cancerous cells' metabolism rate. 

The glucose metabolic rate in GBM cells is high, as 

depicted by this PET. We can also attempt to define 

the active tumor areas not visible on MRI. It is 

advantageous to differentiate between tumor 

progression after treatment and treatment side 

effects, such as radiation encephalopathy. We are 

making new PET tracers that are very good at 

finding molecular features connected to GBM, like 

amino acid transport or hypoxia. This will give us 

even more biomolecular information about how the 

tumor works [3]. 

 

Another modality is computed tomography (CT), 

which can also be helpful. However, doctors 

typically do not use it for a detailed evaluation of 

GBM patients. The emergency ward employs CT 

due to its speed and availability, which provides 

valuable information in cases of acutely worsening 

neurological status [6]. When contemplating a 

biopsy or resection, it aids in surgical planning by 

providing visualization of bones and calcification. 

Still, CT is inferior to MRI in terms of soft tissue 

contrast and, therefore, is inferior in depicting tumor 

characteristics [21]. 

 

Table 1: Overview of Multimodal Imaging Techniques in GBM 

Imaging Modality 
 

Primary Use 
 

Advantages 
 

Limitations 
 

MRI (Magnetic 

Resonance Imaging) 
 

Anatomical imaging, 

assessing tumor size and 

location 
 

High spatial resolution, 

functional imaging 

options (e.g., DWI, PWI) 
 

May not capture 

metabolic activity 
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PET (Positron 

Emission 

Tomography) 
 

Metabolic and molecular 

imaging 
 

Highlights regions of 

high glucose uptake, 

useful for identifying 

active tumor areas 
 

Lower spatial 

resolution, high cost 
 

CT (Computed 

Tomography) 
 

Rapid imaging, surgical 

planning 
 

Good for bone imaging, 

quick scanning 
 

Less detailed soft 

tissue contrast 

compared to MRI 
 

fMRI (Functional 

MRI) 
 

Brain activity mapping, 

identifying functional 

areas 
 

Non-invasive, maps brain 

activity 
 

Requires patient 

cooperation, indirect 

measure of neural 

activity 
 

DTI (Diffusion 

Tensor Imaging) 
 

Assessing white matter 

tracts 
 

Identifies disruption in 

white matter 
 

Sensitive to motion 

artifacts 
 

 

III. MACHINE LEARNING IN GBM 

PROGNOSTICATION 

 

Machine Learning is now unfolding itself as a 

versatile technique in the sphere of cancer that can 

help in prognostication and management of 

extensive diseases like GBM. GBM is an inherently 

diverse and invasive cancer for which conventional 

predictive techniques that depend on clinical 

predictors and basic statistical models are highly 

problematic [9]. As I have argued, this new approach 

– using big data sets with machine learning 

algorithms – is much more effective in predicting 

individual patient outcomes and is the ultimate goal 

of clinical management.  

 

Unpacking the term significantly is feeding data 

meant to recognize patterns and make some 

decisions or generate predictions based on a new 

data set. These large-scale and complex data from 

various sources such as imaging, genomic, clinical, 

and therapeutic are generally used to build the ML 

models for GBM. This way, the models learn from 

various data sets and spot connections and 

correlations that might be overlooked. This 

capability is handy in GBM prognosis, where the 

model requires multiple data types to balance the 

heterogeneity of the tumor and patients.  

 

In GBM, one of the significant areas of interest of 

ML is the analysis of imaging data, often combining 

different techniques such as MRI and PET. 

Conventional image review is meager and 

interpreted by radiologists by experience and 

judgment, which makes it more diverse. On the other 

hand, imaging data can be analyzed in terms of 

patterns and features about clinical outcomes by 

machine learning algorithms with more accuracy 

and lesser variability. For instance, lesions' 

structures, sizes, shapes, and textural characteristics 

can be computed using the ML models and related 

to the patient's survival rates or treatment outcomes. 

These models offer more precise and individualized 

prognostic estimates. 

 

Clinical and molecular data and imaging are also 

included in ML models to determine the prognosis 

of GBM. For instance, the patient's age, performance 

status, and tissue biomarkers like the mutational 

status of the isocitrate dehydrogenase IDH 1 and the 

methylation status of the O6-methylguanine 

methyltransferase MGMT gene are included. Such 

broad data allow the building of so-called versatile 

models implying several factors related to the given 

disease to reach higher prognostic quality.  

 

Different ML approaches have been used in GBM 

research, with various merits and demerits 

associated with each. Neural Networks, Support 

Vector Machines (SVM), and Random Forests are 

typically  
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Fig 1: Workflow of integrating multimodal imaging 

and machine learning GBM prognostication 

 

incorporated classifiers. Random Forests, for 

instance, boast of the following: they can work with 

big datasets with numerous features; they are 

immune to overfitting. SVMs are mainly applied to 

classification problems, including subtypes of 

tumors. Neural Networks, particularly Deep 

Learning Models, have emerged to be the most 

promising in handling big data and higher 

dimensional data, including images and genomic 

sequences [4].  

 

However, the use of ML in GBM prognostication 

has challenges, as discussed below. One of the major 

concerns is that the models require a large number 

of high-quality data for training to be effective [12]. 

Since GBM is a rare disease, inadequate data is 

frequently present, which complicates model 

building and can also threaten external validity. In 

the same regard, reliance on opaque algorithms, 

such as deep learning networks, is an issue of 

interpretation and clinical credibility. 

  

IV. INTEGRATION OF MULTIMODAL 

IMAGING AND THERAPY FEATURES 

 

The combination of multimodal imaging and 

therapy features is a significant innovation in the 

GBM and the approach to achieving a higher level 

of personalized treatment. This method leverages 

the capabilities of different imaging techniques and 

the specific details of therapeutic information in 

developing a better picture of the tumor's behavior 

and the response to treatment to put together a better 

picture of the patient's prognosis. Due to the massive 

complexity and interindividual variability of GBM, 

such an integrative approach may serve as a 

blueprint for more sound and personalized risk 

assessments. 

 

Multimodal imaging additionally uses various sorts 

of imaging, giving distinctive data concerning the 

tumor. For instance, magnetic resonance imaging 

(MRI) offers detailed anatomical images and 

functional imaging, such as diffusion-weighted 

imaging (DWI) and perfusion-weighted imaging 

(PWI). The advanced MRI methods described above 

provide information about the tumor's relative 

cellularity, vascularity, and overall architecture, 

crucial considerations in determining tumor grade 

and prognosis, and the possible effectiveness of the 

treatment being considered. Positron Emission 

Tomography (PET) provides metabolic and 

molecular images that provide increased glucose 

uptake or regions of low oxygen in a tumor, 

indicating regions of high tumor metabolic activity 

or resistance to treatments [13]. Computed 

Tomography (CT) provides additional value. It 

involves rapid imaging and is useful in surgical 

planning. Combining information from all of these 

approaches can provide clinicians with a superior 

understanding of the tumor over space and time, as 

well as its metabolic activity and interactions with 

the surrounding structures in the brain. 

 

Similarly to imaging, therapeutic factors, including 

the extent of surgical resection, prescribed radiation 

dose, and chemotherapy regimens, are the 

cornerstone of therapy and contribute to the creation 

of the patient's outcome. Thus, proxies such as the 

degree of surgical resection are known to directly 

affect survival, with more extensive resection 

indicating more prolonged survival. Nonetheless, 

the planning of surgery, which is whether it will be 

possible and safe to resect various tumor areas, can 

be significantly informed by imaging data. 

Likewise, radiation therapy and chemotherapy 

responses depend on the biological properties of the 

tumor, which are estimable based on imaging 

features [11]. For example, abiding the PWI perfusion 

decrease to a particular area of cancer may refer to 

hypoxic regions, which are less susceptible to 

radiation therapy treatment; thus, the plans to target 

resistant regions are modified.  

 

Data 
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Data 
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Model 
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Model 
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Multimodal imaging and therapy planning results in 

better patient outcomes as this model slowly builds 

up accurate prospective models. This is where 

machine learning (ML) comes into play because it 

can assess the amount and complexity of data and 

make connections between entities that may be 

unnoticed during the usual analysis of such data. By 

obtaining imaging and therapy features as inputs, 

ML models can give a comprehensive view of the 

state of the tumor and the way it will behave in the 

course of the treatment [8]. For example, an example 

model could involve MRI volume parameters, PET 

markers metabolic rate, and tumor resection extent 

to predict mortality rates and recurrence or 

progression. These models can be enhanced when 

molecular markers, such as mutation profile or 

protein expression, are added to them, resulting in a 

multi-dimensional model incorporating tumor and 

patient characteristics. 

 

The present study revealed more advantages to 

integrating multimodal imaging and therapy features 

than in prognostic prediction alone. This strategy 

enhances patient care since the treatment plan 

depends on the patient and their disease. For 

instance, if the image of the patient in question 

shows high metabolic rates on PET and low regional 

blood flow on MRI, the individual will be classified 

into a category of a candidate for specific or 

intensive treatment. On the other hand, patients with 

a lower risk profile indicated by the integration 

might require a less stringent treatment plan, 

reducing the adverse effects but not the effectiveness 

of the treatment.  

 
Fig 2: Feature importance graph showing relative 

importance of various features in predicting 

outcomes GBM patients. 

 

V. MACHINE LEARNING MODELS 

UTILIZING INTEGRATED DATA 

 

Multimodal imaging and therapy features-based 

machine learning models for prognostic and 

therapeutic purposes in Glioblastoma Multiforme 

(GBM) patients are at a new level of development. 

These models build on the volume of information 

supplied from multiple varieties of data, thereby 

improving the understanding of the disease and the 

identification of special aspects relating to the 

particular patient concerned. Heterogeneous clinical 

imaging data, clinical variables, and therapy 

response data can all be used to build models that 

give very individualized prognostic estimates and 

therapeutic management. 

 

Machine learning models are first created by 

gathering and preparing data from different sources. 

In the context of GBM, this often entails obtaining 

MRI, PET, and CT scan images and some clinical 

data about the patient, including demographics, 

genetic information, and history of treatments [10]. 

Additional clinical data include therapy data, 

including the degree of resection, radiation dose 

prescriptions and distributions, and chemotherapy 

regimens. The preprocessing step is crucial because 

it can determine the data quality one will feed to a 

given model. This could include position scaling of 

image data, dealing with missing values in the 

patient record database, and harmonizing different 

data sets.  

 

The decoding step is the final part of the preparation 

stage, where data is ready for analysis so that 

machine learning algorithms can be developed to 

build relations and identify patterns within an 

integrated database. It is now seen that the choice of 

algorithm depends on the characteristics of the data 

on hand and the purpose of the survey. The usual 

algorithms adopted in GBM research include 

random forests, SVM, and neural networks. For 

instance, Random Forests can work well with big 

datasets and many variables, determining which 

characteristics significantly impact prediction [17]. 

SVMs are generally used for classification tasks, 

such as discrimination between two or more 

subtypes of cancer or between various categories of 

treatment outcomes. Neural networks, intense 

learning, can model and analyse complex and high-

dimensional data, such as imaging sequences, and be 

able to pick out factors that more superficial forms 

of the model may not easily discern.  

 

Such models are usually checked as cross-validated 

or, if more confident, externally validated. Cross-

validation implies partitioning the data into training 

and testing datasets in several ways to avoid having 

the model perform best on any of the partition 

methods. External validation, however, ventures on 
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an entirely different data set that is not used in the 

model development process, making the results 

more reliable. The effectiveness of these models is 

assessed based on means like accuracy, sensitivity, 

specificity, and AUC–ROC. There are differences 

between 'good models' and 'high-performing 

models'; good models are high-performing, high-

performing models are stable and high-performing, 

and true high-performing models are stable and 

consistently accurate in different data settings for 

patient outcomes.  

 

First, using multimodal imaging and therapy 

features in machine learning models has certain 

benefits. Because these models use more data types, 

the picture of GBM they can provide will be much 

more detailed than that given by, for instance, only 

sentiment Analysis models. For example, 

neurological-affective disorders could be best 

evaluated by using MRI and PET scans alongside 

clinical data about the patient's reaction to prior 

treatment. This leads to the discovery of patients 

who may benefit from specific therapies or may be 

at higher risk for relapse, hence the possibility of 

localized intercessions [1].  

 

But, the establishment of these integrated models is 

challenging. Of all the sources of potential bias that 

may compromise the credibility of the results 

obtained from empirical research, two stand out: 

Firstly, the data are heterogeneous in terms of their 

origin and quality. Some of the observational data, 

for example, may differ depending on the used 

protocols, the equipment, and the operators, which 

introduces discrepancies that may influence the 

model performance. Further, using large and 

complex datasets involves high computational 

power and a professional approach to data analysis, 

which may only sometimes be possible in different 

research or clinical centres. Model interpretability is 

also an issue because complex models such as those 

in deep learning networks are often termed 'black 

boxes', and therefore, clinicians cannot easily 

understand how the model has made a particular 

prediction [2]. 

  

VI. CLINICAL IMPLICATIONS AND 

FUTURE DIRECTIONS 

 

Combining multimodal imaging and therapy 

features with the machine learning models will have 

giant clinical implications for managing 

Glioblastoma Multiforme (GBM). This has been 

postulated to increase the precision in prognosis, 

tailor therapy modalities, and, therefore, the quality 

of outcomes. These models integrate multiple data 

types, such as imaging, clinical measurements, and 

therapy response, to yield a complete picture of the 

tumor behavior and its interaction with the 

administered intervention, thereby enabling more 

precise treatment strategies. 

 

Among all the expectations of an integrated 

approach, one of the primary and significant areas is 

the possibility of a more accurate prognosis. 

Conventional approaches to predictive assessment 

can be based on a few clinical characteristics and do 

not consider tumor heterogeneity. This way, the 

machine learning models, based on the integrated 

multimodal data, can identify these intricate and 

hidden relationships, which allows for defining a 

more accurate prognosis of patients' outcomes, 

including indicators such as survival rates or risk of 

tumor relapse. For example, an increased 

understanding of patient-specific risk that attends 

MRI and PET scans of tumor volume and metabolic 

activity and therapeutic management can refine 

decision-making about management and follow-on 

care [24]. 

 

Moreover, introducing therapy features in these 

models increases the possibility of individualizing 

clients' treatment. The treatment in GBM is usually 

a combination of surgery, radiation, and 

chemotherapy; their efficacy, however, will depend 

on the tumor profile and the general health status of 

the patient [15]. 

 

Models that take responses to prior therapies and 

other imaging data into consideration can assist in 

determining the therapy plan that best suits the 

specific patient. This can enhance the extent to 

which specific treatment will be useful for the 

patient's problem or situation and reduce side effects 

that might be so severe as to compromise the 

patient's quality of life and or shorten the patient's 

lifespan. 

 

Another area of further development is the use of 

additional technologies and data penetration. For 

instance, combining genomics and molecular 

principles into the machine learning model could 

provide even more information about the tumor’s 

bioactivity and how it can be treated. Further, real-

time data from wearables or patient monitoring 

might give a more real-time view into the 

effectiveness of treatments and disease progress, 

which might add to the personalization. 
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CONCLUSION 

 

Thus, the proposed approach is consequent and, to 

the best of our knowledge, a novel for managing 

Glioblastoma Multiforme (GBM) with the help of 

multimodal imaging and therapy features and 

machine learning algorithms. As the models 

incorporated the data from MRI, PET, therapy, and 

other sources, they provided richer information 

about the general polyphonic nature of GBM. The 

above-enhanced synchronization enhances the 

performance of forecasts concerning the patients’ 

outcomes and the overall treatment process. 

 

These linked datasets assist in creating machine 

learning algorithms that can distinguish between 

multiple relations and dependence, which standard 

methodologies fail to see; therefore, they offer 

superior treatment. For example, through imaging 

data over the characteristics of the tumor and the 

corresponding therapeutic response, these models 

ensure the clinician provides the patient with the best 

therapy required given the nature of the cancer while 

at the same time reducing the toxic effects that come 

with the treatment. An individual patient approach 

not only meets the requirements for proper patient 

handling but also a longer survival duration and a 

better quality of life can be expected in patients with 

GBM.  

In the future, more sharpening of the introduced ML 

algorithms, in addition to the constant increase in the 

extent of use of new technologies and types of data, 

will increase the saturation of the predictive models 

and the treatment planning. The development of 

systematic approaches for data collection and 

integration of RT-monitoring data will probably 

enhance the applicability and effectiveness of these 

models in clinical practice. Once research proceeds, 

these will help increment the management of GBM, 

strengthening the hope of the patients and doctors. 
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