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Abstract- Image enhancement is critical in medical 

imaging for improving the visibility of structures, 

which is essential for accurate diagnosis and 

treatment planning. This study compares three 

enhancement techniques—Histogram Equalization 

(HE), Contrast Limited Adaptive Histogram 

Equalization (CLAHE), and Fuzzy Enhancement—

applied to the MURA X-ray image dataset. The 

performance of these techniques is evaluated using 

Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), and Shannon Entropy. 

The experimental results show that HE achieves a 

PSNR of 31.76 dB and an SSIM of 0.7130, 

indicating effective noise reduction and detail 

preservation. CLAHE, with a PSNR of 31.13 dB 

and an SSIM of 0.5645, significantly enhances local 

contrast, as reflected by the highest entropy value of 

3.6847, but alters the image structure more than the 

other methods. Results indicate that Fuzzy 

Enhancement achieves the highest SSIM score of 

0.9506, demonstrating superior perceptual 

similarity to the original images, while CLAHE 

shows the highest entropy value at 3.6847, 

suggesting enhanced detail and variability. HE 

leads in PSNR with a score of 31.76 dB, indicating 

effective noise reduction. These findings have 

practical implications for clinical practice by 

potentially improving the accuracy and reliability of 

medical diagnoses through enhanced image quality.  

 

Indexed Terms- Image Enhancement, Medical 

Imaging Histogram Equalization (HE), Contrast 

Limited Adaptive Histogram Equalization 

(CLAHE), Fuzzy Enhancement 

  

I. INTRODUCTION 

 

High-quality images are paramount in medical 

diagnostics, as they enable healthcare professionals to 

accurately identify and assess various conditions. The 

clarity and detail provided by enhanced medical 

images can significantly influence diagnostic 

outcomes, treatment decisions, and patient care. In 

particular, X-ray imaging plays a crucial role in 

detecting fractures, tumors, and other abnormalities, 

making effective image enhancement essential for 

optimal interpretation. 

 

Despite advancements in imaging technology, 

challenges remain regarding image quality. Factors 

such as low contrast, noise, and artifacts can obscure 

critical details, leading to misdiagnosis or missed 

findings. As a result, there is a growing need for 

effective image enhancement techniques that can 

improve the visual quality of medical images while 

preserving essential diagnostic information. 

Techniques like Histogram Equalization (HE), 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE), and Fuzzy Enhancement have emerged as 

potential solutions, each with distinct advantages and 

limitations. Thus, a comprehensive evaluation of 

these methods is necessary to determine their efficacy 

in enhancing medical images.  

 

A. Objectives 

This study aims to compare the effectiveness of three 

image enhancement techniques—HE, CLAHE, and 

Fuzzy Enhancement—applied to the MURA X-ray 

image dataset. The evaluation will be based on 

quantitative metrics: Peak Signal-to-Noise Ratio 

(PSNR), which assesses the quality and noise 

reduction of the enhanced images; Structural 

Similarity Index (SSIM), which measures the 

preservation of structural information; and Shannon 

Entropy, which evaluates the detail and information 

content in the images. By systematically analyzing 

these techniques, the research seeks to identify the 

most suitable approach for improving the quality of 
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X-ray images, thereby enhancing diagnostic accuracy 

and patient outcomes. 

 

The paper is organized as follows: In Section 1, the 

Introduction provides background on the importance 

of high-quality images in medical diagnostics, 

highlights challenges in medical image quality, and 

outlines the objectives of comparing the effectiveness 

of Histogram Equalization (HE), CLAHE, and Fuzzy 

enhancement techniques using PSNR, SSIM, and 

Shannon entropy as evaluation metrics. In Section 2, 

titled Related Work, reviews existing enhancement 

techniques in medical imaging and discusses prior 

studies that have compared these methods, along with 

the significance of the evaluation metrics employed. 

Section 3, Methodology, includes a description of the 

MURA X-ray dataset and the specific subset used 

(elbow images), followed by detailed explanations of 

the three enhancement techniques (HE, CLAHE, and 

Fuzzy) and the evaluation metrics. In Section 4, 

Experimental Setup, the paper outlines the 

preprocessing steps for the dataset, the application 

process for the enhancement techniques, and the 

evaluation procedure for calculating PSNR, SSIM, 

and Shannon entropy for each enhanced image. In 

Section 5, Results and Discussion, presents 

quantitative results of the enhancement techniques, 

including PSNR, SSIM, and Entropy values, along 

with visual comparisons of images before and after 

enhancement and a discussion interpreting these 

results, highlighting strengths and weaknesses. 

Finally, Section 6, Conclusion, summarizes the key 

findings, contributions to the field of medical image 

enhancement, and recommendations for future 

research. 

 

II. RELATED WORK 

 

Image enhancement is a crucial process in medical 

imaging, aimed at improving the visibility of 

structures to facilitate accurate diagnosis and 

treatment planning. This review focuses on three 

enhancement techniques: Histogram Equalization 

(HE), Contrast Limited Adaptive Histogram 

Equalization (CLAHE), and Fuzzy Enhancement, 

applied to the MURA X-ray image dataset. The 

performance of these techniques is evaluated using 

Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), and Shannon Entropy. 

Histogram Equalization is a widely used technique 

for enhancing the contrast of images. It works by 

redistributing the intensity values of the image, 

thereby improving the overall contrast. HE is 

particularly effective in noise reduction and detail 

preservation, as indicated by a PSNR of 31.76 dB and 

an SSIM of 0.7130 in the MURA dataset. However, 

it can sometimes lead to over-enhancement, causing 

loss of detail in some regions. 

 

CLAHE is an advanced version of HE that limits the 

contrast enhancement to avoid over-amplification of 

noise. It enhances local contrast and is particularly 

useful for medical images where fine details are 

crucial. In the MURA dataset, CLAHE achieved a 

PSNR of 31.13 dB and an SSIM of 0.5645, with the 

highest entropy value of 3.6847, indicating 

significant enhancement of local contrast. However, 

it can alter the image structure more than other 

methods. 

 

Fuzzy Enhancement uses fuzzy logic to enhance 

images, focusing on maintaining the structural 

integrity of the images. It demonstrated the best 

structural preservation with an SSIM of 0.9506 and a 

PSNR of 31.38 dB in the MURA dataset. Although it 

has the lowest entropy (3.0329), suggesting reduced 

noise and simplified image detail, it excels in 

maintaining the structural integrity of the images. 

 

The research work in [1] provides a comprehensive 

comparison of various image quality metrics, 

emphasizing the critical role of image quality in 

object recognition and the challenges in obtaining 

ground truth for authentic evaluation. Traditional 

metrics like MSE (Mean Square Error) and PSNR 

(Peak Signal to Noise Ratio) are discussed for their 

use in measuring absolute error, though they lack 

normalization and semantic understanding. In 

contrast, newer metrics such as SSIM (Structured 

Similarity Indexing Method) and FSIM (Feature 

Similarity Indexing Method) focus on structural and 

feature similarity, offering a more perceptual and 

saliency-based error measure. These newer metrics 

are normalized, making them more interpretable. The 

paper includes experimental results using benchmark 

images with varying noise concentrations, showing 

consistent results across all metrics. However, SSIM 

and FSIM are highlighted for their better 
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representation and semantic understanding. In 

conclusion, SSIM and FSIM are considered more 

understandable and effective for image quality 

assessment compared to MSE and PSNR due to their 

focus on perception and saliency. Overall, the paper 

offers valuable insights into the strengths and 

limitations of different image quality metrics, making 

it a useful resource for researchers and practitioners 

in the field of image processing. 

 

The authors in [2] focuses an in-depth analysis of 

various image enhancement techniques aimed at 

improving the visual quality of medical images, 

which is crucial for faster and more accurate 

diagnosis. Techniques such as histogram 

equalization, contrast-limited adaptive histogram 

equalization (CLAHE), and gamma correction have 

been specifically applied to enhance COVID-19 CT 

scans. These methods are designed to highlight 

critical features within the images, thereby 

facilitating radiologists in identifying signs of the 

disease more effectively. The study underscores the 

importance of these enhancement techniques in 

medical imaging, particularly in the context of the 

COVID-19 pandemic, where timely and accurate 

diagnosis is essential for effective treatment and 

management. 

 

The proposed framework in this paper [3] outlines a 

comprehensive method for enhancing medical images 

by addressing noise and improving clarity. The 

process begins with the addition of Gaussian noise to 

grayscale images, followed by the application of 

Wiener and Kalman filters for noise reduction and 

image enhancement. The iterative use of the Kalman 

filter significantly improves image precision and 

clarity, as demonstrated by the results after eight 

iterations. The framework also includes a three-step 

image construction process, from data gathering 

(scanning) to image formation (reconstruction) and 

finally, digital to analogue conversion. The Kalman 

filter is particularly effective in areas affected by 

signal loss or insufficient data, ensuring optimal 

estimation and clear image results. This method 

shows promise for producing high-quality medical 

images, with potential for further enhancement 

through additional iterations. 

 

The authors in [4] present a novel approach to 

enhancing MRI image contrast using a hybrid 

cetacean optimization algorithm and Sand Cat Swarm 

Optimization (COA-SCSO). The proposed method 

addresses previous challenges in parameter 

optimization and edge preservation by integrating a 

cost function with a contrast measure based on 

multiple metrics. The study emphasizes the 

importance of spatial information in enhancing 

cardiac MRI images, utilizing databases like SCMR 

consensus and AMRG Atlas. Performance evaluation 

metrics such as PSNR, MSE, NAE, and SSIM 

indicate that the COA-SCSO algorithm significantly 

outperforms existing methods, achieving high PSNR 

(98) and SSIM (0.99) values, and low NAE (-0.17) 

and MSE (0.16) values. These results suggest that the 

COA-SCSO approach holds promise for improving 

MRI image contrast, with potential benefits for 

medical diagnosis and treatment planning. Future 

research could further refine this method and validate 

its effectiveness on larger clinical datasets. 

 

The research work proposed in [5] emphasizes the 

importance of image quality in object recognition and 

evaluates various metrics used for image quality 

assessment. Traditional metrics like Mean Square 

Error (MSE) and Peak Signal to Noise Ratio (PSNR) 

are compared with newer metrics such as Structured 

Similarity Indexing Method (SSIM) and Feature 

Similarity Indexing Method (FSIM). The study 

highlights that while MSE and PSNR provide 

absolute error measurements, SSIM and FSIM offer 

more perceptual and saliency-based evaluations, 

making them more comprehensible. Through 

experiments with benchmark images and different 

noise levels, the paper demonstrates that all metrics 

yield consistent results. However, SSIM and FSIM 

are normalized, providing a more intuitive 

representation of image quality compared to MSE 

and PSNR. This comprehensive comparison 

underscores the advantages of SSIM and FSIM in 

evaluating image quality based on structural and 

feature similarities. 

 

In this experiment, we assessed the effectiveness of 

three image enhancement techniques—Histogram 

Equalization (HE), Contrast Limited Adaptive 

Histogram Equalization (CLAHE), and Fuzzy 

Enhancement—on the MURA X-ray elbow image 
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dataset. The findings indicate that each method has 

distinct strengths and weaknesses, which affect their 

suitability for use in medical imaging applications. In 

addition. the experimental results indicate that while 

HE and CLAHE are effective for enhancing image 

contrast and detail, Fuzzy Enhancement excels in 

maintaining the structural integrity of the images. 

Each technique has its strengths and weaknesses, 

making them suitable for different applications in 

medical imaging. 

 

III. METHODOLOGY 

 

In this approach, we apply image enhancement 

techniques to the MURA X-ray elbow image dataset 

and evaluate the effectiveness of each method to 

support our research on a Bone Fracture 

Classification System. Figure 1 illustrates the 

architecture of MURA X-ray Elbow image 

enhancement process. 

 

The high-level architecture of the image 

enhancement process consists of several key modules 

that work together to improve image quality. The 

Data Input Module is responsible for loading and 

preprocessing images from a specified dataset folder. 

It includes an Image Loader that reads images in 

formats such as JPG and PNG, extracting labels from 

filenames, and organizing these images and labels 

into a structured format suitable for further 

processing. 

 

Next, the Image Preprocessing Module prepares the 

images for enhancement by resizing and augmenting 

them. This module features a Resizer that ensures 

uniformity in image dimensions, typically setting the 

maximum dimension to 512 pixels, and an 

Augmenter that applies various techniques, including 

flips, crops, and brightness adjustments, to enhance 

model robustness. 

 

The core of the process is the Image Enhancement 

Module, which applies different techniques to 

improve image quality. This includes Histogram 

Equalization (HE) for enhancing contrast by 

equalizing the histogram of the luminance channel, 

CLAHE, which employs adaptive histogram 

equalization with contrast limitation to enhance local 

contrast while minimizing noise, and Fuzzy 

Enhancement, which utilizes fuzzy transformation 

techniques to enhance details in grayscale images. 

 

Following enhancement, the Evaluation Module 

assesses the quality of both original and enhanced 

images using quantitative metrics. It features a PSNR 

Calculator to compute the Peak Signal-to-Noise 

Ratio, an SSIM Calculator to measure structural 

similarity between images, and an Entropy Calculator 

to evaluate the amount of information, reflecting 

detail richness. 

 

Finally, the Visualization Module is designed to 

display and compare both original and enhanced 

images, along with the evaluation metrics. This 

module includes an Image Viewer for presenting 

images in a user-friendly interface and a Metrics 

Visualizer that generates bar charts for PSNR, SSIM, 

and Entropy, facilitating a visual comparison of the 

different enhancement techniques applied. 

 

 
Figure 1: Architecture Diagram for Image 

Enhancement Process 
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This architecture encompasses the entire process 

from data loading and preprocessing through 

enhancement, evaluation, and visualization. Each 

module works cohesively to ensure that images are 

effectively enhanced and their quality is 

quantitatively assessed, ultimately supporting 

advanced applications in medical imaging, such as 

bone fracture classification systems. 

 

A. Image Preprocessing 

In the context of preprocessing MURA X-ray elbow 

images, resizing plays a pivotal role by ensuring 

uniformity in dimensions, which is critical for 

feeding the images into deep learning models. 

Consistent input sizes streamline the training process 

and simplify architecture design. Maintaining the 

aspect ratio during resizing is crucial to preserve 

anatomical details within the X-ray images; 

techniques such as padding can be employed to avoid 

distortion, ensuring that important features remain 

intact. Resizing can also influence the visibility of 

critical diagnostic features, so careful selection of the 

resizing dimensions is necessary to retain diagnostic 

quality. Additionally, resizing reduces the overall 

computational burden, especially when dealing with 

large datasets typical in medical imaging, leading to 

faster training and inference times that facilitate 

quicker iterations and deployment. Resized images 

can be augmented, enhancing the training dataset to 

improve model robustness, which is particularly 

beneficial in medical imaging due to variability in 

data. The choice of resizing algorithm, such as 

bilinear or bicubic, can affect the quality of the 

resized images, making it essential to select an 

appropriate method that preserves the integrity of the 

original X-ray features. Finally, evaluating the impact 

of resizing on image quality is vital, with metrics like 

PSNR (Peak Signal-to-Noise Ratio) and SSIM 

(Structural Similarity Index) helping to determine 

whether the resizing process maintains the necessary 

quality for diagnostic purposes. Balancing these 

factors is essential for achieving optimal model 

performance in X-ray analysis. 

 

B. Overview of the MURA X-ray dataset 

The MURA X-ray elbow image dataset [6] consists 

of 4,931 bone X-ray images labeled as normal or 

abnormal.  

 

Table 1: MURA X-ray Elbow Dataset Description 

Attribute Description 

Dataset 

Name 

MURA X-ray Elbow Image 

Dataset 

Total Images 4,931 

Class Labels Normal, Abnormal 

Image Type Bone X-ray images 

Training Data Includes image paths, labels, 

category, patient ID, and label 

index 

Validation 

Data 

Includes image paths, labels, 

category, patient ID, and label 

index 

 

It is designed for medical image analysis and 

includes training and validation sets with structured 

information such as image paths, labels, and patient 

IDs. The dataset aims to evaluate image enhancement 

techniques like Histogram Equalization, CLAHE, and 

Fuzzy enhancement using metrics such as PSNR, 

SSIM, and Shannon entropy. Table 1 shows 

summarizing the description of the MURA X-ray 

elbow image dataset. 

 

In the context of preprocessing MURA X-ray elbow 

images, resizing plays a pivotal role by ensuring 

uniformity in dimensions, which is critical for 

feeding the images into deep learning models. 

Consistent input sizes streamline the training process 

and simplify architecture design. Maintaining the 

aspect ratio during resizing is crucial to preserve 

anatomical details within the X-ray images; 

techniques such as padding can be employed to avoid 

distortion, ensuring that important features remain 

intact.  

 

Resizing can also influence the visibility of critical 

diagnostic features, so careful selection of the 

resizing dimensions is necessary to retain diagnostic 

quality. Additionally, resizing reduces the overall 

computational burden, especially when dealing with 

large datasets typical in medical imaging, leading to 

faster training and inference times that facilitate 

quicker iterations and deployment. Resized images 

can be augmented, enhancing the training dataset to 

improve model robustness, which is particularly 

beneficial in medical imaging due to variability in 

data. The choice of resizing algorithm, such as 
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bilinear or bicubic, can affect the quality of the 

resized images, making it essential to select an 

appropriate method that preserves the integrity of the 

original X-ray features.  

 

Finally, evaluating the impact of resizing on image 

quality is vital, with metrics like PSNR (Peak Signal-

to-Noise Ratio) and SSIM (Structural Similarity 

Index) helping to determine whether the resizing 

process maintains the necessary quality for diagnostic 

purposes. Balancing these factors is essential for 

achieving optimal model performance in X-ray 

analysis. 

 

C. Image Enhancement Techniques 

There are numbers of software available which can 

mimic the process involved in the research work and 

can produce the possible result. One of such type of 

software is MATLAB. Can readily find Miles related 

to the research work on internet or in some cases 

these can require few modifications. Once these 

Miles are uploaded in software, can get the simulated 

results of paper and it easier the process of paper 

writing. As by adopting the above practices all major 

constructs of a research paper can be written and 

together compiled to form complete research ready 

for Peer review. 

 

i) Histogram Equalization (HE) 

Histogram Equalization (HE) is a widely used image 

enhancement technique that improves the contrast of 

an image by redistributing its intensity values [8]. 

The process involves calculating the histogram of 

pixel intensities, which indicates how often each 

intensity level occurs. By applying a transformation 

function based on the cumulative distribution 

function of the histogram, HE spreads out the 

intensity values across the available range, enhancing 

areas of low contrast [8]. In medical imaging, HE is 

particularly useful for revealing details in X-ray 

images, where subtle variations in tissue density may 

be crucial for diagnosis. However, while HE 

effectively enhances overall contrast, it may also 

amplify noise and reduce local detail in homogeneous 

regions. 

 

 

 

ii) Contrast Limited Adaptive Histogram 

Equalization (CLAHE) 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) is an advanced version of HE designed to 

address some of its limitations. CLAHE divides the 

image into smaller, non-overlapping regions or tiles 

and applies histogram equalization to each tile 

individually [9]. This local approach enhances 

contrast while limiting amplification of noise in 

relatively uniform areas. A crucial feature of CLAHE 

is its ability to clip the histogram at a predefined 

limit, preventing over-enhancement and preserving 

important image details. In medical imaging, CLAHE 

is particularly beneficial for X-ray and MRI images, 

where it enhances localized features without 

compromising the overall structure, leading to 

improved diagnostic capabilities. 

 

iii) Fuzzy Enhancement 

Fuzzy Enhancement utilizes principles from fuzzy set 

theory to enhance images by mapping pixel intensity 

values into fuzzy sets [10]. This technique evaluates 

the degree of membership of each pixel in different 

fuzzy sets, allowing for flexible manipulation of 

image features. Fuzzy Enhancement adjusts the 

intensity values based on a fuzzy logic framework, 

which can enhance contrast while effectively 

suppressing noise. This method is advantageous in 

medical imaging as it emphasizes important 

structures while maintaining a balance between 

enhancement and noise reduction. By preserving 

critical details and improving overall image quality, 

Fuzzy Enhancement is particularly useful for 

complex images like X-rays, where subtle features 

are essential for accurate diagnosis. 

 

D. Image Quality Assessment Methods  

There are numerous image quality assessment 

techniques used to evaluate image quality, including 

Mean Squared Error (MSE), Universal Image Quality 

Index (UIQI), Peak Signal-to-Noise Ratio (PSNR), 

Structured Similarity Index Method (SSIM), Human 

Vision System (HVS), and Feature Similarity Index 

Method (FSIM). In this paper, we focus on SSIM, 

PSNR, and Shannon Entropy to evaluate the quality 

of images enhanced by various techniques. The 

optimal enhancement technique identified will be 

utilized in our Bone Fracture Classification System. 
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i) Peak Signal-to-Noise Ratio (PSNR) 

PSNR measures the ratio between the maximum 

possible power of a signal (in this case, the maximum 

pixel value, MAXI) and the power of the noise 

(represented by MSE)[5]. The formula you provided 

for PSNR is: 

PSNR=20⋅log 10 ( ) = 10⋅log 10  ( )         eq(2) 

ii) Structural Similarity Index (SSIM) 

The Structural Similarity Index Method (SSIM) is a 

perception-based model designed to evaluate image 

quality by focusing on structural information. This 

method views image degradation as a change in the 

perception of structural content. It incorporates 

essential perceptual factors, such as luminance 

masking and contrast masking [5]. 

 

• Structural Information: SSIM emphasizes the 

relationships between strongly interdependent 

pixels, or spatially close pixels, which carry 

significant information about visual objects 

within the image. 

• Luminance Masking: This concept refers to the 

phenomenon where distortions are less noticeable 

in the presence of image edges. 

• Contrast Masking: Similarly, distortions become 

less perceptible within textured areas of an image. 

 

SSIM estimates the perceived quality of images and 

videos by measuring the similarity between the 

original and the processed images. 

 

Advanced Variants of SSIM are: 

1. Multi-Scale Structural Similarity Index Method 

(MS-SSIM): This enhanced version evaluates 

structural similarities at multiple scales and 

resolutions. It considers changes in luminance, 

contrast, and structure, allowing for a more 

nuanced comparison. MS-SSIM often 

outperforms traditional SSIM in various 

subjective image and video databases. 

2. Three-Component SSIM (3-SSIM): Proposed by 

Ran and Farvardin, this model recognizes that the 

human visual system perceives differences more 

acutely in textured regions than in smooth areas. 

The 3-SSIM decomposes an image into three key 

components: edges, textures, and smooth regions. 

The final metric is calculated as a weighted 

average of the structural similarities for these 

categories, with weights of 0.5 for edges, 0.25 for 

textures, and 0.25 for smooth regions. This 

weighting reflects the dominant role of edge 

information in the perception of image quality, 

suggesting that emphasizing edge detection can 

lead to results more aligned with subjective 

ratings. 

iii) Shannon Entropy 

The entropy measure used in the provided code is 

Shannon entropy, which is commonly used in image 

processing to quantify the amount of information or 

uncertainty in an image histogram [7]. The Shannon 

entropy H(X) of a discrete random variable X with 

probability mass function P(X) is calculated using the 

formula: 

H(X) = -        -----        eq (3) 

 

Where: 

• n is the number of bins (256 in this case for 

grayscale images). 

• xi represents the intensity levels of the image. 

• P(xi) is the probability of intensity xi occurring in 

the image histogram. 

 

IV. EXPERIMENTAL SETUP 

 

This research work utilizes the MURA X-ray dataset, 

specifically focusing on elbow images labeled as 

normal or abnormal. The dataset comprises a total of 

4931 images, which are divided into training and 

validation sets. Each image is carefully selected to 

represent various conditions, ensuring a 

comprehensive evaluation of the enhancement 

techniques. 

 

A.  MURA Image Preprocessing 

To prepare the MURA dataset for enhancement, the 

following steps are undertaken: 

1. Image Loading: Images are systematically loaded 

from the designated directory containing the 

MURA X-ray dataset. Each image is verified for 

format consistency (e.g., JPEG or PNG) to ensure 

compatibility with processing techniques. 

2. Resizing: All images are resized to a standard 

dimension, typically 256x256 pixels, to maintain 

uniformity across the dataset. This standardization 

is crucial for subsequent processing and analysis. 
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3. Normalization: The pixel intensity values of the 

images are normalized to a range of [0, 1]. This 

step enhances the effectiveness of the 

enhancement techniques by ensuring that 

intensity values are standardized, facilitating 

better contrast enhancement and noise reduction. 

4. Data Splitting: The dataset is divided into training 

and validation sets, ensuring a representative 

distribution of normal and abnormal images. This 

division allows for comprehensive testing of the 

enhancement techniques. 

 

B. MURA Elbow Image Enhancement Process 

The enhancement techniques—Histogram 

Equalization (HE), Contrast Limited Adaptive 

Histogram Equalization (CLAHE), and Fuzzy 

Enhancement—are applied to the preprocessed 

images as follows: 

1. Histogram Equalization (HE): HE is applied 

globally to enhance the overall contrast of each 

image by redistributing the intensity values, thus 

improving visibility of features. 

2. Contrast Limited Adaptive Histogram 

Equalization (CLAHE): CLAHE is implemented 

to enhance local contrast. The image is divided 

into non-overlapping tiles, and HE is applied to 

each tile. A clipping limit is set (e.g., 2%) to 

prevent over-amplification of noise in uniform 

regions. 

3. Fuzzy Enhancement: This technique utilizes 

fuzzy set theory to enhance the images. Each 

pixel intensity is mapped into fuzzy sets, allowing 

for nuanced adjustments that enhance important 

features while suppressing noise. 

 

This figure illustrated in Figure 2 presents a 

comparison between the original image and the 

enhanced images obtained using three different 

techniques: Histogram Equalization (HE), Contrast 

Limited Adaptive Histogram Equalization (CLAHE), 

and Fuzzy Enhancement. The original image is 

displayed on the left, while the enhanced images 

using each technique are shown side by side, 

illustrating the improvements in contrast and 

visibility of features. 

 

  

  

Figure 2: Original Image and Enhanced Images 

 

C. Image Quality Evaluation 

The effectiveness of each enhancement technique is 

evaluated using the following metrics: 

1. Peak Signal-to-Noise Ratio (PSNR): PSNR is 

calculated to measure the quality of the enhanced 

images relative to the original images. A higher 

PSNR indicates better noise reduction and 

preservation of detail. 

2. Structural Similarity Index (SSIM): SSIM is 

computed to assess the perceptual similarity 

between the original and enhanced images. This 

metric focuses on structural information, with 

values closer to 1 indicating high similarity. 

3. Shannon Entropy: Entropy is calculated to 

evaluate the amount of information content in 

each enhanced image. Higher entropy values 

suggest greater detail and variation within the 

image. 

 

The evaluation procedure involves applying these 

metrics to each enhanced image, compiling the 

results, and conducting a comparative analysis to 

determine the most effective enhancement technique 

for medical imaging applications. 

 

V. RESULTS AND DISCUSSION 

 

The results of applying Histogram Equalization (HE), 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE), and Fuzzy Enhancement techniques to the 

MURA X-ray elbow image dataset provide valuable 
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insights into the effectiveness of these enhancement 

methods for medical imaging. 

 

A. Quantitative Results 

The quantitative results of the image enhancement 

techniques reveal notable differences in performance 

metrics. 

1. PSNR (dB): 

• Histogram Equalization: 31.76 dB (highest) - 

Indicates the best noise reduction with good 

image quality. 

• Fuzzy Enhancement: 31.38 dB - Slightly lower 

but still signifies a high-quality image. 

• CLAHE: 31.13 dB (lowest) - While enhancing 

local contrast, it introduces more noise. 

 

Histogram Equalization provides the best overall 

image quality in terms of noise management, 

followed closely by Fuzzy Enhancement. 

 
Figure 3: PNSR Scores of Enhancement Methods 

 

Figure 3 illustrates the Peak Signal-to-Noise Ratio 

(PSNR) scores achieved by the various image 

enhancement techniques. Histogram Equalization 

(HE) exhibits the highest PSNR at 31.76 dB, 

followed by Fuzzy Enhancement at 31.38 dB and 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) at 31.13 dB. The comparison highlights the 

relative effectiveness of each method in terms of 

noise reduction and overall image quality. 

 

2. SSIM (Structural Similarity Index): 

• Fuzzy Enhancement: 0.9506 (highest) - Indicates 

excellent preservation of structural details and 

perceptual quality. 

• Histogram Equalization: 0.7130 - Moderate 

structural similarity, suggesting some detail loss. 

• CLAHE: 0.5645 (lowest) - Significant alteration 

of structural features, implying potential loss of 

important information. 

 

Fuzzy Enhancement is superior in maintaining the 

image’s structural integrity, while CLAHE may 

compromise detail preservation. 

 
Figure 4: SSIM Scores of Enhancement Methods 

 

This figure displays the Structural Similarity Index 

(SSIM) scores obtained from the application of 

various image enhancement techniques. Fuzzy 

Enhancement achieves the highest SSIM score of 

0.9506, indicating a strong perceptual similarity to 

the original image. Histogram Equalization follows 

with a score of 0.7130, while Contrast Limited 

Adaptive Histogram Equalization (CLAHE) records 

the lowest SSIM at 0.5645. These results underscore 

the effectiveness of Fuzzy Enhancement in 

preserving structural information during the 

enhancement process. 

 

3. Shannon Entropy: 

• CLAHE: 3.6847 (highest) - Reflects the highest 

information content, suggesting it reveals subtle 

features effectively. 

• Fuzzy Enhancement: 3.0329 - Lower than 

CLAHE but still represents an improvement over 

the original. 

• Histogram Equalization: 3.2717 (lowest) - 

Indicates a decrease in information content, which 

may result in less detailed images. 

 

CLAHE excels in enhancing the information richness 

of the images, making it suitable for detailed feature 

extraction. 
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Figure 5: Entropy Measures of Enhancement 

Methods 

 

This figure presents the Shannon Entropy values for 

the different image enhancement techniques applied 

to the dataset. The original image has an entropy 

value of 3.3024, serving as a baseline for comparison. 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) shows the highest entropy at 3.6847, 

suggesting that it effectively enhances the detail and 

variability of the image. In contrast, Histogram 

Equalization (HE) and Fuzzy Enhancement yield 

lower entropy values of 3.2717 and 3.0329, 

respectively. These results highlight the varying 

degrees of information content achieved through each 

enhancement method. 

 

B.  Qualitative Analysis 

1. Histogram Equalization: 

• Qualitative Insight: This method enhances the 

overall contrast of the images effectively, and 

making it easier to identify key anatomical 

structures. However, while it boosts visibility, it 

may lead to noise amplification, particularly in 

uniform regions, which can be detrimental in 

medical imaging. 

2. Fuzzy Enhancement: 

• Qualitative Insight: The use of fuzzy logic 

provides a nuanced approach to contrast 

enhancement, preserving critical structures and 

details. The high SSIM suggests that the enhanced 

images retain their clinical significance and 

integrity, making this technique highly suitable 

for medical diagnostics. It is found that Fuzzy 

Enhancement provided the most visually pleasing 

results, with clear delineation of structures and 

minimal noise amplification. 

3. CLAHE: 

• Qualitative Insight: Although CLAHE increases 

information content and local contrast, its lower 

SSIM indicates that it can alter the original image 

structure more significantly. This method may be 

ideal for applications requiring the highlighting of 

subtle variations but may risk losing essential 

features. 

 

Fuzzy Enhancement combines noise management 

and structural preservation effectively, making it the 

most suitable method for enhancing MURA X-ray 

elbow images. CLAHE excels in information 

enhancement but at the risk of structural integrity. 

Histogram Equalization is effective for overall image 

quality but might not be the best choice for detailed 

feature preservation. These qualitative insights 

underscore the practical utility of each enhancement 

technique in clinical settings, and can significantly 

improve the quality and diagnostic value of medical 

X-ray images. 

 

C. Discussion 

The results of applying Histogram Equalization (HE), 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE), and Fuzzy Enhancement techniques to the 

MURA X-ray elbow image dataset provide valuable 

insights into the effectiveness of these enhancement 

methods for medical imaging. 

 

The PSNR values indicate that Histogram 

Equalization achieved the highest score (31.76 dB), 

demonstrating its effectiveness in reducing noise and 

enhancing image quality. This is particularly 

important in medical imaging, where clear visibility 

of structures is crucial. 

 

Fuzzy Enhancement closely followed with a PSNR of 

31.38 dB, suggesting it also provides high-quality 

images while preserving essential details. CLAHE, 

with the lowest PSNR (31.13 dB), shows that while it 

enhances local contrast, it may inadvertently 

introduce noise, which can be problematic in clinical 

assessments. The SSIM values reveal that Fuzzy 

Enhancement excels in maintaining structural 

integrity, achieving the highest score (0.9506). This 

is significant in medical contexts, where accurate 

representation of anatomical structures is critical for 

diagnosis. 

 

Histogram Equalization (0.7130) shows moderate 

performance in preserving structure, indicating some 
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loss of detail compared to the original image. 

Conversely, CLAHE (0.5645) demonstrates a 

substantial alteration of structural features, 

suggesting that it may not be the best choice for 

applications where structural fidelity is paramount. 

The Shannon entropy results highlight CLAHE's 

strength in enhancing information content (3.6847), 

suggesting it effectively reveals subtle features within 

the images. This attribute can be advantageous in 

detecting fine abnormalities or variations in bone 

structures. However, the lower entropy scores for 

Fuzzy Enhancement (3.0329) and Histogram 

Equalization (3.2717) indicate a reduction in 

information content, particularly for HE, which may 

result in a loss of important diagnostic details. 

 

Fuzzy Enhancement outperformed the others in 

preserving structural integrity while providing good 

contrast enhancement. Histogram Equalization, while 

effective in noise reduction, did not perform as well 

in maintaining structural details and information 

content. CLAHE provided the highest information 

content but at the cost of structural similarity, 

suggesting its suitability for certain applications 

where detail extraction is crucial. 

 

A. Implications for Medical Imaging 

The findings suggest that while all three enhancement 

techniques have their strengths, the choice of method 

should be guided by the specific requirements of the 

imaging task: 

• Fuzzy Enhancement is particularly recommended 

for applications prioritizing structural 

preservation, such as detecting fractures or other 

anomalies in bone images. 

• CLAHE is suitable when the goal is to enhance 

detail visibility, especially in areas where subtle 

differences are clinically relevant. However, 

caution should be exercised regarding potential 

loss of critical structural information. 

• Histogram Equalization may be appropriate for 

general image enhancement where noise 

reduction is a priority, but care must be taken to 

ensure that essential details are not compromised. 

 

In summary, the results of this analysis demonstrate 

the varying strengths of enhancement techniques 

when applied to medical imaging. A careful selection 

based on the specific diagnostic needs can lead to 

improved image quality, aiding clinicians in making 

accurate assessments and decisions. Future work may 

involve exploring hybrid approaches or fine-tuning 

parameters for these techniques to optimize 

performance further in clinical applications. 

 

CONCLUSION 

 

In this study, we evaluated the effectiveness of three 

image enhancement techniques—Histogram 

Equalization (HE), Contrast Limited Adaptive 

Histogram Equalization (CLAHE), and Fuzzy 

Enhancement—on the MURA X-ray elbow image 

dataset. Our results demonstrate that each method has 

distinct advantages and limitations, impacting their 

suitability for medical imaging applications. 

 

Fuzzy Enhancement emerged as the most balanced 

approach, providing excellent preservation of 

structural integrity while maintaining high image 

quality. This technique is particularly valuable for 

clinical assessments where accurate representation of 

anatomical features is critical. CLAHE, while 

effective at enhancing information content and local 

contrast, poses a risk of altering structural details, 

which may be detrimental in diagnostic contexts. 

Histogram Equalization, while offering superior 

noise reduction, may compromise essential details, 

emphasizing the need for careful consideration in its 

application. 

 

Overall, the choice of enhancement technique should 

be guided by the specific requirements of the imaging 

task, balancing between clarity and structural fidelity. 

Future research may explore hybrid models or 

optimized parameter settings to further enhance 

image quality, ultimately supporting improved 

diagnostic outcomes in medical imaging. 
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