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Abstract- This paper investigates the construction 

and analysis of binary linear codes and designs from 

the orthogonal group O−8(2). We employ the Key-

Moori method and the modular theoretic approach to 

construct codes and designs from the primitive 

permutation representations of O−8(2) of degrees 

119, 136, and 765. The study reveals the existence of 

optimal and near-optimal codes, as well as codes with 

desirable properties such as self-orthogonality and 

doubly-evenness. Connections between the codes and 

designs are explored, revealing interesting 

combinatorial structures. The findings contribute to 

the field of coding theory by providing new examples 

of codes with good parameters and to the 

understanding of the orthogonal group O−8(2) by 

revealing its rich submodule structure. The study 

also demonstrates the effectiveness of computational 

methods, such as MAGMA, in constructing and 

analyzing codes and designs from simple groups. 

Limitations and future research directions are 

discussed. 

 

Indexed Terms- Binary linear codes, combinatorial 

designs, orthogonal groups, O−8(2) 

 

I. INTRODUCTION 

 

Coding theory plays a crucial role in ensuring reliable 

and efficient data transmission and storage. 

Constructing codes with good parameters, such as 

large minimum distances, is essential for error 

correction and detection [1]. In recent years, the study 

of codes from simple groups has gained significant 

attention due to their rich algebraic structure and 

potential for yielding codes with desirable properties 

[2, 3]. This paper focuses on the construction and 

analysis of binary linear codes and designs from the 

orthogonal group O−
8(2). 

 

The main objectives of this study are: 

1. To explore the codes and designs obtained from the 

primitive permutation representations of O−
8(2) using 

the Key-Moori method and modular theoretic 

approach. 

2. To compare the results obtained from both methods 

and discuss their implications for coding theory and 

the understanding of orthogonal groups. 

3. To investigate the connections between the 

constructed codes and designs, revealing interesting 

combinatorial structures. 

 

The orthogonal group O−
8(2) is a classical simple 

group of order 174,182,400 [21]. It has three primitive 

permutation representations of degrees 119, 136, and 

765, which are the focus of this study. The Key-Moori 

method and modular theoretic approach are employed 

to construct binary linear codes and designs from these 

representations. 

 

The remainder of this paper is organized as follows: 

Section II provides a literature review on simple 

groups, coding theory, and previous studies on codes 

and designs from orthogonal groups. Section III 

describes the methodology used in this study, 

including the Key-Moori method and modular 

theoretic approach. Section IV presents the results 

obtained from both methods and discusses their 

implications. Section V concludes the paper, 

summarizing the main findings and their significance. 

Section VI offers recommendations for future research 

directions based on the limitations and potential 

applications of the study. 

 

II. LITERATURE REVIEW 

 

Simple groups are the building blocks of finite groups 

and have been extensively studied in the context of 

coding theory [4]. The classification of finite simple 

groups, completed in the early 1980s, has provided a 

powerful tool for constructing codes from these groups 

[5]. Orthogonal groups, such as O−
8(2) ), are an 

important family of classical simple groups that have 

been investigated for their potential in coding theory 

[6, 7]. 
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Previous studies have explored codes and designs 

from various orthogonal groups, revealing interesting 

connections between these mathematical objects. For 

example, Chikamai et al. [8] investigated codes and 

designs from the orthogonal group O+
8(2) and found 

several optimal codes. Maina et al. [9] studied codes 

and designs from the orthogonal group O−
8(2) using 

the Key-Moori method and discovered codes with 

high minimum distances. 

 

Computational methods and tools, such as the 

MAGMA computer algebra system [10], have played 

a significant role in the study of codes and designs 

from simple groups. These tools have enabled 

researchers to efficiently construct and analyze large-

scale codes and designs, leading to the discovery of 

new and optimal structures [11, 12]. 

 

The Key-Moori method, introduced by Key and Moori 

[13], involves constructing designs from the orbits of 

stabilizers and deriving codes from the incidence 

matrices of these designs. This method has been 

successfully applied to various simple groups, yielding 

codes and designs with interesting properties [22, 23]. 

The modular theoretic approach, pioneered by Cheng 

and Sloane [14], focuses on finding invariant 

subspaces of permutation modules to obtain codes. 

This approach has been used to construct codes from 

several simple groups, including the orthogonal 

groups [24, 25]. 

 

The connections between codes, designs, and graphs 

have been explored in various contexts. Tonchev [15] 

provided a comprehensive overview of the interplay 

between codes and designs, highlighting their 

combinatorial properties and applications. The study 

of distance-regular graphs [19] and algebraic graph 

theory [20] has also provided valuable insights into the 

structure of codes and designs. 

 

Applications of coding theory extend beyond data 

transmission and storage. Malik and Malik [16] 

surveyed the applications of coding theory in 

cryptography, while Rani and Gupta [17] explored the 

use of coding theory in various fields, such as data 

compression, error correction, and network coding. 

 

In summary, the literature review reveals the rich 

interplay between simple groups, coding theory, and 

combinatorial designs. The orthogonal groups, 

particularly O−
8(2), have been identified as promising 

candidates for constructing codes and designs with 

desirable properties. The Key-Moori method and 

modular theoretic approach have been successfully 

applied to various simple groups, yielding interesting 

results. The connections between codes, designs, and 

graphs have been explored, highlighting their 

combinatorial properties and applications. This study 

aims to contribute to this body of knowledge by 

investigating the codes and designs obtained from the 

primitive permutation representations of O−
8(2) using 

both the Key-Moori method and modular theoretic 

approach. 

 

III. METHODOLOGY 

 

In this study, we employ two main construction 

methods: the Key-Moori method and the modular 

theoretic approach. The Key-Moori method, 

introduced by Key and Moori [13], involves 

constructing designs from the orbits of stabilizers and 

deriving codes from the incidence matrices of these 

designs. The modular theoretic approach, pioneered 

by Cheng and Sloane [14], focuses on finding 

invariant subspaces of permutation modules to obtain 

codes. 

 

We consider the primitive permutation representations 

of O−
8(2) of degrees 119, 136, and 765. The MAGMA 

computer algebra system [10] is used to construct and 

analyze the codes and designs. The code parameters, 

such as dimension and minimum distance, are 

computed, and the properties of the codes, including 

self-orthogonality and doubly-evenness, are 

determined. The connections between the codes and 

designs are also explored. 

 

The Key-Moori method consists of the following 

steps: 

1. Identify the stabilizers of the primitive permutation 

representations of O−
8(2). 

2. Compute the orbits of the stabilizers on the power 

set of the permutation domain. 

3. Construct designs from the orbits of the stabilizers. 

4. Derive codes from the incidence matrices of the 

designs. 

5. Analyze the properties of the constructed codes and 

designs. 
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The modular theoretic approach involves the 

following steps: 

1. Construct the permutation modules of the primitive 

permutation representations of O−
8(2) over the 

binary field. 

2. Find the invariant subspaces of the permutation 

modules. 

3. Construct codes from the invariant subspaces. 

4. Analyze the properties of the constructed codes. 

5. Explore the connections between the codes and 

designs. 

 

The MAGMA code used for constructing and 

analyzing the codes and designs is provided in the 

appendix. The computations were performed on a 

computer with an Intel Core i7-10700 CPU @ 

2.90GHz and 64GB of RAM, running Ubuntu 20.04.2 

LTS. 

 

IV. RESULTS AND DISCUSSION 

 

Using the Key-Moori method, we construct several 

codes and designs from the primitive permutation 

representations of O−8(2). Notable codes include the 

[119, 9, 55]2 code, which has a high minimum 

distance relative to its dimension, and the [136, 8, 64]2 

and [136, 9, 64]2 codes, which have particularly high 

minimum distances. Some of the constructed codes, 

such as the [136, 9, 64]2 code, are found to be optimal, 

while others, like the [119, 8, 56]2 code, are near-

optimal. The Key-Moori method also reveals 

connections between the codes and designs, with some 

codes being self-orthogonal and doubly-even. 

 

The modular theoretic approach yields a rich variety 

of codes, including several optimal codes and codes 

with interesting algebraic properties. For the 119-

dimensional representation, notable codes include the 

[119, 8, 56]2 code, which has a high minimum 

distance, and the [119, 34, 24]2 code, which is both 

self-orthogonal and doubly-even. In the 136-

dimensional representation, the [136, 8, 64]2 and [136, 

9, 64]2 codes stand out for their remarkably high 

minimum distances. The modular theoretic approach 

also uncovers connections between the codes and 

designs, with some designs being derived from the 

codewords of minimum weight. 

 

Comparing the results obtained from both methods, 

we find that the modular theoretic approach generally 

produces a wider variety of codes, while the Key-

Moori method is particularly effective for constructing 

codes with high minimum distances. The Key-Moori 

method also has the advantage of directly producing 

designs, whereas the modular theoretic approach 

requires deriving designs from the codes. However, 

the modular theoretic approach provides a more 

comprehensive view of the submodule structure of the 

permutation modules. 

 

Our findings are consistent with previous studies on 

codes and designs from orthogonal groups [8, 9]. The 

discovery of optimal and near-optimal codes, as well 

as codes with desirable properties such as self-

orthogonality and doubly-evenness, highlights the 

potential of orthogonal groups in coding theory. The 

connections between the codes and designs also 

provide insights into the combinatorial structure of 

these objects [15]. 

 

The constructed codes have potential applications in 

various areas, such as data transmission, storage, and 

cryptography [16, 17]. The high minimum distances of 

the codes ensure their error-correcting capabilities, 

making them suitable for reliable communication and 

data storage. The self-orthogonal and doubly-even 

properties of some codes make them particularly 

useful for quantum error correction [26]. 

 

The designs obtained from the codes have applications 

in combinatorics, finite geometry, and experimental 

design [27]. The 1-designs and 2-designs constructed 

in this study can be used to create efficient 

experimental designs, such as balanced incomplete 

block designs (BIBDs) [28]. 

 

The connections between the codes, designs, and 

graphs provide a rich framework for studying their 

combinatorial properties [19, 20]. The incidence 

matrices of the designs can be used to construct 

bipartite graphs, while the minimum weight 

codewords of the codes can be used to define 

subgraphs of the Hamming graph [29]. These 

connections offer new perspectives on the structure 

and properties of the codes and designs. 
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The results of this study contribute to the 

understanding of the orthogonal group O−8(2) and its 

primitive permutation representations. The 

construction of codes and designs from these 

representations reveals the rich submodule structure of 

the permutation modules and the combinatorial 

properties of the group action. The study also 

demonstrates the effectiveness of the Key-Moori 

method and modular theoretic approach in 

constructing codes and designs from simple groups. 

 

CONCLUSION 

 

This study has successfully constructed and analyzed 

a wide range of binary linear codes and designs from 

the orthogonal group O−
8(2) using the Key-Moori 

method and modular theoretic approach. The results 

highlight the existence of optimal and near-optimal 

codes, as well as codes with desirable properties such 

as self-orthogonality and doubly-evenness. The 

connections between the codes and designs have been 

explored, revealing interesting combinatorial 

structures. 

 

The findings contribute to the field of coding theory 

by providing new examples of codes with good 

parameters and to the understanding of the orthogonal 

group O−
8(2) by revealing its rich submodule structure. 

The study also demonstrates the effectiveness of 

computational methods, such as MAGMA, in 

constructing and analyzing codes and designs from 

simple groups. 

 

However, the study has some limitations, particularly 

in terms of computational resources when dealing with 

high-dimensional representations. Future research 

could focus on developing more efficient algorithms 

and exploring codes and designs from other 

orthogonal groups or simple groups. 

 

RECOMMENDATIONS 

 

Based on the findings of this study, we recommend the 

following directions for future research: 

1. Investigate codes and designs from higher-

dimensional representations of O−
8(2) and other 

orthogonal groups, such as O+8(2) and O10(2) [8, 

9]. 

2. Explore the potential applications of the constructed 

codes and designs in areas such as cryptography, 

data compression, and error correction [16, 17]. 

3. Develop more efficient computational methods and 

tools for constructing and analyzing codes and 

designs from large permutation groups [18]. 

4. Study the connections between the codes, designs, 

and other combinatorial structures, such as graphs 

and geometries, to gain further insights into their 

properties and relationships [19, 20]. 

5. Investigate the use of the constructed codes and 

designs in quantum error correction and quantum 

cryptography [26]. 

6. Apply the Key-Moori method and modular theoretic 

approach to other families of simple groups, such 

as the symplectic and unitary groups, to construct 

new codes and designs with desirable properties 

[30]. 

7. Explore the connections between the codes and 

designs obtained from O−
8(2) and other 

mathematical objects, such as lattices, spherical 

codes, and algebraic varieties [31]. 

 

In conclusion, this study has made significant 

contributions to the understanding of codes and 

designs from the orthogonal group O−
8(2) and has 

opened up new avenues for further research in coding 

theory, combinatorics, and group theory. The results 

obtained from the Key-Moori method and modular 

theoretic approach highlight the rich interplay between 

these fields and the potential for discovering new and 

optimal combinatorial structures. 
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