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Abstract- This review explores the analysis of the 

Nigerian 330kV transmission network profile using 

Particle Swarm Optimization (PSO). The primary 

purpose of this study is to evaluate the effectiveness 

of PSO in optimizing the performance and stability 

of the Nigerian power transmission network, 

addressing prevalent issues such as voltage 

instability and inefficient power distribution. The 

Nigerian 330kV transmission network faces 

significant challenges, including frequent voltage 

collapses and suboptimal power flow, leading to 

reliability and efficiency concerns. These problems 

are exacerbated by the network's non-linear 

dynamics and the increasing demand for electricity. 

Addressing these challenges requires advanced 

optimization techniques capable of providing robust 

solutions. The study employs an improved PSO 

approach to determine the optimal sizing and 

placement of shunt injection capacitor banks within 

the transmission network. By using PSO, the 

research aims to enhance the network's voltage 

stability and overall performance. The methodology 

involves detailed simulations of the Nigerian 330kV 

network, considering various load scenarios and 

generator configurations. Additionally, a Symbolic 

Regression (SR) model fitting technique is used to 

represent solution states and account for deviations 

from optimal capacitor bank MVARS across load 

buses. The results demonstrate that PSO 

optimization significantly improves the voltage 

profile of the transmission network, achieving an 

8.4% enhancement. Furthermore, the SR model 

effectively represents the solution states with 

minimal error deviations, ensuring accurate and 

reliable performance assessments. The study 

highlights the potential of PSO and SR in addressing 

complex power system problems, and promoting the 

adoption of AI-based solutions in the energy sector. 

In conclusion, this review underscores the 

importance of advanced optimization techniques like 

PSO in improving the performance and stability of 

power transmission networks. The findings advocate 

for policies that support the integration of AI and 

machine learning approaches in power system 

analysis and optimization, paving the way for a more 

resilient and efficient energy infrastructure in 

Nigeria. 

 

Indexed Terms- Optimization, PSO, Symbolic 

Regression, Transmission Network, Voltage Stability 

I.  

I. INTRODUCTION 

 

The electricity produced in Nigeria, by the generating 

companies  is connected to the power grid via 

Nigeria’s Transmission Company. This power is then 

transmitted through the primary transmission network 

(330kV) from TCN to the substations, then to the 

distribution substations, and lastly to the users. For the 

transmission of electricity, alternating current is used, 

this is due to its ability to evolve from one voltage 

level to another with a minimal loss of power with the 

use transformers [1]. The transmission of this  power 

takes place at a voltage, of 33kV to the various zones 

with respect to the load shedding formula through the 

primary substations. The received voltage is brought 

down to a lower voltage of 11kV by a stepdown 

transformer. After which it is transmitted to secondary 

distribution transformers close to the users. This 

medium voltage is further stepped down to the voltage 

used by the consumers (usually 220 to 240V) by the 

secondary distribution transformers [2]. Though, 

clients such as Refineries, Flour mills, cement 

factories, rice mills, etc. get their electricity directly 

from the distribution line. 

  

II. LITERATURE REVIEW 

 

2.1    Extent of Past Studies on Capacitor Placement 

and Sizing 
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The problem of which bus should a capacitor bank be 

sited and how much MVAR compensation should be 

allocated to such a bus for voltage profile 

improvement has been an ongoing research exercise in 

the power systems field. In the research field, the 

Shunt Capacitor Banks (SCBs) – a low cost and 

approximately lossless power system voltage 

stabilization element [3], has found applications in a 

large number of power networks. Historically, it is 

well documented the ability to implement intelligent 

switching functions to capacitor banks used in shunt 

compensation and hence voltage profile improvement 

[3]. 

 

Recently, some research studies have been carried out 

using the Artificial Intelligence (AI) approaches 

particularly that related to Artificial Neural Networks 

(ANNs), Deep ANNs (DANNs), Swarming 

Optimization (SO) and hybridization schemes of the 

aforementioned approaches. This presents a key 

research direction in the field as the process of 

automatically determining the size and bus locations 

of reactive power compensators can be achieved in 

near real time via simulations.  

 

In [4], a DANN in which the hyper-parameters were 

trained by Particle Swarm Optimization (PSO) was 

used to estimate the compensation value required and 

the optimal location of reactive (shunt) compensation 

considering the active (load) power, reactive power 

and the corresponding load connected bus id. They 

used a two-stage brute-force approach including a 

Newton-Raphson (NR) load flow algorithm (at first 

stage) and an optimal selection approach (second 

stage) with a well-defined random load generation 

scheme to synthesize the DANN training data and 

considering the IEEE- 14, 30 and 118 bus-bar systems. 

The authors reported 100% accuracy in the location of 

reactive compensation for all considered IEEE busbars 

when compared to the brute-force approach. They also 

reported slight percentage differences in the reactive 

sizing of the busbars (IEEE-14, 30) and 0% difference 

in IEEE 118 busbar. 

 

In order to guard against an imminent voltage collapse, 

reactive power compensation via shunt capacitors was 

utilized in [5] for improvement of voltage profile of 

IEEE power network. Their proposed system applied 

a hybrid of swarming intelligence techniques 

comprising the Bee Colony Optimization Model 

(BCOM), the Particle Swarm Optimizer Model 

(PSOM) and the Ant Colony Optimizer Model 

(ACOM) for minimizing the voltage deviations at PQ 

buses. MATLAB simulation results indicated that the 

PSOM approach will exhibit the most stable response 

considering loading effects in the simulated power 

network. 

 

[6] proposed the use of Rao-1 algorithms for shunt 

compensation of 330kV power system network in 

Nigerian with the goal of minimizing the Total 

Voltage Violation (TVV) in the system. From their 

simulation results, the Rao-1 optimizer exhibited 

completive results when compared to the approach 

based on PSO. The Rao-1 optimizer also exhibited 

faster computational run times. 

 

[7] proposed the use of Artificial Bee Colony (ABC) 

algorithm for reactive power optimization and control 

considering transformers (on load tap changing) and 

reactive component (inductors and capacitors) 

switching for Nigerian 330kV power network. They 

reported a graded reduction in power losses for 

different loading conditions. 

 

[8] applied an improved Bacterial Foraging Algorithm 

(iBFA) to the task of optimum reactive power 

compensation of a distribution feeder in Zaria, Nigeria 

in a bid to minimize active power loss and voltage 

deviation. They reported improved computational run-

times, voltage profiles and reduced active power 

losses to the system. 

 

[9] utilized bat algorithm based on weight sum method 

(WSM) as a tool for solving multi-objective 

optimization problem. Test results on the standard 

IEEE 12-bus, 33-bus, 69-bus and 85-bus feeders 

proved that the proposed algorithm is capable of 

maximizing voltage stability index and minimizing 

total active power losses. Comparative results from 

other solution algorithms validated the proposed 

algorithm. 

 

III. METHOD 

 

3.1 Analysis of the Network Improvement Technique 

The Nigerian 330kV Transmission Network will be 

enhanced using shunt capacitor banks for reactive 
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power compensation, reducing losses and improving 

operating voltage, primarily for reactive power supply. 

The following should be taken into consideration 

before installation of capacitor banks: 

i. The magnitude of reactive power compensation 

required for improved system efficiency. 

ii. Ratings of capacitor banks required. 

iii. Location of capacitor banks. 

 

Capacitor banks are usually placed at the load end to 

mitigate the losses in the circuit between the load and 

the feeder. 

 

Equations (3.1 and 3.2) displays an adequate method 

of determining the size of capacitor banks required to 

improve overall system efficiency: 

PF = 
𝑘𝑊

𝑘𝑉𝐴
    (3.1) 

kVA= [(kW)]2 + (kVAR)2 ]1/2   (3.2) 

Where PF = Power Factor, 

kW= Active Power in kilowatts, 

kVA = Apparent Power in kilo Vars, 

kVAR = Reactive Power. 

 

3.2 Proposed Load Flow Analysis and Optimization 

Technique 

This research focuses on the application of particle 

swarm optimization (PSO) and symbolic regression 

(SR) methods for solving static load flow problems, 

specifically bus injection MVARs, and the entire 

systems solution architecture. 

 

3.2.1 The Particle Swarm Optimizer Algorithm and 

Application Modeling 

The PSO is a powerful and straightforward method for 

solving non-linear systems, such as power system 

networks. It uses a Newtonian representation, 

describing solution variables like bus voltages, angles, 

and associated parameters. The solution can be 

represented as follows. 

 

The solution of a PSO may be represented as follows 

[7]: 

Newton’s representation as described by the velocity 

update calculation in (3.3): 

( ) ( )( )
( )( )ijij

ijijijij

posGbestposrc

posbestposrcvelwnewvel

−+

−+=

12

11

     
(3.3)  

The new position is also updated by adding the 

velocity update obtained in (3.3) to its old position as 

in (3.4): 

( ) ( ) ( )newveloldposnewpos ijijij +=  

     (3.4)  

where, 

1r : random number between 0 and 1 

w : inertia weight 

1c : coefficient of self-recognition 

2c : social coefficient 

1c , 2c : 2 

i : ith iteration
 

j  : jth dimension
 

In a computational intelligent program, the PSO 

technique may be approached: 

 

3.2.2 PSO Algorithm 

Initialize a population of swarm particles, n, weight 

damping factor, wdamp, time step, t 

 

Randomly initialize the particle position, x and its 

associated velocities, v 

 

While stopping criterion is false do 

t = t+1                                                    (3.5) 

 Compute fitness value of each particle 

( )( ) ( )( )

( )( ) ( )( ) ( )( )
;
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 For i =1 to n 

( ) ( )( ) ( )( )( )txftxftx tt

n

tt ,1minarg #

1

# −= −
 (3.6) 

 For j = 1 to Dimension 

Update the jth dimension of xt and vt//xt = pos, vt = vel 

Execute (3.5) 

Execute (3.6)  

End For 

Update the weight damping, w = w*wdamp 

End For 

End While 

 

3.2.3 Temporal PSO fine-tuning 

This study proposes a damping model for routine 1 of 

the PSO, which can be adjusted to achieve local 

optimality in certain simulation trials, despite the fact 

that optimality may vary in practice. 
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twww damp=   (3.7)  

As can be seen in eqn (3.7), the weight damping factor 

is temporally adjusted as the PSO performs its 

optimization task. However, the model as described in 

eqn (3.7) will only hold if the global best cost (Gbest) 

or the best cost so far (Best Cost) is greater than a 

tolerance factor, say, tf. This implies that our model is 

a conditional one. From initial experiments and 

simulation studies, a choice of tf = 0.05 has been found 

to be a good starting point. 

 

3.2.4 Symbolic Regression (SR) Modeling 

The SR approach presents an automated way of 

representing interrelations among system variables. In 

this study, the standard model for representing 

solution parameters as genes is employed. In this 

regard, there is a terminal set comprising several 

alphabetic variable codes representative of solution 

variables and a function set comprising several key 

mathematical operators. The terminal and function 

sets are as modeled in eqn (3.8) and (3.9) respectively. 

 

  setnnset Acbat = ,,,,,   (3.8)

  setnnsetf −+= ,/,,*,,   (3.9) 

where, 

set = Alphabet Set 

set = Function Set 

 

Here, the model equations, i.e., eqns (3.8) and (3.9) 

represent the gene individuals (dual gene) as in human 

or mammalian evolution. In order to assure a suitable 

representative model, the models in equation (3.8) and 

(3.9) are iteratively and recurrently evolved by a 

random perturbation process such that the best fitted 

individuals (members of the dual-gene set) that meet a 

fitness function criterion are selected. 

 

IV. RESULTS AND DISCUSSION 

 

4.1 Compensation Results on Overloaded Buses 

One of the benefits derived from dynamic optimization 

approaches which follows the dynamic programming 

is in their unique ability to automatically discover 

solutions to highly complicated and non-linear 

problems. Using the Particle Swarming Optimizer 

(PSO) approach developed in this research study, the 

weak buses were automatically compensated and 

brought within tolerable results considering a 3-tier 

graded compensation procedure with MVAR upper 

bounds of 10MVARs, 50MVARs and 100MVARs.  

 

In addition, percentage improvement factors from the 

perturbed (critical overloaded) states where no 

compensations were added to that when 

compensations are injected are computed and 

compared based on the aforementioned MVARs upper 

bounds. The results comparing the un-compensated 

overloaded case with the compensated one are as 

shown in Table 1. 

 

Table 1 Automatic Compensation Results Using the PSO

 

Bus id Vsol (CMVAR = 0) Vsol (CMVAR = 10) Vsol (CMVAR = 50) Vsol (CMVAR = 100) 

1 1.06 1.06 1.06 1.06 

2 1.19 1.20 1.20 1.21 

3 1.03 1.03 1.03 1.03 

4 0.82 0.98 0.98 0.99 

5 0.98 1.05 1.05 1.06 

6 0.97 1.05 1.05 1.06 

7 1.06 1.06 1.06 1.06 

8 0.60 0.93 0.93 0.95 

9 0.46 0.90 0.90 0.91 

10 0.98 1.07 1.07 1.09 

11 1.02 1.02 1.02 1.02 
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12 0.89 1.02 1.02 1.02 

13 1.03 1.13 1.13 1.15 

14 0.94 1.06 1.06 1.09 

15 0.88 1.00 1.00 1.00 

16 0.77 0.96 0.96 0.96 

17 0.90 1.03 1.03 1.07 

18 1.04 1.04 1.04 1.04 

19 1.02 1.03 1.03 1.03 

20 0.88 1.00 1.00 1.00 

21 0.79 1.00 1.00 1.01 

22 1.03 1.03 1.03 1.03 

23 0.90 0.98 0.98 0.98 

24 1.03 1.03 1.03 1.03 

25 1.04 1.04 1.04 1.04 

26 1.03 1.03 1.03 1.03 

27 1.03 1.03 1.03 1.03 

28 1.03 1.03 1.03 1.03 

29 1.03 1.03 1.03 1.03 

30 0.93 1.01 1.01 1.01 

31 1.03 1.03 1.03 1.03 

32 1.01 1.02 1.02 1.02 

33 1.03 1.03 1.03 1.03 

34 1.03 1.03 1.03 1.03 

From table 1, It is also noticeable that the percentage 

improvement is greater for critical buses when 

compared to the rest. In particular, the collapsed bus - 

bus 8, will require a percentage improvement of 56% 

at the 10MVARs and 50MVARs level and a 

percentage improvement of 58% at the 100MVARs 

level while bus 9 will require a percentage 

improvement of 94% at the 10MVARs and 50MVARs 

level and a percentage improvement of 97% at the 

100MVARs level.  

 

 

Table 2 shows a summary of the percentage voltage profile improvement

 

Bus ID 
Vsol (QMVAR = 

0) 

Vsol 

(p.u)(10MVAR) 
Q (10MVAR)  

Vsol 

(p.u)(50MVAR) 
Q (50MVAR)  

Vsol 

(p.u)(100MVAR) 
Q (100MVAR)  

1 1.06 1.06 0 1.06 0 1.06 0 

2 1.19 1.2 4 1.2 6 1.21 11 

3 1.03 1.03 0 1.03 0 1.03 0 

4 0.82 0.98 4 0.98 5 0.99 10 

5 0.98 1.05 4 1.05 6 1.06 11 

6 0.97 1.05 5 1.05 6 1.06 10 

7 1.06 1.06 0 1.06 0 1.06 0 

8 0.6 0.93 5 0.93 5 0.95 11 
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9 0.46 0.9 4 0.9 6 0.91 10 

10 0.98 1.07 4 1.07 5 1.09 10 

11 1.02 1.02 0 1.02 0 1.02 0 

12 0.89 1.02 5 1.02 5 1.02 11 

13 1.03 1.13 4 1.13 5 1.15 10 

14 0.94 1.06 4 1.06 6 1.09 10 

15 0.88 1 4 1 6 1 11 

16 0.77 0.96 5 0.96 5 0.96 11 

17 0.9 1.03 5 1.03 5 1.07 10 

18 1.04 1.04 0 1.04 0 1.04 0 

19 1.02 1.03 4 1.03 6 1.03 10 

20 0.88 1 5 1 6 1 10 

21 0.79 1 5 1 6 1.01 10 

22 1.03 1.03 0 1.03 0 1.03 0 

23 0.9 0.98 5 0.98 6 0.98 11 

24 1.03 1.03 0 1.03 0 1.03 0 

25 1.04 1.04 5 1.04 6 1.04 10 

26 1.03 1.03 0 1.03 0 1.03 0 

27 1.03 1.03 0 1.03 0 1.03 0 

28 1.03 1.03 0 1.03 0 1.03 0 

29 1.03 1.03 4 1.03 5 1.03 10 

30 0.93 1.01 5 1.01 6 1.01 10 

31 1.03 1.03 0 1.03 0 1.03 0 

32 1.01 1.02 5 1.02 6 1.02 11 

33 1.03 1.03 0 1.03 0 1.03 0 

34 1.03 1.03 0 1.03 0 1.03 0 

 0.954705882 1.027647059 2.794117647 1.027647059 3.470588235 1.033235294 6.411764706 

From the table above, the percentage voltage profile 

increase is given by: 

V% = New – Base X 100 =   1.03 – 0.95 = 8.4%              

    Base                0.95 

  

From the figure 1, the voltage improvement before and 

after perturbation. The result shows that the 

improvement after perturbation improved 

significantly. 

 

 

Figure 1 Voltage Profile Improvement before and 

after Perturbation 

 

This Bar Chart was generated from table 1 to show the 

Summary of Percentage Voltage Profile Improvement 

before and after network perturbation. 

  

In figure 2 Bar Chart Comparing 0 CMVAR and 10 

CMVAR is shown. And from the result indications, it 

shows that the Vsol (CMVAR=10) has a higher 

performance and improvements, This Bar Chart shows 

voltage profile improvement before and after 

perturbation of the various buses. 

 

 
Figure 2 Bar chart Comparing 0 CMVAR and 10 

CMVAR 
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Figure 3 bar chart shows the comparison between 0 

CMVAR and 100 CMVAR 

 

 
Figure 3 Bar Chart Comparing  0 CMVAR and 100 

CMVAR 

 

By comparing the three different boundary conditions, 

it is seen that an average of three banks were assigned 

to each of the bus bars when a 10MVAR bank was 

injected into the network. But when a 50MVAR was 

injected (used as perturbation) an average of four 

banks were designated to each bus and finally a six 

bank per bus was seen when a 100MVAR was used. 

See table 3 below: 

 

Table 3 Total no of Banks 

MVAR Vp.u. Average no 

of Bank/bus 

Total no of 

Banks for 34 

Buses 

10 1.03 3 3 x 34 = 102 

50 1.03 4 4 x 34 = 136 

100 1.03 6 6 x 34 = 204 

 

CONCLUSION 

 

Currently, studies on power system networks are 

evolving, with a growing interest in dynamic 

programming approaches to address numerous 

problem areas. Artificially Intelligent (AI) systems 

play a crucial role in this evolution by promoting 

diversity. Their inherent non-linear dynamics make 

them suitable for solving complex non-linear power 

system issues. In this research, an enhanced Particle 

Swarm Optimization (PSO) method was employed to 

solve the problem of optimal shunt injection capacitor 

bank sizing and placement in the 330kV power 

network. A Symbolic Regression (SR) model fitting 

technique was also used to represent the solution 

states, considering the deviation from the maximum 

solved capacitor bank MVARS and their individual 

allocation across load (PQ) buses. The study focused 

on automatic shunt compensation using machine 

learning (PSO) and Inductive Modelling (SR) for 

adaptive load flow solutions and representative 

modeling of the power system. Simulation studies 

were conducted on both large and small power 

networks, including the Nigerian 330kV, 34-Bus, 11-

generator network, and the IEEE 6-Bus, 2-generator 

network. The simulations demonstrated that PSO 

optimization could effectively and automatically size 

and allocate shunt capacitor injection MVARs into the 

power systems while minimizing voltage instabilities. 

The system voltage profile improved by 8.4%, and the 

SR adequately modeled the solution states with error 

deviations as low as +/-5MVARS. 
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