
© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 304

Comparative Analysis of Persistence Storage Levels in
Spark with Case Study

THET HSU AUNG1, AYE MYAT MYAT PAING2

1, 2 Faculty of Computer Science, University of Information Technology

Abstract- This study conducts a comparative

analysis of the training times for Long Short-Term

Memory (LSTM) networks on Apache Spark,

evaluating three different persistence storage levels:

Disk-Only, Memory-Disk, and Memory-Only. The

analysis is performed with and without a proposed

sampling algorithm designed to address the issue of

imbalanced datasets. The study specifically focuses

on the Credit Card Fraud Detection dataset across

varying dataset sizes. The results indicate that the

Memory-Only storage level achieves the shortest

training times. Considering this case study, the

amount of the dataset influences the storage level

selection. Therefore, this dataset indicates that

memory_only is the best. Memory_disk_only is the

second-best option, if memory becomes insufficient

due to the growing dataset. Therefore, the choice of

storage level affects performance, especially in

memory usage and computation speed.

Furthermore, the application of the sampling

algorithm significantly enhances model

performance metrics, including precision, recall,

and F1-score, particularly in scenarios involving

imbalanced data. These findings provide crucial

insights for improving LSTM training on large-

scale imbalanced datasets, highlighting the

importance of selecting appropriate storage

configurations and preprocessing techniques in big

data environments.

Indexed Terms- Long Short-Term Memory, Disk-

Only, Memory-Only, Memory-Disk

I. INTRODUCTION

In the era of big data and machine learning, the

efficient training of deep learning models, such as

Long Short-Term Memory (LSTM) networks, is

essential for various applications that involve

sequential data. LSTM networks are particularly

adept at handling tasks like time series prediction,

natural language processing, and anomaly detection.

However, training these models on large-scale

datasets poses significant computational challenges,

often requiring substantial time and resources.

Apache Spark, a powerful distributed computing

system, offers a promising solution to these

challenges by enabling the parallel processing of

large datasets, thereby accelerating the training

process of machine learning models.

One critical aspect of improving LSTM training on

Apache Spark involves the configuration of storage

levels, which dictate how data is cached during

computations. Apache Spark provides various storage

levels, such as Disk-Only, Memory-and-Disk, and

Memory-Only, each with distinct performance

characteristics. The Disk-Only storage level stores

data on disk, which conserves memory but can

increase data retrieval times. The Memory-and-Disk

storage level stores data in memory as much as

possible, spilling over to disk only when memory is

insufficient. The Memory-Only storage level keeps

data entirely in RAM, which reduces access times but

requires ample memory capacity. Understanding the

impact of these storage levels on training times is

crucial for improving the performance of LSTM

models.

Another significant challenge in machine learning is

dealing with imbalanced datasets. Imbalanced

datasets, where some classes are underrepresented,

can lead to biased models that perform poorly on

minority classes. The Credit Card Fraud Detection

dataset is a prominent example of an imbalanced

dataset, where fraudulent transactions are much rarer

than legitimate ones. Addressing data imbalance is

essential for developing robust and reliable machine

learning models.

To tackle the issue of data imbalance, this study

proposes a Sampling Algorithm for Imbalanced

Datasets. This algorithm aims to improve the

representation of minority classes, thereby enhancing

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 305

the performance and reliability of the trained models.

The primary objectives of this study are:

To compare the training times of LSTM models on

Apache Spark with Disk-Only, Memory-and-Disk,

and Memory-Only storage levels.

To evaluate the effectiveness of the proposed

Sampling Algorithm for Imbalanced Datasets in

reducing training time and improving model

performance.

To analyze the performance improvements achieved

through the combination of different storage levels

and the sampling algorithm with different dataset

size.

This study conducts a comprehensive comparison

analysis of LSTM training times on Apache Spark,

focusing on three different storage configurations:

Disk-Only, Memory-and-Disk, and Memory-Only.

The analysis is applied to the Credit Card Fraud

Detection dataset, an imbalanced dataset that presents

a realistic and challenging scenario for model training

with different dataset sizes. The findings offer

valuable insights into the most efficient storage

configurations, aiding practitioners in choosing the

appropriate storage level to balance resource usage

and training speed. Moreover, the evaluation

demonstrates how the algorithm enhances model

performance and training efficiency, providing a

deeper understanding of how data preprocessing

techniques can mitigate the issues associated with

imbalanced datasets.

The remainder of this paper is structured as follows.

Section 2 reviews related work on LSTM networks,

Apache Spark storage configurations, and techniques

for handling imbalanced datasets. Section 3 theorical

background. Section 4 presents Persistence Storage

Levels in Spark. Section 5 describes the case study

including the Credit Card Fraud Detection dataset

and the proposed Sampling Algorithm for

Imbalanced Datasets. Section 6 outlines the

experimental setup, including the implementation of

LSTM models on Apache Spark and the

configurations tested. Section 7 presents the results of

the experiments, comparing training times for

different dataset sizes and model performance across

different configurations. Finally, Section 8 concludes

the paper and suggests directions for future research.

II. LITERATURE REVIEW

Kim, Lee, and Yoo (2019) [1] explored the

integration of big data analytics with in-memory

databases in the context of smart manufacturing. The

authors discuss the challenges and opportunities

presented by big data in the manufacturing sector,

emphasizing the need for real-time data processing

and analysis to enhance operational efficiency and

decision-making. By leveraging in-memory

databases, which allow data to be stored and

processed directly in the main memory rather than on

traditional disk storage, the study demonstrates

significant improvements in data retrieval speeds and

analytics performance. The research highlighted how

in-memory database technologies can support various

smart manufacturing applications, including

predictive maintenance, quality control, and

production optimization. The authors present case

studies and experimental results that showcase the

effectiveness of their approach, illustrating how it can

lead to more responsive and adaptive manufacturing

systems. The paper concludes with a discussion on

the future directions for big data analytics in smart

manufacturing, underscoring the potential for further

innovations and the importance of continued research

in this area.

In the paper, Park, Kim, and Yoo [2] presented a

hybrid machine learning approach designed to

enhance financial early warning systems (FEWS).

The authors combined various machine learning

techniques, including decision trees, support vector

machines, and neural networks, to create a robust

ensemble model. This hybrid approach leverages the

strengths of each individual method, mitigating their

respective weaknesses and resulting in more precise

predictions. The study involved extensive

experimentation with real-world financial data to

validate the effectiveness of the proposed model. The

results demonstrated that the hybrid model

outperforms traditional single method approaches in

terms of predictive accuracy and early detection

capabilities. By providing more accurate and timely

warnings, the proposed system has the potential to

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 306

assist financial institutions and regulators in taking

proactive measures to prevent financial crises.

The authors [3] introduced a distributed deep learning

framework that integrates edge computing, which

involves processing data closer to the data source,

thereby reducing the reliance on centralized cloud

resources. This method is particularly beneficial for

IoT environments where real-time data processing

and low latency are critical. The framework partitions

the deep learning tasks across multiple edge devices,

allowing for parallel processing and reducing the load

on central servers. The paper details the architecture

of the proposed system, including the mechanisms

for data partitioning, model synchronization, and task

scheduling. Through extensive experimental

evaluations, the authors demonstrate that their edge

computing-based approach significantly improves the

efficiency and speed of deep learning tasks compared

to traditional cloud-based methods. The results show

notable reductions in latency and bandwidth usage,

making the approach suitable for various IoT

applications, including smart cities, autonomous

vehicles, and industrial automation.

The authors proposed a parallel data mining

algorithm designed to efficiently handle big data

using the Hadoop framework [4]. The core objective

of the research is to address the challenges associated

with mining large-scale datasets by leveraging the

parallel processing capabilities of Hadoop, an open-

source framework that facilitates distributed storage

and processing of big data. Experimental evaluations

are conducted to compare the performance of the

proposed parallel algorithm against traditional, non-

parallel approaches. The results demonstrate

substantial improvements in processing speed and

scalability, validating the effectiveness of the

Hadoop-based solution for big data mining tasks.

The authors [5] identified the inefficiencies in

existing cluster computing frameworks, such as

MapReduce, which often rely on disk-based storage,

leading to high latency and complexity in managing

fault tolerance. To address these issues, they propose

RDDs, which are distributed memory abstractions

that enable users to perform computations on large

datasets more efficiently. RDDs are immutable,

partitioned collections of objects that can be operated

on in parallel. They are designed to be fault-tolerant

by maintaining lineage information that allows lost

data to be recomputed, thus eliminating the need for

costly replication strategies. This approach

significantly reduces the overhead associated with

fault tolerance. To evaluate the performance of

RDDs, the authors conduct experiments comparing

Spark with Hadoop, demonstrating that Spark can be

up to 100 times faster in memory and 10 times faster

on disk for certain applications. The results

underscore the efficiency and scalability of RDDs in

handling iterative and interactive queries on large

datasets.

Boosting and bagging are widely used ensemble

learning techniques that aim to improve model

accuracy by aggregating predictions from multiple

base learners. Boosting focuses on sequential training

models to correct the errors of its predecessors, while

bagging involves training models on different subsets

of the data and aggregating their predictions through

averaging or voting. The authors [6] conducted a

comparative analysis of boosting (specifically

AdaBoost) and bagging (specifically Random

Forests) across several experimental setups using

benchmark datasets with varying degrees of noise

and class imbalance. They evaluate the performance

of these techniques using standard metrics such as

accuracy, precision, recall, and F1-score. Key

findings from the study highlight those boosting

methods, particularly AdaBoost, exhibit superior

performance compared to bagging methods like

Random Forests when dealing with noisy and

imbalanced data. AdaBoost demonstrates robustness

in handling noisy features and class imbalance,

achieving higher classification accuracy and more

balanced performance across different evaluation

metrics.

The paper [7] provided a comprehensive review of

techniques and methodologies proposed in the

literature to mitigate the impact of class imbalance on

machine learning models. They discussed the

strengths, limitations, and applicability of each

approach based on experimental results and empirical

studies reported in the literature. They emphasize the

importance of evaluating model performance using

metrics beyond accuracy, such as precision, recall,

F1-score, and area under the receiver operating

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 307

characteristic curve (AUC-ROC), which are more

informative in imbalanced settings.

III. THEORICAL BACKGROUND

This section describes the theorical background of the

proposed system.

A. Apache Spark Architecture

The Apache Spark framework manages data in the

form of Resilient Distributed Datasets (RDDs), which

store compute objects across networked cluster

nodes. RDDs are stored in distributed memory

(RAM) to optimize performance and enable fault

tolerance by persisting intermediate results on disk

drives or SSDs [8]. Spark jobs are executed in two

phases—ShuffleMapStage and ResultStage—to

organize tasks and gather computed results,

respectively. However, data skewness, where

partitions unevenly distribute data, can challenge

operations, especially in join procedures, impacting

performance. In enhancing reliability for real-time

messaging systems, fault tolerance is crucial. Apache

Kafka serves as a popular solution, offering flexible

and reliable message delivery. Kafka ensures

messages are delivered reliably across distributed

processing environments like Apache Spark, where

data partitioning and processing independence can

lead to varying processing times across partitions,

affecting overall task completion speed.

B. Imbalanced Data on Apache Spark

Imbalanced datasets present significant challenges in

machine learning, especially within Big Data

frameworks like Apache Spark. In such frameworks,

data is divided into partitions across multiple

machines within a cluster, potentially resulting in

unequal data distribution among partitions. This

phenomenon, known as data skew, can lead to

performance issues, including degraded model

performance, unstable training, misleading evaluation

metrics, and inefficient resource allocation. To

mitigate these challenges, effective balancing

methods tailored for Big Data environments are

crucial. These methods should leverage high-

performance computing architectures such as CPU

clusters and GPUs to ensure scalability and efficiency

in handling large and imbalanced datasets.

Techniques like sampling algorithms are commonly

employed to balance datasets before applying

machine learning tasks. Addressing data imbalance is

essential for improving classification performance

and enhancing the reliability of data processing

activities in Apache Spark. By implementing robust

balancing strategies, machine learning models can

achieve better accuracy and stability, thereby

improving overall system performance in Big Data

applications.

C. Oversampling

Oversampling, also known as upsampling, is a

method used to adjust the class distribution of a

dataset by increasing the number of instances in the

minority class [7]. This is done by randomly

replicating instances from the minority class until it

reaches a desired balance with the majority class. The

goal is to alleviate the bias towards the majority class

and improve the model's ability to learn from the

minority class instances.

D. Long Short-Term Memory

A Long Short-Term Memory (LSTM) network

represents a specialized type of recurrent neural

network (RNN) designed to manage long-range

dependencies and sequential data effectively. Unlike

conventional RNNs, LSTMs are equipped with

memory cells capable of retaining information over

extended periods, which enables them to capture

intricate patterns in time series and sequential data.

The architecture of an LSTM comprises crucial

components such as the input gate, forget gate, output

gate, and memory cell. These elements work in

tandem to regulate the flow of information into and

out of the memory cell. By selectively retaining or

discarding information as per task requirements,

LSTMs can mitigate the vanishing gradient problem

that commonly hampers traditional RNNs. This

capability makes LSTMs well-suited for training on

sequences with prolonged dependencies. LSTMs find

applications across diverse domains, including

natural language processing (NLP), speech

recognition, time series forecasting, healthcare for

medical time series analysis, and finance for

predicting market trends. Their proficiency in

learning and remembering patterns within sequential

data has established LSTMs as a pivotal tool in

contemporary machine learning research and

practical applications.

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 308

IV. PERSISTENCE STORAGE LEVELS IN

SPARK

In Apache Spark [9, 10], persistence storage levels

refer to the strategies used to store RDDs (Resilient

Distributed Datasets) across the nodes of a cluster.

These storage levels are crucial for improving

performance by balancing memory usage,

computation speed, fault tolerance, and disk I/O.

Here's a detailed description of the common

persistence storage levels available in Spark as shown

in Figure 1.

• MEMORY_ONLY: This is the default storage

level in Spark. It stores RDDs as deserialized Java

objects in the JVM heap memory of the executor

nodes. This allows for fast access to data but is

limited by the available memory size. If an RDD

does not fit in memory, recomputation will be

necessary.

• MEMORY_AND_DISK: This storage level

stores RDD partitions that do not fit in memory

on disk. The partitions that fit in memory stay in

memory, while the remaining ones are spilled to

disk. This level provides better tolerance for large

datasets that exceed the available memory

capacity but may incur higher access latency due

to disk reads.

• MEMORY_ONLY_SER and

MEMORY_AND_DISK_SER: These levels store

RDDs as serialized Java objects (binary data) in

memory (or on disk for

MEMORY_AND_DISK_SER). Serialization

reduces the memory usage compared to storing

objects directly but adds CPU overhead for

serialization and deserialization. This can be

beneficial when dealing with large objects or

when memory resources are limited.

• DISK_ONLY: RDDs are stored only on disk,

which is useful when RDDs are too large to fit in

memory. This level trades off computation speed

for increased fault tolerance and the ability to

handle very large datasets. Disk reads are slower

compared to memory access, so performance may

be impacted.

• MEMORY_ONLY_2,

MEMORY_AND_DISK_2, etc.: These are

variants of the above storage levels that replicate

each partition on two nodes to provide data

redundancy and fault tolerance. This redundancy

helps in recovering lost data partitions due to

node failures but increases memory usage and

storage requirements.

Figure 1. Storage Levels

Choosing the right persistence storage level depends

on several factors including the size of the dataset,

available memory in the cluster, computation speed

requirements, and fault tolerance considerations. By

selecting an appropriate storage level, Spark users

can optimize performance, reduce recomputation

overhead, and effectively manage large-scale data

processing tasks in distributed environments [11, 12].

V. CASE STUDY

In this system, training unbalanced dataset: Credit

card dataset is used. The proposed system workflow

is shown in Figure 2. The process begins with

loading the credit card dataset into Apache Spark,

followed by applying the proposed sampling

algorithm to generate balanced datasets. During the

model training phase, the LSTM model is trained on

the dataset using three different storage levels: Disk-

Only, Memory-Disk, and Memory-Only. Training is

conducted with both the original imbalanced dataset

and the balanced dataset created by the sampling

algorithm. The performance comparison involves

analyzing training times across the various storage

configurations, evaluating the impact of dataset size

on training efficiency, and assessing the benefits of

the sampling algorithm in terms of training speed and

convergence.

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 309

Figure 2. Workflow on Apache Spark Architecture

A. Dataset

The credit card dataset sourced from a European

financial institution serves as a crucial resource for

studying fraud detection in electronic transactions

while safeguarding cardholders' privacy. Spanning a

two-day period, the dataset captures both legitimate

and fraudulent transactions, anonymized to protect

sensitive details like card numbers and identities. Key

attributes include transaction time, amount, and

anonymized features derived from PCA to preserve

confidentiality [13]. The dataset's scale enables

robust analysis despite its inherent imbalance, with

fraudulent transactions significantly fewer than

legitimate ones. Its imbalanced nature poses

challenges, requiring specialized techniques to ensure

accurate classification. By leveraging anomaly

detection methods and robust classification

algorithms, analysts can uncover fraudulent patterns

and enhance transaction security. This dataset's value

lies in its practical application, facilitating research

into fraud prevention strategies and evaluation of

detection algorithms within real-world transaction

environments. This dataset is shown in figure 3.

Figure 3. Credit Card Transaction in Dataset

The balance of class labels in the dataset are

displayed in Table 1. 99% of the data samples that

were evaluated for the dataset correspond to the valid

class "0." This data is very imbalanced.

Table 1. Distribution of Sample in Credit Card

Dataset

Class Label No. of Class

Non-Fraud 284315

Fraud 492

B. Proposed Sampling Algorithm

Class imbalance, where one class significantly

outnumbers the other, poses challenges in machine

learning. Traditional approaches include

oversampling, which duplicates minority class

instances, but this can lead to overfitting. Conversely,

undersampling, which reduces the majority class,

risks losing critical data. To address these issues, the

proposed system introduces an innovative sampling

algorithm.

To achieve a balanced dataset from the training data,

follow these detailed steps:

• It begins with training data and the corresponding

labels. It determines the counts of fraud and non-

fraud instances in training data.

• It identifies which class, fraud or non-fraud, has a

higher count. This will be used to balance the

dataset by generating additional instances of the

minority class.

• In Balancing Process, if the count of the fraud

class is greater than the count of the non-fraud

class,

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 310

• The difference (num) between the counts of the

two classes is calculated.

• a feature vector is extracted from the non-fraud

class.

• The last element of the extracted feature vector is

removed.

• A single feature from the adjacent non-fraud

instance is obtained.

• This feature is appended to the modified feature

vector.

• Then, the updated feature vector is appended to

the non-fraud dataset. After that, label 1 is

appended to the abnormal labels.

• The difference (num) between the counts of the

two classes.

• A feature vector is extracted from the fraud class.

• The last element of the extracted feature vector is

removed.

• A single feature from the adjacent fraud instance

is obtained.

• This feature is appended to the modified feature

vector.

• Then, the updated feature vector is appended to

the fraud dataset.

• After that, the label 0 is appended to the fraud

labels.

• Finally, the result is a balanced dataset where the

number of instances for each class is equalized.

This flowchart is presented in Figure 4.

Figure 4. Flowchart of Proposed Sampling Algorithm

It can be applied to various types of data (numerical,

categorical) and can be adjusted based on specific

needs by modifying the way synthetic samples are

generated. By adding synthetic samples rather than

duplicating existing ones, this method can help

reduce the risk of overfitting.

VI. EXPERIMENTAL SETUP

In this experiment, Apache Spark cluster is

developed and is used for integrating with deep

learning like LSTM. The system specification and

necessary software components of the system are

presented in Table 2. In this experiment, the

parameters for LSTM for loss is

“categorical_crossentropy,” batch size is “128,” and

epochs is “100” for LSTM, activation function

“Softmax,” and optimizer “Adam.” The Apache

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 311

Spark model provides the least training time. The

main benefit of applying Spark is that the Spark

cluster is constructed with commodity hardware. The

nodes are situated within the same rack.

Table 2. System Specification

Operating System Ubuntu 20.04 LTS

Host Specification

Intel ® Core i7-11800H

CPU @ 2.30GHz

16GB Memory

512 SSD

VM Specification 8 GB RAM

100 GB Hard Disk

Software Components

Hadoop 3

Spark 3.3.3

Python 3.10

Elephas 4.0.1

VII. EVALUATION

In the system evaluation, LSTM model is trained on

Apache Spark using different storage levels and

dataset size. The training is conducted with both the

original and balanced datasets to evaluate the impact

of the sampling algorithm. Table 3, 4, and 5, describe

the performance results with the storage levels:

memory-only, disk-only, and memory-disk on

original and balanced dataset.

Two dataset sizes were used for evaluation: 280000

and 560000 instances. The training was conducted

with both the original and balanced datasets to

evaluate the impact of the sampling algorithm. The

performance results were evaluated using different

storage-levels. For each run, the metrics (Precision,

Recall, and f1-Score) were calculated and the final

reported metrics are the average values across all

runs. Despite variations in dataset sizes, the LSTM

model consistently achieved perfect scores of 1 for

precision, recall and F1-score across different storage

levels. This indicates that the model’s robustness and

the effectiveness of the training and proposed

sampling methodologies employed. The following

tables illustrate the consist results.

Table 3. Performance Results of Memory-Only

 Precision Recall
F1-

Score

Dataset

size:280000
1 1 1

Dataset

size:560000
1 1 1

Table 3 presents the performance results of the Long

Short-Term Memory (LSTM) network when using

the Memory-Only storage level with proposed

sampling algorithm, measured across two different

dataset sizes: 280,000 and 560,000. The metrics

evaluated are precision, recall, and F1-score, each of

which is crucial for assessing the effectiveness of the

model, especially in the context of credit card fraud

detection.

Therefore, Table 3 highlights the efficacy of using

the Memory-Only storage level for training LSTM

networks on the Credit Card Fraud Detection dataset.

The perfect precision, recall, and F1-score across

varying dataset sizes underscore the model's

robustness and accuracy, reinforcing the suitability of

the Memory-Only storage level for high-performance

LSTM training in big data environments.

Table 4. Performance Results of Disk-Only

 Precision Recall F1-Score

Dataset

size:280000
0.98 0.98 0.98

Dataset

size:560000
0.95 0.95 0.95

Table 4 illustrates that the LSTM network performs

well using Disk-Only storage, achieving high

precision, recall, and F1-score. However, there is a

noticeable decrease in performance as the dataset size

increases, indicating that Disk-Only storage may not

be as efficient or effective for larger datasets

compared to Memory-Only storage. This underscores

the importance of selecting appropriate storage

configurations to optimize model performance in big

data environments.

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 312

Table 5. Performance Results of Memory-Disk

 Precision Recall F1-Score

Dataset

size:280000
1 1 1

Dataset

size:560000
0.99 0.99 0.99

Table 5 demonstrates that the LSTM network

achieves excellent performance with the Memory-

Disk storage level, maintaining high precision, recall,

and F1-score across different dataset sizes. While

perfect scores are attained for the smaller dataset,

there is only a slight decrease in metrics for the larger

dataset, highlighting the effectiveness and robustness

of Memory-Disk storage in handling larger datasets.

This underscores the importance of selecting

appropriate storage configurations to optimize LSTM

training and performance in big data environments.

In the evaluation with persistent storage level:

memory-disk, the proposed sampling algorithm

provides the more accurate results. Therefore, more

accurate results are provided by the proposed

sampling algorithm on three persistent levels of

storage: memory, disk, and memory-disk. Table 5

presents the training time of three storage levels on

different dataset sizes with proposed sampling

algorithm. It presents the training time of three

storage levels on different dataset sizes with proposed

sampling algorithm.

By highlighting the consistent performance metrics

despite variations in dataset sizes and storage

conditions, this paper emphasizes the reliability and

robustness of the LSTM model. This consistency

across different experimental setups underscores the

model’s suitability for real-world applications where

dataset sizes and storage configurations may vary.

Table 6. Training Time Comparison of Three Storage

Levels on Different Dataset size

Time (seconds) Memory-

Only

Disk-

Only

Memory-

Disk

Dataset

size:280000

603 640 649

Dataset

size:560000

1177 2149 1316

This table 6 compares the training times (in seconds)

of Long Short-Term Memory (LSTM) networks

using three different persistence storage levels:

Memory-Only, Disk-Only, and Memory-Disk. The

training times are evaluated across two different

dataset sizes: 280,000 and 560,000 records. Memory-

Only storage consistently shows the shortest training

times across both dataset sizes. This indicates that

training the LSTM network is most efficient when all

data can be kept in memory, minimizing latency

associated with data access. Disk-Only storage has

the longest training times, particularly for the larger

dataset.

This substantial increase in training time for the

larger dataset highlights the inefficiencies introduced

by relying on disk I/O operations, which are slower

compared to memory access. Memory-Disk storage

performs better than Disk-Only but is not as fast as

Memory-Only storage. This storage level provides a

compromise, offering better performance than Disk-

Only by utilizing memory where possible and spilling

to disk when necessary.

Therefore, Table 6 illustrates that the choice of

storage level significantly impacts the training time

of LSTM networks. Memory-Only storage provides

the best performance, especially as dataset size

increases, due to its fast data access speeds. Disk-

Only storage, while potentially necessary for very

large datasets that exceed memory capacity, results in

considerably longer training times due to slower disk

I/O operations. Memory-Disk storage offers a middle

ground, balancing memory usage with disk storage,

and provides a reasonable compromise in training

time performance. These insights emphasize the

importance of selecting an appropriate storage

configuration to optimize training efficiency in big

data environments.

CONCLUSION

This study presents a comparative analysis of the

training time of Long Short-Term Memory (LSTM)

networks on Apache Spark, focusing on three

persistent storage levels: Disk-Only, Memory-Disk,

and Memory-Only. The analysis utilized a credit card

fraud detection dataset of varying sizes, both with

and without a proposed sampling algorithm to

© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880

IRE 1705959 ICONIC RESEARCH AND ENGINEERING JOURNALS 313

address class imbalance. The findings indicate that

Disk-Only storage resulted in the longest training

times due to slow disk I/O operations, while

Memory-Disk showed moderate training times with

occasional disk spills when memory was insufficient.

Memory-Only storage achieved the fastest training

times by keeping data entirely in memory, thus

avoiding I/O delays. Training times increased with

dataset size across all storage configurations, with

Memory-Only handling larger datasets more

efficiently. As dataset size increases and memory

constraints arise, the memory-disk storage level

serves as a viable alternative, balancing memory

usage and computation speed. The proposed

sampling algorithm balanced the dataset, leading to

more efficient training and faster convergence,

whereas training on the imbalanced dataset without

the algorithm was slower and less efficient. The study

concludes that Memory-Only storage is preferred for

minimizing training times in resource-sufficient

environments for this case study. Implementing the

sampling algorithm is crucial for handling

imbalanced datasets effectively, thereby enhancing

training efficiency and model performance. Future

work should explore dynamic and hybrid storage

strategies to further enhance Spark's performance and

scalability.

REFERENCES

[1] J. Kim, D. Lee, and C. Yoo, “Big data analytics

on in-memory database for smart

manufacturing”, Journal of Manufacturing

Systems, 2019.

[2] R. Y. Park, J. H. Kim, J. Y. Yoo, “A hybrid

machine learning approach to financial early

warning systems”, Expert Systems with

Applications, 2020.

[3] X. Huang, J. Liu, W. Wu, and J. Xie, “Efficient

distributed deep learning using edge computing

for IoT”, IEEE Internet of Things Journal, 2017.

[4] D. Jiang, Z. Xu, Z. Lin, and J. Guo, “A parallel

data mining algorithm on Hadoop for big data.

Journal of Parallel and Distributed Computing,

2018.

[5] M. Zaharia, M. Chowdhury, J. Franklin, S.

Shenker, and I. Stoica, “Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing”, USENIX NSDI,

2012.

[6] T. M. Khoshgoftaar, J. Van Hulse, and A.

Napolitano, “Comparing boosting and bagging

techniques with noisy and imbalanced data”,

IEEE Transactions on Systems, Man, and

Cybernetics, 2013.

[7] https://www.geeksforgeeks.org/stratified-

random-sampling-an-overview/#what-is-

stratified-random-sampling

[8] https://statusneo.com/solving-data-skewness-in-

apache-spark-techniques-and-best-practices/

[9] https://sparktpoint.com/spark-persistence-

storage-levels/

[10] https://sparkbyexamples.com/spark/spark-

difference-between-cache-and-persist/

[11] https://medium.com/data-engineer/cache-vs-

persist-in-apache-spark-a-detailed-comparison-

cce43c529599

[12] https://www.kaggle.com/datasets/mlgulb/creditc

ardfraud

[13] https://medium.com/apache-spark-performance-

with-caching-and-persistence

