
© JUN 2024 | IRE Journals | Volume 7 Issue 12 | ISSN: 2456-8880 

 

IRE 1705959          ICONIC RESEARCH AND ENGINEERING JOURNALS 304 

Comparative Analysis of Persistence Storage Levels in 
Spark with Case Study  

 

THET HSU AUNG1, AYE MYAT MYAT PAING2 

1, 2  Faculty of Computer Science, University of Information Technology 
 

Abstract- This study conducts a comparative 

analysis of the training times for Long Short-Term 

Memory (LSTM) networks on Apache Spark, 

evaluating three different persistence storage levels: 

Disk-Only, Memory-Disk, and Memory-Only. The 

analysis is performed with and without a proposed 

sampling algorithm designed to address the issue of 

imbalanced datasets. The study specifically focuses 

on the Credit Card Fraud Detection dataset across 

varying dataset sizes. The results indicate that the 

Memory-Only storage level achieves the shortest 

training times. Considering this case study, the 

amount of the dataset influences the storage level 

selection. Therefore, this dataset indicates that 

memory_only is the best. Memory_disk_only is the 

second-best option, if memory becomes insufficient 

due to the growing dataset. Therefore, the choice of 

storage level affects performance, especially in 

memory usage and computation speed. 

Furthermore, the application of the sampling 

algorithm significantly enhances model 

performance metrics, including precision, recall, 

and F1-score, particularly in scenarios involving 

imbalanced data. These findings provide crucial 

insights for improving LSTM training on large-

scale imbalanced datasets, highlighting the 

importance of selecting appropriate storage 

configurations and preprocessing techniques in big 

data environments. 

 

Indexed Terms- Long Short-Term Memory, Disk-

Only, Memory-Only, Memory-Disk 

 

I. INTRODUCTION 

 

In the era of big data and machine learning, the 

efficient training of deep learning models, such as 

Long Short-Term Memory (LSTM) networks, is 

essential for various applications that involve 

sequential data. LSTM networks are particularly 

adept at handling tasks like time series prediction, 

natural language processing, and anomaly detection. 

However, training these models on large-scale 

datasets poses significant computational challenges, 

often requiring substantial time and resources. 

Apache Spark, a powerful distributed computing 

system, offers a promising solution to these 

challenges by enabling the parallel processing of 

large datasets, thereby accelerating the training 

process of machine learning models. 

 

One critical aspect of improving LSTM training on 

Apache Spark involves the configuration of storage 

levels, which dictate how data is cached during 

computations. Apache Spark provides various storage 

levels, such as Disk-Only, Memory-and-Disk, and 

Memory-Only, each with distinct performance 

characteristics. The Disk-Only storage level stores 

data on disk, which conserves memory but can 

increase data retrieval times. The Memory-and-Disk 

storage level stores data in memory as much as 

possible, spilling over to disk only when memory is 

insufficient. The Memory-Only storage level keeps 

data entirely in RAM, which reduces access times but 

requires ample memory capacity. Understanding the 

impact of these storage levels on training times is 

crucial for improving the performance of LSTM 

models. 

 

Another significant challenge in machine learning is 

dealing with imbalanced datasets. Imbalanced 

datasets, where some classes are underrepresented, 

can lead to biased models that perform poorly on 

minority classes. The Credit Card Fraud Detection 

dataset is a prominent example of an imbalanced 

dataset, where fraudulent transactions are much rarer 

than legitimate ones. Addressing data imbalance is 

essential for developing robust and reliable machine 

learning models. 

 

To tackle the issue of data imbalance, this study 

proposes a Sampling Algorithm for Imbalanced 

Datasets. This algorithm aims to improve the 

representation of minority classes, thereby enhancing 
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the performance and reliability of the trained models. 

The primary objectives of this study are: 

 

To compare the training times of LSTM models on 

Apache Spark with Disk-Only, Memory-and-Disk, 

and Memory-Only storage levels. 

 

To evaluate the effectiveness of the proposed 

Sampling Algorithm for Imbalanced Datasets in 

reducing training time and improving model 

performance. 

 

To analyze the performance improvements achieved 

through the combination of different storage levels 

and the sampling algorithm with different dataset 

size.  

 

This study conducts a comprehensive comparison 

analysis of LSTM training times on Apache Spark, 

focusing on three different storage configurations: 

Disk-Only, Memory-and-Disk, and Memory-Only. 

The analysis is applied to the Credit Card Fraud 

Detection dataset, an imbalanced dataset that presents 

a realistic and challenging scenario for model training 

with different dataset sizes. The findings offer 

valuable insights into the most efficient storage 

configurations, aiding practitioners in choosing the 

appropriate storage level to balance resource usage 

and training speed. Moreover, the evaluation 

demonstrates how the algorithm enhances model 

performance and training efficiency, providing a 

deeper understanding of how data preprocessing 

techniques can mitigate the issues associated with 

imbalanced datasets. 

 

The remainder of this paper is structured as follows. 

Section 2 reviews related work on LSTM networks, 

Apache Spark storage configurations, and techniques 

for handling imbalanced datasets. Section 3 theorical 

background. Section 4 presents Persistence Storage 

Levels in Spark. Section 5 describes the case study 

including the Credit Card Fraud Detection dataset 

and the proposed Sampling Algorithm for 

Imbalanced Datasets. Section 6 outlines the 

experimental setup, including the implementation of 

LSTM models on Apache Spark and the 

configurations tested. Section 7 presents the results of 

the experiments, comparing training times for 

different dataset sizes and model performance across 

different configurations. Finally, Section 8 concludes 

the paper and suggests directions for future research. 

 

II. LITERATURE REVIEW 

 

Kim, Lee, and Yoo (2019) [1] explored the 

integration of big data analytics with in-memory 

databases in the context of smart manufacturing. The 

authors discuss the challenges and opportunities 

presented by big data in the manufacturing sector, 

emphasizing the need for real-time data processing 

and analysis to enhance operational efficiency and 

decision-making. By leveraging in-memory 

databases, which allow data to be stored and 

processed directly in the main memory rather than on 

traditional disk storage, the study demonstrates 

significant improvements in data retrieval speeds and 

analytics performance. The research highlighted how 

in-memory database technologies can support various 

smart manufacturing applications, including 

predictive maintenance, quality control, and 

production optimization. The authors present case 

studies and experimental results that showcase the 

effectiveness of their approach, illustrating how it can 

lead to more responsive and adaptive manufacturing 

systems. The paper concludes with a discussion on 

the future directions for big data analytics in smart 

manufacturing, underscoring the potential for further 

innovations and the importance of continued research 

in this area. 

 

In the paper, Park, Kim, and Yoo [2] presented a 

hybrid machine learning approach designed to 

enhance financial early warning systems (FEWS). 

The authors combined various machine learning 

techniques, including decision trees, support vector 

machines, and neural networks, to create a robust 

ensemble model. This hybrid approach leverages the 

strengths of each individual method, mitigating their 

respective weaknesses and resulting in more precise 

predictions. The study involved extensive 

experimentation with real-world financial data to 

validate the effectiveness of the proposed model. The 

results demonstrated that the hybrid model 

outperforms traditional single method approaches in 

terms of predictive accuracy and early detection 

capabilities. By providing more accurate and timely 

warnings, the proposed system has the potential to 
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assist financial institutions and regulators in taking 

proactive measures to prevent financial crises. 

 

The authors [3] introduced a distributed deep learning 

framework that integrates edge computing, which 

involves processing data closer to the data source, 

thereby reducing the reliance on centralized cloud 

resources. This method is particularly beneficial for 

IoT environments where real-time data processing 

and low latency are critical. The framework partitions 

the deep learning tasks across multiple edge devices, 

allowing for parallel processing and reducing the load 

on central servers. The paper details the architecture 

of the proposed system, including the mechanisms 

for data partitioning, model synchronization, and task 

scheduling. Through extensive experimental 

evaluations, the authors demonstrate that their edge 

computing-based approach significantly improves the 

efficiency and speed of deep learning tasks compared 

to traditional cloud-based methods. The results show 

notable reductions in latency and bandwidth usage, 

making the approach suitable for various IoT 

applications, including smart cities, autonomous 

vehicles, and industrial automation. 

 

The authors proposed a parallel data mining 

algorithm designed to efficiently handle big data 

using the Hadoop framework [4]. The core objective 

of the research is to address the challenges associated 

with mining large-scale datasets by leveraging the 

parallel processing capabilities of Hadoop, an open-

source framework that facilitates distributed storage 

and processing of big data. Experimental evaluations 

are conducted to compare the performance of the 

proposed parallel algorithm against traditional, non-

parallel approaches. The results demonstrate 

substantial improvements in processing speed and 

scalability, validating the effectiveness of the 

Hadoop-based solution for big data mining tasks.  

 

The authors [5] identified the inefficiencies in 

existing cluster computing frameworks, such as 

MapReduce, which often rely on disk-based storage, 

leading to high latency and complexity in managing 

fault tolerance. To address these issues, they propose 

RDDs, which are distributed memory abstractions 

that enable users to perform computations on large 

datasets more efficiently. RDDs are immutable, 

partitioned collections of objects that can be operated 

on in parallel. They are designed to be fault-tolerant 

by maintaining lineage information that allows lost 

data to be recomputed, thus eliminating the need for 

costly replication strategies. This approach 

significantly reduces the overhead associated with 

fault tolerance. To evaluate the performance of 

RDDs, the authors conduct experiments comparing 

Spark with Hadoop, demonstrating that Spark can be 

up to 100 times faster in memory and 10 times faster 

on disk for certain applications. The results 

underscore the efficiency and scalability of RDDs in 

handling iterative and interactive queries on large 

datasets. 

 

Boosting and bagging are widely used ensemble 

learning techniques that aim to improve model 

accuracy by aggregating predictions from multiple 

base learners. Boosting focuses on sequential training 

models to correct the errors of its predecessors, while 

bagging involves training models on different subsets 

of the data and aggregating their predictions through 

averaging or voting. The authors [6] conducted a 

comparative analysis of boosting (specifically 

AdaBoost) and bagging (specifically Random 

Forests) across several experimental setups using 

benchmark datasets with varying degrees of noise 

and class imbalance. They evaluate the performance 

of these techniques using standard metrics such as 

accuracy, precision, recall, and F1-score. Key 

findings from the study highlight those boosting 

methods, particularly AdaBoost, exhibit superior 

performance compared to bagging methods like 

Random Forests when dealing with noisy and 

imbalanced data. AdaBoost demonstrates robustness 

in handling noisy features and class imbalance, 

achieving higher classification accuracy and more 

balanced performance across different evaluation 

metrics. 

 

The paper [7] provided a comprehensive review of 

techniques and methodologies proposed in the 

literature to mitigate the impact of class imbalance on 

machine learning models. They discussed the 

strengths, limitations, and applicability of each 

approach based on experimental results and empirical 

studies reported in the literature. They emphasize the 

importance of evaluating model performance using 

metrics beyond accuracy, such as precision, recall, 

F1-score, and area under the receiver operating 
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characteristic curve (AUC-ROC), which are more 

informative in imbalanced settings. 

 

III. THEORICAL BACKGROUND 

 

This section describes the theorical background of the 

proposed system. 

 

A. Apache Spark Architecture 

The Apache Spark framework manages data in the 

form of Resilient Distributed Datasets (RDDs), which 

store compute objects across networked cluster 

nodes. RDDs are stored in distributed memory 

(RAM) to optimize performance and enable fault 

tolerance by persisting intermediate results on disk 

drives or SSDs [8]. Spark jobs are executed in two 

phases—ShuffleMapStage and ResultStage—to 

organize tasks and gather computed results, 

respectively. However, data skewness, where 

partitions unevenly distribute data, can challenge 

operations, especially in join procedures, impacting 

performance. In enhancing reliability for real-time 

messaging systems, fault tolerance is crucial. Apache 

Kafka serves as a popular solution, offering flexible 

and reliable message delivery. Kafka ensures 

messages are delivered reliably across distributed 

processing environments like Apache Spark, where 

data partitioning and processing independence can 

lead to varying processing times across partitions, 

affecting overall task completion speed. 

 

B. Imbalanced Data on Apache Spark  

Imbalanced datasets present significant challenges in 

machine learning, especially within Big Data 

frameworks like Apache Spark. In such frameworks, 

data is divided into partitions across multiple 

machines within a cluster, potentially resulting in 

unequal data distribution among partitions. This 

phenomenon, known as data skew, can lead to 

performance issues, including degraded model 

performance, unstable training, misleading evaluation 

metrics, and inefficient resource allocation. To 

mitigate these challenges, effective balancing 

methods tailored for Big Data environments are 

crucial. These methods should leverage high-

performance computing architectures such as CPU 

clusters and GPUs to ensure scalability and efficiency 

in handling large and imbalanced datasets. 

Techniques like sampling algorithms are commonly 

employed to balance datasets before applying 

machine learning tasks. Addressing data imbalance is 

essential for improving classification performance 

and enhancing the reliability of data processing 

activities in Apache Spark. By implementing robust 

balancing strategies, machine learning models can 

achieve better accuracy and stability, thereby 

improving overall system performance in Big Data 

applications. 

 

C. Oversampling 

Oversampling, also known as upsampling, is a 

method used to adjust the class distribution of a 

dataset by increasing the number of instances in the 

minority class [7]. This is done by randomly 

replicating instances from the minority class until it 

reaches a desired balance with the majority class. The 

goal is to alleviate the bias towards the majority class 

and improve the model's ability to learn from the 

minority class instances. 

 

D. Long Short-Term Memory 

A Long Short-Term Memory (LSTM) network 

represents a specialized type of recurrent neural 

network (RNN) designed to manage long-range 

dependencies and sequential data effectively. Unlike 

conventional RNNs, LSTMs are equipped with 

memory cells capable of retaining information over 

extended periods, which enables them to capture 

intricate patterns in time series and sequential data. 

The architecture of an LSTM comprises crucial 

components such as the input gate, forget gate, output 

gate, and memory cell. These elements work in 

tandem to regulate the flow of information into and 

out of the memory cell. By selectively retaining or 

discarding information as per task requirements, 

LSTMs can mitigate the vanishing gradient problem 

that commonly hampers traditional RNNs. This 

capability makes LSTMs well-suited for training on 

sequences with prolonged dependencies. LSTMs find 

applications across diverse domains, including 

natural language processing (NLP), speech 

recognition, time series forecasting, healthcare for 

medical time series analysis, and finance for 

predicting market trends. Their proficiency in 

learning and remembering patterns within sequential 

data has established LSTMs as a pivotal tool in 

contemporary machine learning research and 

practical applications. 
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IV. PERSISTENCE STORAGE LEVELS IN 

SPARK 

 

In Apache Spark [9, 10], persistence storage levels 

refer to the strategies used to store RDDs (Resilient 

Distributed Datasets) across the nodes of a cluster. 

These storage levels are crucial for improving 

performance by balancing memory usage, 

computation speed, fault tolerance, and disk I/O.  

Here's a detailed description of the common 

persistence storage levels available in Spark as shown 

in Figure 1. 

• MEMORY_ONLY: This is the default storage 

level in Spark. It stores RDDs as deserialized Java 

objects in the JVM heap memory of the executor 

nodes. This allows for fast access to data but is 

limited by the available memory size. If an RDD 

does not fit in memory, recomputation will be 

necessary. 

• MEMORY_AND_DISK: This storage level 

stores RDD partitions that do not fit in memory 

on disk. The partitions that fit in memory stay in 

memory, while the remaining ones are spilled to 

disk. This level provides better tolerance for large 

datasets that exceed the available memory 

capacity but may incur higher access latency due 

to disk reads. 

• MEMORY_ONLY_SER and 

MEMORY_AND_DISK_SER: These levels store 

RDDs as serialized Java objects (binary data) in 

memory (or on disk for 

MEMORY_AND_DISK_SER). Serialization 

reduces the memory usage compared to storing 

objects directly but adds CPU overhead for 

serialization and deserialization. This can be 

beneficial when dealing with large objects or 

when memory resources are limited. 

• DISK_ONLY: RDDs are stored only on disk, 

which is useful when RDDs are too large to fit in 

memory. This level trades off computation speed 

for increased fault tolerance and the ability to 

handle very large datasets. Disk reads are slower 

compared to memory access, so performance may 

be impacted. 

• MEMORY_ONLY_2, 

MEMORY_AND_DISK_2, etc.: These are 

variants of the above storage levels that replicate 

each partition on two nodes to provide data 

redundancy and fault tolerance. This redundancy 

helps in recovering lost data partitions due to 

node failures but increases memory usage and 

storage requirements. 

 
Figure 1. Storage Levels 

 

Choosing the right persistence storage level depends 

on several factors including the size of the dataset, 

available memory in the cluster, computation speed 

requirements, and fault tolerance considerations. By 

selecting an appropriate storage level, Spark users 

can optimize performance, reduce recomputation 

overhead, and effectively manage large-scale data 

processing tasks in distributed environments [11, 12]. 

 

V. CASE STUDY 

 

In this system, training unbalanced dataset: Credit 

card dataset is used. The proposed system workflow 

is shown in Figure 2. The process begins with 

loading the credit card dataset into Apache Spark, 

followed by applying the proposed sampling 

algorithm to generate balanced datasets. During the 

model training phase, the LSTM model is trained on 

the dataset using three different storage levels: Disk-

Only, Memory-Disk, and Memory-Only. Training is 

conducted with both the original imbalanced dataset 

and the balanced dataset created by the sampling 

algorithm. The performance comparison involves 

analyzing training times across the various storage 

configurations, evaluating the impact of dataset size 

on training efficiency, and assessing the benefits of 

the sampling algorithm in terms of training speed and 

convergence. 
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Figure 2. Workflow on Apache Spark Architecture 

 

A. Dataset 

The credit card dataset sourced from a European 

financial institution serves as a crucial resource for 

studying fraud detection in electronic transactions 

while safeguarding cardholders' privacy. Spanning a 

two-day period, the dataset captures both legitimate 

and fraudulent transactions, anonymized to protect 

sensitive details like card numbers and identities. Key 

attributes include transaction time, amount, and 

anonymized features derived from PCA to preserve 

confidentiality [13]. The dataset's scale enables 

robust analysis despite its inherent imbalance, with 

fraudulent transactions significantly fewer than 

legitimate ones. Its imbalanced nature poses 

challenges, requiring specialized techniques to ensure 

accurate classification. By leveraging anomaly 

detection methods and robust classification 

algorithms, analysts can uncover fraudulent patterns 

and enhance transaction security. This dataset's value 

lies in its practical application, facilitating research 

into fraud prevention strategies and evaluation of 

detection algorithms within real-world transaction 

environments. This dataset is shown in figure 3. 

 
Figure 3. Credit Card Transaction in Dataset 

 

The balance of class labels in the dataset are 

displayed in Table 1. 99% of the data samples that 

were evaluated for the dataset correspond to the valid 

class "0." This data is very imbalanced. 

 

Table 1. Distribution of Sample in Credit Card 

Dataset 

Class Label No. of Class 

Non-Fraud 284315 

Fraud 492 

 

B. Proposed Sampling Algorithm 

Class imbalance, where one class significantly 

outnumbers the other, poses challenges in machine 

learning. Traditional approaches include 

oversampling, which duplicates minority class 

instances, but this can lead to overfitting. Conversely, 

undersampling, which reduces the majority class, 

risks losing critical data. To address these issues, the 

proposed system introduces an innovative sampling 

algorithm.  

 

To achieve a balanced dataset from the training data, 

follow these detailed steps: 

• It begins with training data and the corresponding 

labels. It determines the counts of fraud and non-

fraud instances in training data.  

• It identifies which class, fraud or non-fraud, has a 

higher count. This will be used to balance the 

dataset by generating additional instances of the 

minority class. 

• In Balancing Process, if the count of the fraud 

class is greater than the count of the non-fraud 

class,  
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• The difference (num) between the counts of the 

two classes is calculated.  

• a feature vector is extracted from the non-fraud 

class. 

• The last element of the extracted feature vector is 

removed.  

• A single feature from the adjacent non-fraud 

instance is obtained. 

• This feature is appended to the modified feature 

vector. 

• Then, the updated feature vector is appended to 

the non-fraud dataset. After that, label 1 is 

appended to the abnormal labels. 

• The difference (num) between the counts of the 

two classes. 

• A feature vector is extracted from the fraud class. 

• The last element of the extracted feature vector is 

removed. 

• A single feature from the adjacent fraud instance 

is obtained. 

• This feature is appended to the modified feature 

vector. 

• Then, the updated feature vector is appended to 

the fraud dataset. 

• After that, the label 0 is appended to the fraud 

labels. 

• Finally, the result is a balanced dataset where the 

number of instances for each class is equalized. 

 

This flowchart is presented in Figure 4.  

 
Figure 4. Flowchart of Proposed Sampling Algorithm 

 

It can be applied to various types of data (numerical, 

categorical) and can be adjusted based on specific 

needs by modifying the way synthetic samples are 

generated. By adding synthetic samples rather than 

duplicating existing ones, this method can help 

reduce the risk of overfitting. 

  

VI. EXPERIMENTAL SETUP 

 

In this experiment, Apache Spark cluster is 

developed and is used for integrating with deep 

learning like LSTM.  The system specification and 

necessary software components of the system are 

presented in Table 2. In this experiment, the 

parameters for LSTM for loss is 

“categorical_crossentropy,” batch size is “128,” and 

epochs is “100” for LSTM, activation function 

“Softmax,” and optimizer “Adam.” The Apache 
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Spark model provides the least training time. The 

main benefit of applying Spark is that the Spark 

cluster is constructed with commodity hardware. The 

nodes are situated within the same rack. 

 

Table 2. System Specification 

Operating System Ubuntu 20.04 LTS 

 

 

Host Specification 

Intel ® Core i7-11800H 

CPU @ 2.30GHz 

16GB Memory 

512 SSD 

VM Specification 8 GB RAM 

100 GB Hard Disk 

 

Software Components 

Hadoop 3 

Spark 3.3.3 

Python 3.10 

Elephas 4.0.1 

 

VII. EVALUATION 

 

In the system evaluation, LSTM model is trained on 

Apache Spark using different storage levels and 

dataset size. The training is conducted with both the 

original and balanced datasets to evaluate the impact 

of the sampling algorithm. Table 3, 4, and 5, describe 

the performance results with the storage levels: 

memory-only, disk-only, and memory-disk on 

original and balanced dataset.  

 

Two dataset sizes were used for evaluation: 280000 

and 560000 instances. The training was conducted 

with both the original and balanced datasets to 

evaluate the impact of the sampling algorithm. The 

performance results were evaluated using different 

storage-levels. For each run, the metrics (Precision, 

Recall, and f1-Score) were calculated and the final 

reported metrics are the average values across all 

runs. Despite variations in dataset sizes, the LSTM 

model consistently achieved perfect scores of 1 for 

precision, recall and F1-score across different storage 

levels. This indicates that the model’s robustness and 

the effectiveness of the training and proposed 

sampling methodologies employed. The following 

tables illustrate the consist results. 

 

 

 

 

Table 3. Performance Results of Memory-Only 

  Precision Recall 
F1-

Score 

Dataset 

size:280000 
1 1 1 

Dataset 

size:560000 
1 1 1 

 

Table 3 presents the performance results of the Long 

Short-Term Memory (LSTM) network when using 

the Memory-Only storage level with proposed 

sampling algorithm, measured across two different 

dataset sizes: 280,000 and 560,000. The metrics 

evaluated are precision, recall, and F1-score, each of 

which is crucial for assessing the effectiveness of the 

model, especially in the context of credit card fraud 

detection. 

 

Therefore, Table 3 highlights the efficacy of using 

the Memory-Only storage level for training LSTM 

networks on the Credit Card Fraud Detection dataset. 

The perfect precision, recall, and F1-score across 

varying dataset sizes underscore the model's 

robustness and accuracy, reinforcing the suitability of 

the Memory-Only storage level for high-performance 

LSTM training in big data environments. 

 

Table 4. Performance Results of Disk-Only 

  Precision Recall F1-Score 

Dataset 

size:280000 
0.98 0.98 0.98 

Dataset 

size:560000 
0.95 0.95 0.95 

 

Table 4 illustrates that the LSTM network performs 

well using Disk-Only storage, achieving high 

precision, recall, and F1-score. However, there is a 

noticeable decrease in performance as the dataset size 

increases, indicating that Disk-Only storage may not 

be as efficient or effective for larger datasets 

compared to Memory-Only storage. This underscores 

the importance of selecting appropriate storage 

configurations to optimize model performance in big 

data environments. 
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Table 5. Performance Results of Memory-Disk 

  Precision Recall F1-Score 

Dataset 

size:280000 
1 1 1 

Dataset 

size:560000 
0.99 0.99 0.99 

 

Table 5 demonstrates that the LSTM network 

achieves excellent performance with the Memory-

Disk storage level, maintaining high precision, recall, 

and F1-score across different dataset sizes. While 

perfect scores are attained for the smaller dataset, 

there is only a slight decrease in metrics for the larger 

dataset, highlighting the effectiveness and robustness 

of Memory-Disk storage in handling larger datasets. 

This underscores the importance of selecting 

appropriate storage configurations to optimize LSTM 

training and performance in big data environments. 

In the evaluation with persistent storage level: 

memory-disk, the proposed sampling algorithm 

provides the more accurate results. Therefore, more 

accurate results are provided by the proposed 

sampling algorithm on three persistent levels of 

storage: memory, disk, and memory-disk. Table 5 

presents the training time of three storage levels on 

different dataset sizes with proposed sampling 

algorithm. It presents the training time of three 

storage levels on different dataset sizes with proposed 

sampling algorithm. 

 

By highlighting the consistent performance metrics 

despite variations in dataset sizes and storage 

conditions, this paper emphasizes the reliability and 

robustness of the LSTM model. This consistency 

across different experimental setups underscores the 

model’s suitability for real-world applications where 

dataset sizes and storage configurations may vary. 

 

Table 6. Training Time Comparison of Three Storage 

Levels on Different Dataset size 

Time (seconds) Memory-

Only 

Disk-

Only 

Memory-

Disk 

Dataset 

size:280000 

603 640 649 

Dataset 

size:560000 

1177 2149 1316 

This table 6 compares the training times (in seconds) 

of Long Short-Term Memory (LSTM) networks 

using three different persistence storage levels: 

Memory-Only, Disk-Only, and Memory-Disk. The 

training times are evaluated across two different 

dataset sizes: 280,000 and 560,000 records. Memory-

Only storage consistently shows the shortest training 

times across both dataset sizes. This indicates that 

training the LSTM network is most efficient when all 

data can be kept in memory, minimizing latency 

associated with data access. Disk-Only storage has 

the longest training times, particularly for the larger 

dataset.  

 

This substantial increase in training time for the 

larger dataset highlights the inefficiencies introduced 

by relying on disk I/O operations, which are slower 

compared to memory access. Memory-Disk storage 

performs better than Disk-Only but is not as fast as 

Memory-Only storage. This storage level provides a 

compromise, offering better performance than Disk-

Only by utilizing memory where possible and spilling 

to disk when necessary.  

 

Therefore, Table 6 illustrates that the choice of 

storage level significantly impacts the training time 

of LSTM networks. Memory-Only storage provides 

the best performance, especially as dataset size 

increases, due to its fast data access speeds. Disk-

Only storage, while potentially necessary for very 

large datasets that exceed memory capacity, results in 

considerably longer training times due to slower disk 

I/O operations. Memory-Disk storage offers a middle 

ground, balancing memory usage with disk storage, 

and provides a reasonable compromise in training 

time performance. These insights emphasize the 

importance of selecting an appropriate storage 

configuration to optimize training efficiency in big 

data environments. 

 

CONCLUSION 

 

This study presents a comparative analysis of the 

training time of Long Short-Term Memory (LSTM) 

networks on Apache Spark, focusing on three 

persistent storage levels: Disk-Only, Memory-Disk, 

and Memory-Only. The analysis utilized a credit card 

fraud detection dataset of varying sizes, both with 

and without a proposed sampling algorithm to 
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address class imbalance. The findings indicate that 

Disk-Only storage resulted in the longest training 

times due to slow disk I/O operations, while 

Memory-Disk showed moderate training times with 

occasional disk spills when memory was insufficient. 

Memory-Only storage achieved the fastest training 

times by keeping data entirely in memory, thus 

avoiding I/O delays. Training times increased with 

dataset size across all storage configurations, with 

Memory-Only handling larger datasets more 

efficiently. As dataset size increases and memory 

constraints arise, the memory-disk storage level 

serves as a viable alternative, balancing memory 

usage and computation speed. The proposed 

sampling algorithm balanced the dataset, leading to 

more efficient training and faster convergence, 

whereas training on the imbalanced dataset without 

the algorithm was slower and less efficient. The study 

concludes that Memory-Only storage is preferred for 

minimizing training times in resource-sufficient 

environments for this case study. Implementing the 

sampling algorithm is crucial for handling 

imbalanced datasets effectively, thereby enhancing 

training efficiency and model performance. Future 

work should explore dynamic and hybrid storage 

strategies to further enhance Spark's performance and 

scalability.   
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