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Abstract- This research focuses on enhancing the 

optimization process of the classical ground state 

energy for hydrogen molecules, which is known to be 

-1.1373 Ha. Various well-known optimization 

algorithms such as Gradient Descent Optimizer, 

Adagrad Optimizer, Adam Optimizer, RMSProp 

Optimizer, and Momentum Optimizer are employed 

to explore their convergence behavior and their 

proximity to the precise ground state energy. The 

analysis extends to examining potential energy 

curves to gain insights into the stability and reactivity 

of hydrogen molecules. A notable discovery is the 

outstanding performance of the Momentum 

Optimizer, which outperforms other algorithms by 

achieving a ground state energy of -1.13724 Ha after 

40 steps. This consistent and exceptional 

performance establishes the Momentum Optimizer 

as the preferred choice. Additionally, a sensitivity 

analysis of parameters highlights the Momentum 

Optimizer's unique capability to avoid local minima, 

reinforcing its importance in optimizing quantum 

chemistry problems. Importantly, our sensitivity 

analysis consistently demonstrates the Momentum 

Optimizer's remarkable and reliable convergence to 

the exact ground state, irrespective of initial 

parameter settings. In summary, the study 

underscores the critical role of the Momentum 

Optimizer in navigating the complex energy 

landscapes specific to hydrogen molecules in 

quantum chemistry simulations. 
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I. INTRODUCTION 

 

In the rapidly evolving realm of information 

processing [1], quantum computing stands at the 

forefront, offering transformative capabilities that 

surpass the boundaries of classical computation. 

Unlike classical bits, quantum bits or qubits possess 

the ability to exist in multiple states simultaneously, 

enabling quantum computers to execute intricate 

calculations at unparalleled speeds. A primary 

objective of quantum computing is to devise methods 

and algorithms for computing molecular electronic 

ground and excited state energies [2] , along with their 

corresponding wave functions, from first principles. 

These eigenvalues and eigenvectors are derived from 

solving the time-independent electronic Schrödinger 

equation. Despite the emergence of sophisticated 

classical many-body techniques such as Density 

Matrix Renormalization Group (DMRG), selected 

configuration interaction (sCI), and coupled-cluster 

(CC) theory, accurately computing properties of 

quantum systems like ground-state energies remains 

challenging for large-scale systems due to 

computational complexity. However, with the rise of 

quantum algorithms like the Variational Quantum 

Eigensolver (VQE), the landscape offers promising 

alternatives that leverage quantum mechanics 

principles to transcend classical limitations. While 

traditional quantum algorithms like Quantum Phase 

Estimation (QPE) show theoretical prowess, their 

practical implementation on near-term Noisy 

Intermediate-Scale Quantum (NISQ) devices is 

hindered by the need for numerous qubits and gates. 

Similarly, the Full Configuration Interaction Quantum 

Eigensolver (FQE), while holding potential for precise 

quantum chemistry simulations, faces obstacles when 

deployed on NISQ devices due to inherent limitations. 

The intricate balance between the demand for accurate 

quantum computations and the constraints of current 

quantum hardware underscores the ongoing pursuit of 
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innovative quantum algorithms and hardware 

advancements to bridge the gap between theoretical 

potential and practical feasibility. 

 

Amidst the array of quantum algorithms, the 

Variational Quantum Eigensolver (VQE) emerges as a 

leading contender for efficiently computing ground-

state and excited-state energies of molecules. 

Noteworthy for its hybrid approach, VQE seamlessly 

integrates classical and quantum computation to 

overcome the limitations of current quantum 

hardware. Central to VQE is a variational 

parameterized ansatz—a flexible quantum circuit 

representation encapsulating a trial wave function. 

This key feature facilitates iterative parameter 

refinement, enabling VQE to navigate the intricate 

solution space and converge towards an 

approximation of the ground state. Subsequently, the 

ansatz parameters undergo iterative optimization on a 

classical computer using the Rayleigh-Ritz variational 

principle. This iterative process enhances energy 

computation precision, rendering VQE a versatile and 

efficient tool for quantum chemistry applications, 

harmonizing the theoretical capabilities of quantum 

algorithms with the practical constraints of modern 

quantum devices. To address challenges associated 

with optimizing hardware-efficient and chemically-

inspired ansatz circuits, our approach involves 

employing various optimization techniques. We 

intend to explore and compare different quantum 

optimizers, including gradient descent, Adagrad, 

Adam, RMSProp, and Momentum optimizers. 

Leveraging a diverse set of optimization algorithms 

aims to pinpoint the most effective strategy for 

minimizing energy and obtaining accurate ground 

state results. Additionally, we plan to conduct a 

sensitivity analysis by varying the initial parameters of 

the ansatz circuits. This analysis will offer insights into 

the robustness [3] of our chosen ansatz circuits and 

shed light on how variations in initial parameters 

impact the optimization process 

 

1.1 Description of The Variational Quantum 

Eigensolver (VQE) 

The Variational Quantum Eigensolver (VQE) 

algorithm is a potent quantum computing technique 

devised to determine the ground-state energy of a 

specified quantum system [4]. It harnesses the 

variational principle, a fundamental tenet of quantum 

mechanics [5]. This principle dictates that for any trial 

wavefunction ψ, the expected value of the 

Hamiltonian (H) will invariably exceed or equal the 

minimum energy (E0), represented as: 

𝐸 ≥ min
𝜓

⟨𝜓|�̂�|𝜓⟩                                                              (1) 

The aim of the VQE is to identify the parameterization 

of the quantum state in a manner that minimizes the 

expectation value of the Hamiltonian [6]. The 

molecular electronic Hamiltonian is expressed as 

follows: 

𝐻(𝑥) = ∑ ℎ𝑝𝑞
 

𝑝𝑞
𝑝†𝑞 + ∑ ℎ𝑝𝑞𝑟𝑠

 

𝑝𝑞𝑟𝑠
𝑝†𝑞†𝑠𝑟.         

 

1.2 Hydrogen( H2) Molecule 

Hydrogen molecules, denoted as 𝐻2, represent the 

simplest diatomic molecule composed of two 

hydrogen atoms. As a fundamental entity in chemistry 

and quantum physics, 𝐻2 molecules play a crucial role 

in understanding molecular bonding and electronic 

structure. The hydrogen atoms in an H2 molecule form 

a covalent bond , sharing electrons to achieve a stable, 

and lower energy state. This covalent bonding leads to 

the creation of molecular orbitals, and the study of 𝐻2 

serves as a cornerstone in exploring quantum 

mechanical principles in molecular systems. In our 

investigation, we aim to analyze the quantum aspects 

of the 𝐻2 molecule, focusing on its ground state 

energy, optimization with various algorithms, 

sensitivity to initial parameters, and dissociation 

energy under different bond lengths. 

 
Figure 1. Hydrogen Molecules 

 

In our implementation, we utilize the STO-3G basis 

set, which represents Slater Type Orbitals formed by a 

linear combination of 3 Gaussian functions. The 

convergence criterion was set to an order of 10−6 

tolerance. In the next step, it is essential to establish 

the quantum circuit responsible for creating the trial 
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state of the molecule. Our objective is to generate 

states in the format. 

|𝜓(𝜃)⟩ =  𝑐𝑜𝑠 (
𝜃

2
) |1100⟩ − 𝑠𝑖𝑛 (

𝜃

2
) |0011⟩               

In Jordan-Wigner encoding, the first term of the trial 

wave function |𝜓(𝜃)⟩  represents the Hartree-Fock 

(HF) state. This encoding maps the HF state to a binary 

string, where each bit corresponds to the occupation of 

a specific molecular orbital. The second term encodes 

the double excitation, representing an electronic 

configuration where two electrons are excited from 

their initial orbitals to higher-energy orbitals and 𝜃 is 

the parameter to be optimized  

 

II. RESULT AND DISCUSSION 

 

In our investigation into quantum chemistry, we 

undertook a thorough study centered on simulating the 

stable energy state of H2 molecules. We utilized 

different optimization tools, including Gradient 

Descent Optimizer, Adagrad Optimizer, Adam 

Optimizer, and Momentum Optimizer. Our quantum 

system was described using a 4-qubit configuration 

and the STO-3G basis set. We rigorously examined the 

results, ensuring they met a strict convergence 

criterion of 10−6 tolerance. Additionally, our inquiry 

expanded beyond just the optimization outcomes to 

include a sensitivity analysis, where we closely 

observed how these optimization tools responded to 

variations in the conditions. 

 

2.1 Analysis of optimizer performance 

In this investigation, the classical ground state energy 

is established at -1.1373 Ha. The optimization results 

with Gradient Descent Optimizer, AdagradOptimizer, 

AdamOptimizer, RMSProp Optimizer, and 

Momentum Optimizer reveal convergent behaviors. 

Each optimizer demonstrates proximity to the exact 

ground state energy, with Momentum Optimizer 

showing the closest approximation, reaching -

1.13700311 Ha after 40 steps. While all optimizers 

achieve close values, Momentum Optimizer stands out 

as the one converging most closely to the classical 

ground state energy, emphasizing its superior 

performance in this computational context. 

 
Figure 2.  Convergence of Optimizers to Ground 

State Energy 

 

2.2 Potential energy curve 

The investigation focuses on potential energy, a 

critical parameter defining the stability and reactivity 

of molecular configurations [7]. The study entails the 

analysis of potential energy curves, offering essential 

insights into how the potential energy of a quantum 

system varies with different bond lengths. These 

curves serve as valuable tools for evaluating the 

stability of molecular configurations and 

comprehending the dynamics of chemical reactions. 

Remarkably, our research unveils a notable level of 

consistency among the results obtained using the four 

optimizers—Gradient Descent, Adagrad, Adam, and 

Momentum. These optimizers consistently converge 

to similar solutions for potential energy across diverse 

bond lengths, underscoring their resilience in 

navigating the potential energy landscape of quantum 

systems. However, the RMSProp Optimizer exhibits a 

distinct behavior. Initially, it diverges from the 

convergence observed with the other four optimizers 

but subsequently aligns with their solutions. This 

initial deviation and eventual convergence imply a 

unique exploration of the potential energy landscape 

by the RMSProp Optimizer, suggesting that it initially 

follows a different trajectory before converging to 

solutions akin to those obtained with the other 

optimizers. 
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Figure 3 Potential energy curve for different 

optimizer 

 

2.3 Parameter Sensitivity Analysis 

Parameter sensitivity analysis is a critical component 

of optimizing quantum chemistry problems, as it sheds 

light on how different parameters and optimizers 

impact the optimization process. In our investigation, 

we explored the behavior of various optimizers across 

a range of initial parameter values to uncover 

intriguing trends. A standout finding from our 

sensitivity analysis was the consistently exceptional 

performance of the Momentum Optimizer. 

Irrespective of the initial parameter values, the 

Momentum Optimizer demonstrated a remarkable 

ability to converge to the exact ground state for the 

quantum computing problem. This robust 

convergence of the Momentum Optimizer is 

particularly noteworthy when compared to other 

optimizers in our study. While alternative optimizers 

struggled to locate the global minimum in certain 

scenarios, the Momentum Optimizer consistently 

reached the lowest energy state. Such remarkable 

performance underscores the Momentum Optimizer's 

effectiveness in escaping local minima and guiding the 

optimization process toward the global minimum. Our 

results underscore the significance of the Momentum 

Optimizer's capability to escape local minima for 

achieving precise and dependable outcomes in 

quantum chemistry simulations. In quantum systems, 

where accurately determining the ground state is 

paramount, the Momentum Optimizer's consistent and 

robust convergence establishes it as a valuable tool for 

optimizing quantum chemistry problems. In 

conclusion, the exceptional performance of the 

Momentum Optimizer in escaping local minima and 

achieving robust convergence underscores its 

importance in the domain of quantum chemistry 

optimization. As quantum simulations grow more 

complex, understanding optimizer nuances becomes 

essential for obtaining accurate and reliable results. 

The Momentum Optimizer emerges as a promising 

choice for such optimization tasks, demonstrating its 

efficacy in navigating the intricate energy landscapes 

of quantum systems. 

 
Figure 4. Parameter Sensitivity Analysis 
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