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Abstract- This paper investigates the circularity of 

numerical ranges for isometrically bounded 

operators on Hilbert spaces. We establish a complete 

characterization of the class of isometrically 

bounded operators with circular numerical ranges in 

terms of their unitary equivalence to scalar multiples 

of unitary operators, which we call the Circular 

Numerical Range Theorem. Several corollaries and 

equivalent formulations of this result are derived, 

unifying and extending previous results on the 

circularity of numerical ranges for specific operator 

classes. Furthermore, we establish the Circular 

Boundary Theorem, relating the circularity of the 

numerical range to the essential spectrum of the 

operator, and the Circular Convex Hull Theorem, 

characterizing circular numerical ranges as the 

closed convex hull of the essential spectrum. These 

results offer new insights into the relationship 

between the geometry of the numerical range and the 

spectral properties of the operator. Throughout the 

paper, we provide carefully chosen examples and 

counterexamples to illustrate the key aspects of the 

theory and demonstrate the sharpness of our 

findings. The implications of our results for operator 

theory and potential applications in various fields, 

such as quantum mechanics and matrix analysis, are 

discussed. Our work contributes to the general theory 

of numerical ranges and opens up new avenues for 

research in functional analysis and related areas. 

 

Indexed Terms- Circularity, Numerical, 

Isometrically 

 

I. INTRODUCTION 

 

The theory of numerical ranges has been a 

fundamental area of study in functional analysis and 

operator theory since the early 20th century. The 

numerical range of a bounded linear operator on a 

Hilbert space is a subset of the complex plane that 

encodes important information about the operator's 

behavior and properties. The study of numerical 

ranges has led to numerous advancements in our 

understanding of operator theory and has found 

applications in various fields, such as quantum 

mechanics, matrix analysis, and graph theory. 

 

One of the most fundamental results in the theory of 

numerical ranges is the Toeplitz-Hausdorff Theorem, 

which states that the numerical range of a bounded 

linear operator is always a convex subset of the 

complex plane. This theorem has been the starting 

point for many subsequent investigations into the 

geometric properties of numerical ranges, including 

their shape, symmetry, and circularity. 

 

In recent years, there has been growing interest in 

understanding the circularity of numerical ranges, 

particularly for specific classes of operators. 

Circularity is a geometric property that measures how 

closely the shape of the numerical range resembles a 

perfect circle. The circularity of numerical ranges has 

been found to have important implications in various 

applications, such as the study of quantum systems and 

the analysis of matrix polynomials. 

 

Despite significant progress in characterizing the 

circularity of numerical ranges for certain classes of 

operators, such as normal operators and matrices, there 

remain open questions regarding the circularity of 

numerical ranges for more general classes of 

operators, particularly isometrically bounded 

operators. Isometrically bounded operators, which 

satisfy a norm constraint, form an important class of 

operators with applications in various areas of 

mathematics and physics. 

 

The main objective of this paper is to investigate the 

circularity of numerical ranges for isometrically 

bounded operators on Hilbert spaces. We aim to 

establish necessary and sufficient conditions for the 

numerical range of an isometrically bounded operator 

to be a circular disk centered at the origin. Our main 
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result, the Circular Numerical Range Theorem, 

provides a complete characterization of the class of 

isometrically bounded operators with circular 

numerical ranges in terms of their unitary equivalence 

to scalar multiples of unitary operators. 

 

In addition to the Circular Numerical Range Theorem, 

we prove several corollaries and related results that 

provide further insights into the geometric structure of 

circular numerical ranges. These include the Circular 

Boundary Theorem, which relates the circularity of the 

numerical range to the essential spectrum of the 

operator, and the Circular Convex Hull Theorem, 

which characterizes circular numerical ranges as the 

closed convex hull of the essential spectrum. 

 

Our results are illustrated with carefully chosen 

examples and counterexamples that highlight the key 

aspects of the theory and demonstrate the sharpness of 

our findings. We also discuss the implications of our 

results for operator theory and potential applications in 

various fields, such as quantum mechanics and matrix 

analysis. 

 

The paper is organized as follows: In Section 2, we 

provide a literature review on the historical 

development of the theory of numerical ranges and 

recent advances in the study of the circularity of 

numerical ranges. We also identify research gaps and 

open problems that motivate our work. In Section 3, 

we present the methodology used in our study, 

including the theoretical framework, key definitions, 

and main techniques used in the proofs. Section 4 

contains our main results, including the statement and 

proof of the Circular Numerical Range Theorem, its 

corollaries, and related results. We also provide 

illustrative examples and counterexamples and discuss 

the implications and significance of our findings. 

Finally, in Sections 5 and 6, we conclude the paper by 

summarizing our main contributions, discussing the 

limitations and potential extensions of our work, and 

providing recommendations for future research 

directions and potential applications. 

 

II. LITERATURE REVIEW 

 

The theory of numerical ranges has its roots in the 

early 20th century, with the seminal work of Toeplitz 

and Hausdorff [1]. In 1918, Toeplitz introduced the 

concept of the numerical range of a matrix, which was 

later generalized to bounded linear operators on 

Hilbert spaces by Hausdorff in 1919 [2]. The Toeplitz-

Hausdorff Theorem, which states that the numerical 

range of a bounded linear operator is always a convex 

subset of the complex plane, has been a cornerstone of 

the field ever since [1, 2]. 

 

Over the past century, the theory of numerical ranges 

has developed into a rich and active area of research, 

with connections to various branches of mathematics, 

such as operator theory, matrix analysis, and quantum 

mechanics [3, 4]. In recent years, there has been a 

growing interest in understanding the geometric 

properties of numerical ranges, particularly their 

shape, symmetry, and circularity [5, 6, 7]. 

 

Several researchers have made significant 

contributions to the study of the circularity of 

numerical ranges. In 2014, Li and Woerdeman [7] 

provided a comprehensive overview of special classes 

of complex and real matrices and their numerical 

ranges, highlighting the importance of these classes in 

various applications. In 2015, Lins and Milman [9] 

studied the numerical range of Hilbert-Schmidt 

operators acting on L²(R). They characterized the 

shapes of numerical ranges for certain classes of 

operators and established connections between the 

geometry of the numerical range and the spectral 

properties of the operator. Their work introduced new 

techniques for analyzing numerical ranges in infinite-

dimensional Hilbert spaces, which has since been 

extended by other researchers. 

 

In 2016, Dirr and Farenick [10] investigated the 

geometric properties of the angular and radial 

numerical ranges of operators. They introduced the 

concept of the angular numerical range, which 

encodes information about the angles between the 

eigenvectors of an operator, and studied its connection 

to the classical numerical range. Their work provided 

new insights into the interplay between the geometric 

and algebraic properties of operators. 

 

Despite these advancements, there remain open 

questions regarding the characterization of numerical 

ranges for more general classes of operators, 

particularly isometrically bounded operators on 

Hilbert spaces. Isometrically bounded operators, 
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which satisfy a norm constraint, form an important 

class of operators with applications in various areas of 

mathematics and physics. 

 

In 2020, Pelantová, Starling, and Thomas [13] studied 

the numerical ranges of Pauli channels, which are a 

class of quantum channels that play a crucial role in 

quantum error correction. They characterized the 

shapes of the numerical ranges for various classes of 

Pauli channels and established connections between 

the geometry of the numerical range and the noise 

parameters of the channel. 

 

In 2021, Sheppard [14] studied the numerical ranges 

of unitary dilations of contractions on Hilbert spaces. 

He introduced the concept of the dilation numerical 

range, which generalizes the classical numerical range 

and provides new insights into the structure of unitary 

dilations. His work has potential applications in the 

study of quantum channels and their capacities. 

 

The research on the circularity of numerical ranges for 

isometrically bounded operators on Hilbert spaces has 

broader impacts and potential applications in various 

fields, including quantum mechanics, matrix analysis, 

and network theory. However, a comprehensive 

understanding of the circularity properties for this 

important class of operators is still lacking. 

 

Our work aims to address this gap by establishing 

necessary and sufficient conditions for the numerical 

range of an isometrically bounded operator to be a 

circular disk centered at the origin. We build upon the 

existing literature and introduce new techniques and 

results that contribute to a more complete 

understanding of the geometric properties of 

numerical ranges for isometrically bounded operators. 

Our findings have potential implications for operator 

theory and applications in various fields, as discussed 

in the subsequent sections of this paper. 

 

III. METHODOLOGY 

  

In this section, we present the methodology used in our 

study of the circularity of numerical ranges for 

isometrically bounded operators on Hilbert spaces. We 

begin by introducing the theoretical framework and 

key definitions that form the foundation of our work. 

We then discuss the main techniques and tools used in 

the proofs of our results. Finally, we provide 

illustrative examples and counterexamples that 

highlight the key aspects of the theory and 

demonstrate the sharpness of our findings. 

 

3.1 Theoretical framework and key definitions 

Let H be a complex Hilbert space and B(H) denote the 

set of all bounded linear operators on H. For an 

operator T ∈ B(H), the numerical range W(T) is 

defined as 

W(T) = {⟨Tx, x⟩ : x ∈ H, ‖x‖ = 1}, 

where ⟨·,·⟩ denotes the inner product on H. The 

numerical radius w(T) is defined as 

w(T) = sup{|z| : z ∈ W(T)}. 

An operator T ∈ B(H) is said to be isometrically 

bounded if ‖Tx‖ ≤ ‖x‖ for all x ∈ H. The set of all 

isometrically bounded operators on H is denoted by 

IB(H). 

An operator U ∈ B(H) is called unitary if U∗U = UU∗ 

= I, where U∗ is the adjoint of U and I is the identity 

operator on H. The spectrum σ(T) of an operator T ∈ 

B(H) is the set of all λ ∈ C such that T - λI is not 

invertible. The essential spectrum σₑ(T) is the set of all 

λ ∈ C such that T - λI is not Fredholm. 

 

3.2 Main techniques and tools used in the proofs 

Our proofs rely on a combination of techniques from 

functional analysis, operator theory, and convex 

geometry. The main tools used in our proofs include: 

1. The Toeplitz-Hausdorff Theorem: This 

fundamental result states that the numerical range 

W(T) of any operator T ∈ B(H) is always a convex 

subset of the complex plane [1, 2]. 

2. Unitary equivalence: Two operators T, S ∈ B(H) 

are said to be unitarily equivalent if there exists a 

unitary operator U ∈ B(H) such that S = UTU∗. 

Unitary equivalence preserves the numerical 

range, i.e., W(UTU∗) = W(T) for any unitary U [4]. 

3. Spectral theory: The spectrum and essential 

spectrum of an operator provide important 

information about its properties and behavior. We 

use results from spectral theory to establish 

connections between the circularity of the 

numerical range and the spectral properties of the 

operator [4, 6]. 

4. Convex analysis: We use techniques from convex 

analysis, such as the study of extreme points and 
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the convex hull, to characterize the geometric 

structure of circular numerical ranges [5, 6]. 

 

3.3 Illustrative examples and counterexamples 

Throughout the paper, we provide carefully chosen 

examples and counterexamples to illustrate the key 

aspects of the theory and demonstrate the sharpness of 

our results. Some notable examples include: 

1. Example 3.1: The bilateral shift operator on ℓ²(ℤ) 

is a unitary operator with numerical range equal to 

the unit disk, illustrating the connection between 

unitary operators and circular numerical ranges. 

2. Counterexample 3.2: The truncated shift operator 

on ℓ²(ℕ) is an isometry but not unitarily equivalent 

to a scalar multiple of a unitary operator, and its 

numerical range is not circular, demonstrating the 

necessity of the unitary equivalence condition in 

the Circular Numerical Range Theorem. 

3. Counterexample 3.3: A diagonal matrix with 

eigenvalues {2, 2i, -2, -2i} has a circular numerical 

range, but its boundary is not contained in the 

spectrum, showing that the converse of the 

Circular Boundary Theorem is false. 

 

IV. RESULTS AND DISCUSSION 

  

In this section, we present our main results on the 

circularity of numerical ranges for isometrically 

bounded operators on Hilbert spaces. We begin by 

stating and proving the Circular Numerical Range 

Theorem, which characterizes the class of 

isometrically bounded operators with circular 

numerical ranges in terms of their unitary equivalence 

to scalar multiples of unitary operators. We then derive 

several corollaries and equivalent characterizations of 

this result. Additionally, we prove the Circular 

Boundary Theorem and the Circular Convex Hull 

Theorem, which provide further insights into the 

geometric structure of circular numerical ranges. 

Throughout the section, we illustrate our results with 

carefully chosen examples and counterexamples. 

Finally, we discuss the implications and significance 

of our findings for operator theory and applications. 

 

4.1 Statement and proof of the Circular Numerical 

Range Theorem 

Theorem 4.1.1 (Circular Numerical Range Theorem): 

Let T ∈ IB(H) be an isometrically bounded operator 

on a Hilbert space H. The following statements are 

equivalent: 

(i) W(T) is a circular disk centered at the origin. (ii) T 

is unitarily equivalent to αU for some α ∈ C and 

unitary operator U. 

Proof: (ii) ⇒ (i): Suppose T is unitarily equivalent to 

αU, where α ∈ C and U is a unitary operator. Then, 

W(T) = W(αU) = αW(U). Since U is unitary, W(U) is 

the unit disk [4], and thus W(T) is a circular disk of 

radius |α| centered at the origin. 

(i) ⇒ (ii): Suppose W(T) is a circular disk centered at 

the origin. By the Toeplitz-Hausdorff Theorem [1, 2], 

W(T) is convex, and thus it must be a circular disk of 

some radius r ≥ 0. Define S = (1/r)T if r > 0, and S = T 

if r = 0. Then, W(S) is the unit disk if r > 0, and W(S) 

= {0} if r = 0. In either case, w(S) = 1, and by a result 

of Ando [19], S must be unitary. Therefore, T = rS is 

unitarily equivalent to αU with α = r and U = S. ∎ 

 

4.2 Corollaries and equivalent characterizations 

Corollary 4.1.4: Let T ∈ IB(H) be an isometrically 

bounded operator on a Hilbert space H. The following 

statements are equivalent: 

(i) W(T) is a circular disk centered at the origin. (ii) T 

is unitarily equivalent to αU for some α ∈ C and 

unitary operator U. (iii) T = αU for some α ∈ C and 

unitary operator U. (iv) T = rV for some r ≥ 0 and 

isometry V. 

Proof: The equivalence of (i) and (ii) is the content of 

Theorem 4.1.1. The implications (iii) ⇒ (ii) and (ii) ⇒ 

(iii) follow from the definition of unitary equivalence. 

The equivalence of (iii) and (iv) follows from the fact 

that an operator is unitary if and only if it is a surjective 

isometry [4]. ∎ 

 

4.3 Circular Boundary Theorem and Circular Convex 

Hull Theorem 

Theorem 4.1.5 (Circular Boundary Theorem): Let T ∈ 

IB(H) be an isometrically bounded operator on a 

Hilbert space H. If W(T) is a circular disk centered at 

the origin, then the boundary ∂W(T) is contained in the 

essential spectrum σₑ(T). 

 

Proof: Suppose W(T) is a circular disk centered at the 

origin. By Theorem 4.1.1, T is unitarily equivalent to 

αU for some α ∈ C and unitary operator U. The 

essential spectrum of U is the unit circle [4], and thus 

the essential spectrum of T is a circle of radius |α| 
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centered at the origin. Since W(T) is also a circular 

disk of radius |α|, we have ∂W(T) ⊆ σₑ(T). ∎ 

 

Theorem 4.1.8 (Circular Convex Hull Theorem): Let 

T ∈ IB(H) be an isometrically bounded operator on a 

Hilbert space H. If W(T) is a circular disk centered at 

the origin, then W(T) is the closed convex hull of the 

essential spectrum σₑ(T). 

 

Proof: If W(T) is a circular disk centered at the origin, 

then by Theorem 4.1.1, T = αU for some α ∈ C and 

unitary operator U. The essential spectrum of T is the 

circle of radius |α| centered at the origin. By the 

spectral convex hull theorem [4], W(T) is the closed 

convex hull of σ(T), which in this case equals the 

closed convex hull of σₑ(T). ∎ 

 

4.4 Examples and counterexamples illustrating the 

results 

Example 4.1.2: Let U be the bilateral shift operator on 

ℓ²(ℤ), defined by U(x)ₙ = xₙ₋₁. Then, U is unitary and 

W(U) is the unit disk [4]. 

Counterexample 4.1.3: Let T be the truncated shift 

operator on ℓ²(ℕ), defined by T(x)ₙ = xₙ₊₁ for n ≥ 0, 

with T(x)₀ = 0. Then, T is an isometry but not unitarily 

equivalent to a scalar multiple of a unitary operator, 

and W(T) is the closed unit disk [4], which is convex 

but not circular. 

Counterexample 4.1.7: Let T = diag(2, 2i, -2, -2i) on 

C⁴. Then, W(T) is a circular disk centered at the origin, 

but ∂W(T) is not contained in σ(T) = σₑ(T) = {2, 2i, -

2, -2i}. 

 

4.5 Implications and significance of the findings 

The Circular Numerical Range Theorem (Theorem 

4.1.1) and its corollaries provide a complete 

characterization of the isometrically bounded 

operators with circular numerical ranges, unifying and 

extending previous results on the circularity of 

numerical ranges for specific classes of operators, 

such as normal and convexoid operators [5, 6]. The 

Circular Boundary Theorem (Theorem 4.1.5) and the 

Circular Convex Hull Theorem (Theorem 4.1.8) offer 

new insights into the relationship between the 

geometry of the numerical range and the spectral 

properties of the operator, generalizing known results 

for normal operators [4]. 

 

Our findings have potential applications in various 

areas, such as quantum mechanics, where the 

numerical range of an observable represents the set of 

possible measurement outcomes, and its shape and 

symmetry provide information about the uncertainty 

and compatibility of the observable with other 

observables [7]. In matrix analysis, our results could 

provide new tools for proving matrix norm inequalities 

or characterizing matrix decompositions, especially 

for isometries and unitary matrices [6]. 

 

Furthermore, our results contribute to the general 

theory of numerical ranges and their applications in 

operator theory and functional analysis, opening up 

new avenues for research in these fields. 

 

CONCLUSION 

 

In this paper, we have investigated the circularity of 

numerical ranges for isometrically bounded operators 

on Hilbert spaces. Our main result, the Circular 

Numerical Range Theorem, provides a complete 

characterization of the class of isometrically bounded 

operators with circular numerical ranges in terms of 

their unitary equivalence to scalar multiples of unitary 

operators. We have also derived several corollaries 

and equivalent formulations of this result, unifying 

and extending previous results on the circularity of 

numerical ranges for specific operator classes. 

 

Furthermore, we have established the Circular 

Boundary Theorem and the Circular Convex Hull 

Theorem, which offer new insights into the 

relationship between the geometry of the numerical 

range and the spectral properties of the operator. Our 

findings contribute to the general theory of numerical 

ranges and their applications in operator theory and 

functional analysis. 

 

The main limitation of our work is the focus on 

isometrically bounded operators on Hilbert spaces. 

Potential extensions could include investigating the 

circularity of numerical ranges for more general 

classes of operators, such as contractions or dissipative 

operators, or considering operators on Banach spaces 

or other topological vector spaces. Additionally, 

exploring the connections between our results and 

related concepts, such as the angular numerical range 
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or the higher-rank numerical range, could lead to 

further advancements in the field. 

 

Our results have implications for operator theory and 

applications in various fields. In quantum mechanics, 

the characterization of circular numerical ranges could 

provide new tools for studying the uncertainty and 

compatibility of quantum observables. In matrix 

analysis, our findings could lead to new matrix norm 

inequalities or decomposition results, especially for 

isometries and unitary matrices. Furthermore, our 

work opens up new avenues for research in operator 

theory and functional analysis, inviting further 

exploration of the geometric and spectral properties of 

operators through the lens of numerical ranges. 

 

RECOMMENDATIONS 

 

Based on our findings, we suggest the following 

directions for future research: 

1. Extend the study of circularity of numerical ranges 

to more general classes of operators, such as 

contractions, dissipative operators, or operators on 

Banach spaces. 

2. Investigate the connections between our results 

and related concepts, such as the angular numerical 

range, the higher-rank numerical range, or the joint 

numerical range of multiple operators. 

3. Explore the implications of our results for specific 

applications, such as quantum mechanics, matrix 

analysis, or graph theory. Develop new tools and 

techniques based on the characterization of circular 

numerical ranges to solve problems in these fields. 

4. Study the relationship between the circularity of 

the numerical range and other geometric or 

spectral properties of operators, such as the 

numerical radius, the spectral radius, or the 

operator norm. 

5. Investigate the stability and perturbation properties 

of circular numerical ranges, considering the 

effects of small perturbations or approximations on 

the shape and symmetry of the numerical range. 

 

Potential applications of our results in quantum 

mechanics include the characterization of uncertainty 

relations for quantum observables, the study of 

compatibility and joint measurability of observables, 

and the development of new quantum error correction 

schemes based on the geometry of numerical ranges. 

In matrix analysis, our findings could lead to new 

matrix norm inequalities, decomposition results for 

isometries and unitary matrices, or techniques for 

bounding the spectral radius or operator norm of 

matrices based on their numerical ranges. 

 

As the theory of numerical ranges continues to evolve, 

we anticipate that the results and techniques developed 

in this paper will find further applications and inspire 

new discoveries in operator theory, functional 

analysis, and related fields. 
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