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Abstract- The rapid industrialization and 

urbanization of modern societies have led to a 

significant increase in carbon emissions, 

contributing to climate change and environmental 

degradation. Traditional monitoring methods often 

face limitations in spatial coverage, accuracy, and 

real-time detection. AI-powered computer vision, 

combined with remote sensing technologies, offers a 

transformative approach to monitoring and 

analyzing carbon emissions from industrial and 

urban sources. By leveraging machine learning and 

deep learning techniques, computer vision enables 

automated detection, classification, and 

quantification of emissions from satellite imagery, 

UAV-based sensors, and ground-level monitoring 

systems. This explores the integration of AI-driven 

computer vision in remote sensing for carbon 

emission detection. It examines key techniques such 

as convolutional neural networks (CNNs), 

generative adversarial networks (GANs), and 

transformer-based models, which enhance the 

analysis of multispectral and hyperspectral imaging 

data. The application of these models allows for 

precise identification of emission hotspots, trend 

forecasting, and environmental impact assessments. 

Furthermore, the fusion of AI with Internet of 

Things (IoT) sensors and edge computing provides a 

real-time, scalable solution for continuous emission 

monitoring. Despite its advantages, AI-powered 

carbon emission detection faces challenges, 

including data availability, model interpretability, 

and ethical concerns regarding surveillance and data 

privacy. Addressing these issues through improved 

data integration, regulatory frameworks, and 

transparency in AI models is crucial for effective 

implementation. As AI technology advances, the 

potential for real-time, high-resolution carbon 

monitoring will improve, facilitating better 

regulatory compliance and supporting global 

sustainability efforts. This highlights the growing 

role of AI-powered computer vision in environmental 

monitoring and emphasizes the need for further 

research and policy development to harness its full 

potential in combating climate change. 

 

Indexed Terms- AI-powered computer vision. 

Remote sensing, Carbon emission detection, Urban 

environments 

 

I. INTRODUCTION 

 

The rapid advancement of artificial intelligence (AI) 

and computer vision has significantly transformed the 

field of remote sensing, enabling more efficient and 

accurate environmental monitoring (Folorunso et al., 

2024; Ishola et al., 2024). AI-powered computer 

vision refers to the application of machine learning 

(ML) and deep learning (DL) techniques to analyze 

and interpret remotely sensed data from various 

sources, including satellite imagery, aerial 

photography, and unmanned aerial vehicles (UAVs). 

These technologies facilitate the automated 

identification, classification, and quantification of 

environmental parameters, making them 

indispensable in addressing critical global challenges 

such as climate change and air pollution (Afolabi et 

al., 2024). Remote sensing, when enhanced by AI, 

enables continuous and large-scale monitoring of 

environmental changes, providing real-time insights 
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that support decision-making and policy formulation 

(Ewim et al., 2024; Alozie, 2024). 

 

One of the most pressing concerns in environmental 

science today is the detection and management of 

carbon emissions in industrial and urban environments 

(Sam-Bulya et al., 2024). Carbon dioxide (CO₂) and 

other greenhouse gases (GHGs), such as methane 

(CH₄) and nitrous oxide (N₂O), are major contributors 

to global warming and climate change. Industrial 

activities, including manufacturing, power generation, 

and transportation, account for a significant portion of 

these emissions (Joel et al., 2024). Urban 

environments, characterized by high population 

density and extensive energy consumption, also 

contribute heavily to air pollution and carbon 

emissions. Traditional methods of emission 

monitoring rely on in-situ sensors and manual 

inspections, which are often limited in scope and 

accuracy. AI-powered computer vision, integrated 

with remote sensing technologies, offers a more 

scalable, automated, and precise approach to detecting 

and quantifying carbon emissions. By analyzing 

thermal infrared imaging, hyperspectral data, and 

satellite-based gas spectrometry, AI models can 

identify emission hotspots, track pollution dispersion 

patterns, and predict future emission trends (Odunaiya 

et al., 2024; Alozie et al., 2024). 

 

The primary objective of this review is to explore the 

integration of AI-powered computer vision with 

remote sensing technologies for carbon emission 

detection. The study aims to analyze the capabilities of 

different AI models, such as convolutional neural 

networks (CNNs), generative adversarial networks 

(GANs), and transformers, in processing remote 

sensing data for emission detection. Additionally, the 

review will assess the effectiveness of various data 

sources, including satellite imagery from NASA’s 

OCO-2 and Sentinel-5P missions, UAV-based thermal 

imaging, and ground-based monitoring stations. 

Furthermore, this review seeks to evaluate the real-

world applications of AI-powered remote sensing in 

industrial emission monitoring, urban air quality 

assessment, and policy-driven environmental 

management. 

 

The significance of this review lies in its potential 

contributions to environmental sustainability, climate 

change mitigation, and smart city development. By 

providing a comprehensive analysis of AI-driven 

remote sensing methodologies, this study will 

highlight innovative approaches to emission 

monitoring that can enhance regulatory compliance, 

improve industrial sustainability practices, and 

support evidence-based policymaking. Furthermore, 

integrating AI-powered remote sensing into urban 

planning can help cities optimize traffic management, 

energy distribution, and green infrastructure 

development, ultimately reducing their carbon 

footprint. As industries and governments worldwide 

strive to meet carbon neutrality targets, AI-powered 

remote sensing technologies present a transformative 

opportunity to achieve more efficient and cost-

effective emission reduction strategies. AI-powered 

computer vision has the potential to revolutionize 

remote sensing and carbon emission detection in 

industrial and urban environments (Collins et al., 

2024). The integration of AI and remote sensing 

technologies enables real-time, large-scale monitoring 

of emissions, providing critical data for mitigating 

climate change and improving air quality (Ewim et al., 

2024). This review will offer insights into the latest 

advancements, challenges, and future prospects of AI-

powered emission detection, contributing to the 

ongoing global efforts to achieve a sustainable and 

low-carbon future. 

 

II. METHODOLOGY 

 

The PRISMA methodology is used to systematically 

review existing literature on AI-powered computer 

vision for remote sensing and carbon emission 

detection in industrial and urban environments. The 

study follows four key phases: identification, 

screening, eligibility, and inclusion. 

 

In the identification phase, a comprehensive search is 

conducted across databases such as Scopus, Web of 

Science, IEEE Xplore, PubMed, and Google Scholar 

to retrieve relevant peer-reviewed articles, conference 

proceedings, and reports. Keywords and Boolean 

operators include terms such as “AI-powered 

computer vision,” “deep learning in remote sensing,” 

“machine learning for emission detection,” “carbon 

emission monitoring,” “industrial emissions,” “urban 

air quality,” “satellite imagery,” “UAV-based 

monitoring,” “hyperspectral imaging,” and “thermal 
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imaging.” Additional sources include grey literature, 

government reports, and institutional white papers to 

ensure a comprehensive dataset. 

 

During screening, all retrieved records are imported 

into reference management tools like Rayyan, 

EndNote, or Zotero for duplicate removal. Title and 

abstract screening is performed based on predefined 

inclusion and exclusion criteria. Inclusion criteria 

consist of studies published in peer-reviewed journals 

or conferences, research discussing AI-based 

computer vision techniques for remote sensing and 

carbon detection, applications in industrial and urban 

emission monitoring, and publications in English from 

the last 10 years (2014–2024). Exclusion criteria 

include non-English publications, studies unrelated to 

AI-based methodologies, research not focused on 

remote sensing or emissions, and review papers 

without empirical results. 

 

In the eligibility phase, full-text articles that pass the 

screening phase are reviewed for methodological 

rigor, data quality, and relevance to AI-driven 

emission detection. The Critical Appraisal Skills 

Programme (CASP) checklist is used to evaluate the 

validity and reliability of selected studies. Key aspects 

assessed include AI models used (CNNs, GANs, 

Transformers), remote sensing platforms (satellites, 

UAVs, IoT sensors), and performance metrics such as 

accuracy, precision, recall, and F1-score. 

 

Finally, in the inclusion phase, only high-quality and 

relevant studies are incorporated into the qualitative 

and quantitative synthesis. A PRISMA flow diagram 

is constructed to visually represent the study selection 

process, including the number of records identified, 

screened, and included in the final review, along with 

reasons for exclusion at different stages. This 

systematic approach ensures transparency, 

reproducibility, and rigor in synthesizing research on 

AI-powered computer vision for carbon emission 

detection, contributing to advancements in 

environmental monitoring and policy development. 

 

2.1 Fundamentals of AI-Powered Computer Vision in 

Remote Sensing 

The integration of artificial intelligence (AI) with 

computer vision has revolutionized remote sensing, 

enabling automated, accurate, and large-scale 

environmental monitoring (Ajayi et al., 2024). AI-

powered computer vision refers to the application of 

advanced algorithms that allow machines to interpret 

and analyze visual data with human-like perception. In 

remote sensing, these technologies process vast 

amounts of imagery from satellites, unmanned aerial 

vehicles (UAVs), and ground-based sensors, 

extracting critical insights for applications such as 

climate change monitoring, land-use analysis, and 

carbon emission detection (Elete et al., 2024; Abiola 

et al., 2024). By leveraging machine learning (ML) 

and deep learning (DL), computer vision enhances the 

ability to detect, classify, and predict environmental 

changes in industrial and urban environments. 

 

Computer vision is a subfield of AI that focuses on 

enabling machines to interpret and understand visual 

information from digital images and videos (Oluokun 

et al., 2024). It mimics human vision by detecting 

patterns, identifying objects, and analyzing spatial 

relationships within an image. The core principles of 

computer vision in AI involves as shown in figure 1; 

 

 
Figure 1: The core principles of computer vision in AI 

Image acquisition and preprocessing, capturing and 

preparing images for analysis through denoising, 

contrast adjustment, and normalization. Feature 

extraction, identifying important visual characteristics 

such as edges, textures, colors, and shapes (Onukwulu 

et al., 2024). Pattern recognition, classifying and 

detecting objects or anomalies using AI models trained 

on large datasets. Segmentation and object detection, 

dividing images into meaningful regions and locating 

specific objects of interest, such as emission sources 

or pollution hotspots. Prediction and decision-making, 

using AI-driven analysis to predict trends, detect 

changes, and support decision-making processes in 

environmental monitoring (Alozie et al., 2024). 
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Machine learning and deep learning play a crucial role 

in advancing computer vision for remote sensing 

applications. Machine learning involves training 

algorithms to recognize patterns in data and make 

predictions without explicit programming (Abiola et 

al., 2024). Supervised learning, unsupervised learning, 

and reinforcement learning are the primary ML 

techniques used in computer vision applications. Deep 

learning, a subset of ML, utilizes artificial neural 

networks (ANNs) with multiple layers to analyze 

complex image data. Some of the most widely used 

DL techniques in remote sensing include; 

Convolutional neural networks (CNNS) are 

specialized for image processing and feature 

extraction (Oluokun et al., 2024). They excel in tasks 

such as object detection, classification, and semantic 

segmentation of satellite and aerial imagery. 

Generative adversarial networks (GANs), generate 

high-resolution synthetic images for training AI 

models, improving the accuracy of remote sensing 

applications. Recurrent neural networks (RNNs) and 

transformers, these architectures analyze temporal and 

sequential data, making them useful for tracking 

emission patterns over time (Onukwulu et al., 2024; 

Odunaiya et al., 2024). AI-driven image analysis 

enables automated detection of carbon emissions, land 

degradation, and urban expansion, significantly 

improving the efficiency and scalability of remote 

sensing applications. 

 

Remote sensing technologies provide the foundation 

for AI-powered computer vision in environmental 

monitoring (Elete et al., 2024). These technologies 

collect vast amounts of geospatial data, which AI 

models process to extract meaningful insights. 

Satellites play a critical role in large-scale 

environmental monitoring by capturing high-

resolution imagery and spectral data. Various types of 

satellites contribute to AI-powered carbon emission 

detection; Optical satellites, capture visible and near-

infrared images, useful for land cover classification 

and urban heat mapping (Ewim et al., 2024; Joel et al., 

2024). Examples include NASA’s Landsat and the 

European Space Agency’s (ESA) Sentinel series. 

Thermal imaging satellites, detect temperature 

variations to identify industrial emissions and thermal 

pollution. NASA’s ECOSTRESS and Landsat 

Thermal Infrared Sensor (TIRS) are key examples. 

Hyperspectral imaging satellites, provide detailed 

spectral data for gas detection and emission 

monitoring. The Sentinel-5P satellite, equipped with 

the Tropospheric Monitoring Instrument 

(TROPOMI), detects CO₂, CH₄, and other pollutants. 

Satellites enable continuous global monitoring, 

making them essential for detecting emission trends, 

pollution hotspots, and climate change impacts 

(Alozie, 2024). 

 

Unmanned aerial vehicles (UAVs), commonly known 

as drones, provide high-resolution, localized 

monitoring of emissions and environmental changes. 

Equipped with AI-powered cameras and sensors, 

UAVs offer several advantages; UAVs can capture 

real-time data from difficult-to-reach industrial zones, 

urban centers, and hazardous areas (Nwulu et al., 

2024; Okolie et al., 2024). UAVs use infrared and 

multispectral cameras to detect heat emissions and 

pollutant dispersion patterns. Drones equipped with 

onboard AI processors can analyze data in real time, 

identifying emission leaks and structural anomalies in 

industrial facilities. UAVs complement satellite 

monitoring by providing high-resolution, localized 

data that enhances the accuracy of AI-driven emission 

detection models (Alozie, 2024). 

 

Ground-based sensors offer real-time, high-precision 

data collection to validate satellite and UAV 

observations (Sam-Bulya et al., 2024). These sensors 

include; Measure CO₂, CH₄, NO₂, and particulate 

matter (PM) concentrations in industrial and urban 

areas. Use laser and radio waves to detect aerosol and 

gas concentrations in the atmosphere. Provide 

continuous data streams for AI algorithms to analyze 

real-time emission levels and predict pollution trends 

(Jessa, 2024). Ground-based sensors act as a vital 

validation tool for AI-powered remote sensing models, 

ensuring accuracy and reliability in emission 

monitoring efforts. 

 

AI-powered computer vision has transformed remote 

sensing by enabling automated, large-scale, and 

precise environmental monitoring (Onukwulu et al., 

2024). By leveraging ML and DL techniques, 

computer vision enhances the ability to analyze 

satellite, UAV, and ground-based sensor data for 

detecting carbon emissions and environmental 

changes. Satellite-based remote sensing provides 

global coverage, UAVs offer localized and flexible 
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monitoring, and ground-based sensors ensure real-

time, high-precision data validation. Together, these 

technologies form an integrated framework for AI-

driven emission monitoring, supporting sustainable 

industrial practices and informed urban planning 

(Jessa and Ajidahun, 2024; Oluokun et al., 2024). As 

AI continues to advance, its application in remote 

sensing will play a crucial role in mitigating climate 

change and ensuring a cleaner, healthier environment. 

 

2.2 Carbon Emission Sources in Industrial and Urban 

Environments 

Carbon emissions are a major contributor to climate 

change, driven primarily by human activities in 

industrial and urban settings (Onukwulu et al., 2024). 

Understanding the sources of these emissions is 

crucial for developing effective mitigation strategies. 

Industrial sectors, including factories, power plants, 

and refineries, are among the largest contributors to 

carbon emissions. Additionally, urban areas generate 

significant emissions through transportation, 

construction, and energy consumption. Despite 

technological advancements, accurately monitoring 

and measuring carbon emissions remains a significant 

challenge due to complex emission patterns, data 

collection limitations, and regulatory gaps (Nwulu et 

al., 2024). 

 

Industries play a crucial role in global economic 

development but also contribute significantly to 

greenhouse gas (GHG) emissions (Lawal et al., 2024). 

The primary industrial sources of carbon emissions 

include; Manufacturing processes consume vast 

amounts of energy, leading to substantial CO₂ 

emissions. Industries such as cement, steel, and 

chemical manufacturing are particularly carbon-

intensive. The cement industry alone contributes 

approximately 8% of global CO₂ emissions due to the 

high energy requirements of clinker production 

(Onukwulu et al., 2024). Similarly, steel 

manufacturing relies heavily on coal-powered blast 

furnaces, making it one of the largest industrial 

emission sources. Fossil fuel-based power generation 

remains the dominant source of global energy, 

accounting for a significant portion of CO₂ emissions 

(Akinsooto et al., 2024). Coal, oil, and natural gas-

fired power plants release large amounts of carbon 

dioxide into the atmosphere. Despite the growth of 

renewable energy, many regions still rely on fossil 

fuels, making power generation a major challenge in 

reducing emissions. Efforts to transition to cleaner 

energy sources, such as wind, solar, and nuclear, are 

ongoing but require significant investment and 

infrastructure changes (Oyedokun et al., 2024). Oil 

refineries process crude oil into usable fuels such as 

gasoline, diesel, and jet fuel, releasing considerable 

carbon emissions in the process. The refining process 

involves combustion, chemical reactions, and energy-

intensive operations that contribute to air pollution. 

Petrochemical industries, which produce plastics, 

fertilizers, and synthetic materials, also generate 

substantial emissions due to their reliance on fossil 

fuel-based feedstocks (Oyedokun et al., 2024). 

Industrial emissions are not limited to CO₂ alone; they 

also include methane (CH₄), nitrous oxide (N₂O), and 

other pollutants that contribute to global warming. 

Reducing industrial emissions requires cleaner 

production technologies, carbon capture and storage 

(CCS), and policy-driven incentives for low-carbon 

alternatives. 

 

Urban environments are significant contributors to 

global carbon emissions due to high population 

density, energy consumption, and transportation needs 

(Oluokun et al., 2024). The main urban emission 

sources include as shown in figure 2. 

 

 
Figure 2: Main urban emission sources 

 

Road transportation accounts for nearly 25% of global 

CO₂ emissions, with cars, buses, trucks, and 

motorcycles burning fossil fuels for mobility 

(Akinsooto et al., 2024). The combustion of gasoline 

and diesel releases carbon dioxide and other pollutants 

such as nitrogen oxides (NOₓ) and particulate matter 

(PM) (Oyedokun et al., 2024). While electric vehicles 

(EVs) and public transportation improvements offer 

cleaner alternatives, the transition to low-emission 
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transportation is still in progress in many cities (Nwulu 

et al., 2024). Urban expansion and infrastructure 

projects contribute significantly to carbon emissions. 

The production of construction materials, such as 

cement and steel, requires high energy consumption, 

leading to large CO₂ emissions. Additionally, 

construction activities involve heavy machinery 

powered by fossil fuels, further increasing emissions. 

Green building techniques and energy-efficient 

construction materials are being explored to reduce the 

carbon footprint of urban development (Arinze et al., 

2024). Buildings contribute to urban carbon emissions 

through heating, cooling, lighting, and electrical 

appliances. The use of fossil fuel-based energy sources 

for electricity and heating results in high CO₂ 

emissions. In many cities, outdated infrastructure and 

inefficient energy use exacerbate the problem. 

Transitioning to renewable energy sources, improving 

insulation, and implementing smart energy 

management systems can significantly reduce 

emissions from buildings (Oyedokun et al., 2024). 

Despite the growing urgency to address climate 

change, monitoring and measuring carbon emissions 

remain complex and challenging due to several 

factors; One of the major challenges in emission 

monitoring is the availability and accuracy of data 

(Ayanponle et al., 2024). Industrial emissions vary by 

production processes, energy sources, and operational 

efficiencies, making it difficult to standardize 

measurement techniques. Similarly, urban emissions 

fluctuate based on traffic patterns, energy 

consumption, and seasonal variations, requiring 

continuous monitoring. Many developing regions lack 

the technological infrastructure for real-time emission 

monitoring. While satellite-based remote sensing, 

ground-based sensors, and AI-powered computer 

vision are improving carbon monitoring capabilities, 

these technologies require significant investment and 

technical expertise. Additionally, industries may lack 

incentives to install monitoring systems due to 

economic constraints or regulatory loopholes 

(Oluokun et al., 2024). Global carbon monitoring 

efforts depend on regulatory frameworks and 

international agreements such as the Paris Agreement. 

However, inconsistent policies, weak enforcement 

mechanisms, and lack of transparency in reporting 

emissions hinder progress. Some industries may 

underreport emissions to avoid penalties, making it 

difficult to track actual carbon output. Strengthening 

environmental regulations and promoting carbon 

pricing mechanisms can encourage more accurate 

reporting and accountability (Ayanponle et al., 2024; 

Ajayi et al., 2024). Many emissions are indirect, 

occurring across supply chains and outsourced 

manufacturing processes. Accurately tracking the 

entire lifecycle of emissions, from production to end-

use, remains a significant challenge. 

 

Carbon emissions from industrial and urban 

environments are among the leading causes of climate 

change, requiring urgent and comprehensive 

mitigation efforts. Industrial sources such as factories, 

power plants, and refineries contribute substantial 

emissions, while urban areas generate carbon output 

through transportation, construction, and energy 

consumption (Agbede et al., 2024; Akinsooto et al., 

2024). Despite advancements in monitoring 

technologies, challenges in data accuracy, regulatory 

enforcement, and indirect emissions persist. 

Addressing these challenges requires a multi-faceted 

approach, integrating AI-powered remote sensing, 

stricter environmental policies, and widespread 

adoption of sustainable practices (Adeleye et al., 2024; 

Ajiga et al., 2024). By improving emission tracking 

and promoting cleaner alternatives, industries and 

cities can play a pivotal role in reducing global carbon 

footprints and mitigating climate change impacts. 

 

2.3 AI Techniques for Carbon Emission Detection and 

Analysis 

Artificial intelligence (AI) has revolutionized carbon 

emission detection and analysis by enabling precise, 

automated, and large-scale monitoring as explain in 

table 1. Traditional carbon emission measurement 

methods rely on ground-based sensors and manual 

data collection, which can be limited in scope and 

efficiency (Onukwulu et al., 2024). AI-powered 

techniques leverage advanced image processing, deep 

learning models, and sensor fusion to enhance 

detection accuracy in industrial and urban settings. 

This explores key AI-driven approaches, including 

image processing and pattern recognition, deep 

learning architectures, multispectral and hyperspectral 

imaging integration, and the fusion of satellite imagery 

with sensor data. 
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Table 1: AI techniques for carbon emission detection 

and analysis 

AI 

Technique 

Descriptio

n 

Applicati

on in 

Carbon 

Emission 

Detection 

Advantage

s 

Convoluti

onal 

Neural 

Networks 

(CNNs) 

Deep 

learning 

models 

specialized 

in image 

analysis 

Identifyin

g carbon 

emission 

sources 

from 

satellite/a

erial 

imagery 

High 

accuracy 

in feature 

extraction 

Recurrent 

Neural 

Networks 

(RNNs) & 

Long 

Short-

Term 

Memory 

(LSTM) 

Models 

designed 

for 

sequential 

data 

analysis 

Tracking 

emission 

trends 

over time 

from 

sensor 

and 

satellite 

data 

Effective 

for time-

series 

prediction

s 

Generativ

e 

Adversari

al 

Networks 

(GANs) 

AI models 

that 

generate 

synthetic 

data to 

enhance 

training 

Enhancin

g low-

resolution 

satellite 

images 

for better 

emission 

detection 

Improves 

data 

quality 

and 

resolution 

Support 

Vector 

Machines 

(SVMs) 

Supervised 

learning 

algorithm 

for 

classificati

on tasks 

Classifyin

g 

pollution 

levels 

based on 

spectral 

data from 

remote 

sensing 

Works 

well with 

smaller 

datasets 

Random 

Forest & 

Decision 

Trees 

Ensemble 

learning 

methods 

for 

classificati

on and 

regression 

Identifyin

g 

emission 

hotspots 

based on 

historical 

High 

interpretab

ility 

pollution 

data 

Unsupervi

sed 

Clustering 

(K-Means, 

DBSCAN, 

Hierarchic

al 

Clustering

) 

Groups 

data points 

based on 

similarities 

Detecting 

anomalou

s 

emission 

patterns 

in urban 

environm

ents 

No need 

for labeled 

data 

Principal 

Compone

nt 

Analysis 

(PCA) 

Dimension

ality 

reduction 

technique 

Extractin

g 

essential 

emission-

related 

features 

from 

large 

datasets 

Reduces 

computati

onal 

complexit

y 

Reinforce

ment 

Learning 

(RL) 

AI models 

that learn 

through 

trial and 

error 

Optimizin

g 

emission 

reduction 

strategies 

in 

industrial 

operation

s 

Adaptive 

to real-

world 

scenarios 

Edge AI 

for On-

Site 

Processing 

AI models 

deployed 

on local 

devices 

rather than 

cloud 

Real-time 

emission 

monitorin

g from 

IoT-

enabled 

sensors 

Reduces 

latency 

and 

bandwidth 

usage 

Explainabl

e AI (XAI) 

Technique

s 

Methods to 

make AI 

predictions 

more 

interpretab

le 

Ensuring 

transpare

ncy in 

emission 

analysis 

for 

policy-

making 

Improves 

trust and 

regulatory 

complianc

e 

 

Image processing and pattern recognition techniques 

play a fundamental role in detecting and analyzing 

carbon emissions (Ajiga et al., 2024). Remote sensing 

images, captured by satellites, drones, and ground-
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based sensors, provide valuable insights into air 

pollution and greenhouse gas (GHG) emissions. AI-

based image processing techniques analyze these 

images to identify emission sources, track pollution 

dispersion, and estimate emission levels. Several key 

methods enhance emission detection through image 

processing; Edge detection and segmentation, 

algorithms such as the Canny edge detector and 

watershed segmentation identify emission plumes, 

smoke, and gas leaks in satellite and aerial images 

(Onukwulu et al., 2024). Object detection and 

classification, AI models trained on emission 

signatures classify industrial stacks, vehicles, and 

urban heat islands contributing to carbon output. 

Temporal changes in images are analyzed to detect 

emission trends and anomalies, improving predictive 

analytics for environmental monitoring. Pattern 

recognition further improves emission analysis by 

identifying recurring emission patterns and correlating 

them with industrial activities and traffic congestion 

(Kokogho et al., 2024; Elete et al., 2024). AI-driven 

models can differentiate between natural atmospheric 

variations and human-induced emissions, leading to 

more accurate assessments. 

 

Deep learning models have significantly improved the 

ability to analyze and interpret remote sensing data for 

carbon emission detection (Afolabi et al., 2024). 

Convolutional Neural Networks (CNNs), Generative 

Adversarial Networks (GANs), and Transformers 

have been widely adopted in this field. CNNs are 

particularly effective for analyzing remote sensing 

images due to their ability to recognize spatial 

patterns. These models automatically extract 

emission-related features such as gas dispersion, 

temperature anomalies, and industrial activities. Pre-

trained CNNs, such as ResNet and VGGNet, are 

commonly used for classifying and segmenting 

emission sources in satellite imagery. GANs enhance 

carbon emission detection by generating high-

resolution synthetic images that improve the quality of 

remote sensing data. By training on real-world 

emission datasets, GANs can create realistic 

simulations of pollution spread, enabling researchers 

to predict future emission trends and assess the impact 

of regulatory interventions (Sam-Bulya et al., 2024; 

Akhigbe et al., 2024). Transformer-based models, 

such as Vision Transformers (ViTs), have emerged as 

powerful tools for remote sensing image analysis. 

Unlike CNNs, transformers process entire images 

simultaneously, capturing long-range dependencies 

between features. This capability makes them highly 

effective for analyzing complex emission patterns 

over large geographical areas. 

 

Multispectral and hyperspectral imaging techniques 

provide detailed spectral data that enhance carbon 

emission detection beyond traditional optical imaging 

(Egbuhuzor, 2024). These advanced imaging 

modalities capture emissions in various wavelength 

bands, including infrared, which is particularly useful 

for detecting gases such as CO₂ and methane. AI-

powered algorithms analyze multispectral and 

hyperspectral data to improve emission detection 

through; AI models decompose mixed spectral signals 

to isolate specific greenhouse gases from background 

noise (Ajayi et al., 2024). Machine learning 

techniques, such as Principal Component Analysis 

(PCA) and autoencoders, detect deviations in spectral 

data that indicate abnormal emissions. AI classifiers 

categorize emission sources based on spectral 

signatures, while regression models estimate emission 

concentrations. By integrating AI with multispectral 

and hyperspectral imaging, researchers can enhance 

the precision of emission detection, enabling 

policymakers and environmental agencies to 

implement targeted mitigation strategies (Alozie et al., 

2024). 

 

Combining satellite imagery with ground-based and 

airborne sensor data significantly improves the 

accuracy and reliability of carbon emission analysis 

(Ewim et al., 2024). AI-driven sensor fusion 

techniques integrate multiple data sources to provide a 

comprehensive view of emission dynamics. Merges 

images from different sensors to create high-resolution 

emission maps. Extracts complementary features from 

various data sources, enhancing classification 

accuracy. Combines predictions from multiple AI 

models to improve robustness and reliability. AI-

powered Internet of Things (IoT) sensors deployed in 

industrial zones and urban areas continuously collect 

real-time emission data. These sensors communicate 

with satellite-based AI models, refining emission 

estimates by correlating ground observations with 

remote sensing data. AI models trained on historical 

emission data predict future pollution levels and 

provide early warnings for regulatory authorities 
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(Afolabi et al., 2024; Collins et al., 2024). Predictive 

analytics enable proactive decision-making, helping 

governments enforce environmental policies and 

industries optimize carbon reduction strategies. AI 

techniques have transformed carbon emission 

detection and analysis, offering unprecedented 

accuracy and scalability. Image processing and pattern 

recognition methods enhance the identification of 

emission sources, while deep learning models, 

including CNNs, GANs, and transformers, improve 

remote sensing analysis (Folorunso et al., 2024). The 

integration of AI with multispectral and hyperspectral 

imaging enables precise gas detection, while sensor 

fusion techniques combine satellite and ground-based 

data for comprehensive monitoring. These 

advancements empower policymakers, environmental 

agencies, and industries to implement data-driven 

solutions for mitigating carbon emissions and 

addressing climate change challenges (Jahun et al., 

2021; Onukwulu et al., 2022). 

 

2.4 Applications of AI-Powered Computer Vision in 

Carbon Monitoring 

The integration of artificial intelligence (AI) and 

computer vision in remote sensing has revolutionized 

the monitoring and analysis of carbon emissions 

(Egbuhuzor et al., 2022). AI-powered computer vision 

systems leverage satellite imagery, unmanned aerial 

vehicles (UAVs), and sensor networks to detect, 

analyze, and predict carbon emissions in both 

industrial and urban environments. These applications 

contribute to enhanced environmental monitoring, 

policy enforcement, and climate impact assessment 

(Collins et al., 2022). This explores the key 

applications of AI-powered computer vision in carbon 

monitoring, focusing on detecting industrial emissions 

using AI-enhanced satellite imagery, monitoring 

urban air quality through UAV-based computer vision, 

and predictive analytics for emission trends and 

climate impact assessment. 

 

Industrial emissions are a major contributor to 

greenhouse gases (GHGs), particularly carbon dioxide 

(CO₂), methane (CH₄), and nitrous oxide (N₂O). 

Factories, power plants, and refineries release 

significant amounts of these gases, necessitating 

effective monitoring solutions (Egbuhuzor et al., 

2023). AI-enhanced satellite imagery provides an 

advanced approach to detecting and analyzing 

industrial emissions at a large scale. AI-powered 

computer vision models process satellite images to 

identify emission sources, quantify pollutant 

concentrations, and track dispersion patterns. Several 

key techniques contribute to this capability as shown 

in figure 3; 

 

 
Figure 3: Key techniques in applications of AI-

powered computer vision in carbon monitoring 

 

Convolutional Neural Networks (CNNs) and Vision 

Transformers (ViTs) segment satellite images to 

distinguish emission sources from surrounding 

environments (Fredson et al., 2022). AI models can 

differentiate between industrial plumes and natural 

atmospheric variations. Multispectral and 

hyperspectral analysis, AI algorithms analyze spectral 

data from satellites, such as those provided by 

Sentinel-5P and Landsat, to detect specific gas 

emissions. Infrared imaging is particularly effective 

for identifying CO₂ and CH₄, Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory 

(LSTM) networks analyze historical satellite data to 

detect trends in industrial emissions over time. This 

helps regulatory agencies assess the effectiveness of 

pollution control measures. By automating the 

analysis of satellite imagery, AI-powered computer 

vision enhances real-time monitoring and ensures that 

industries comply with environmental regulations 

(Nwulu et al., 2023). 

 

Urban environments contribute significantly to carbon 

emissions due to vehicular traffic, energy 

consumption, and construction activities 

(Chukwuneke et al., 2021). Monitoring air quality in 

cities is crucial for public health and environmental 

sustainability. AI-powered UAV-based computer 

vision offers a flexible and efficient solution for real-

time air quality monitoring. UAVs equipped with AI-
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enhanced cameras and sensors can collect high-

resolution images and gas concentration data from 

various urban locations. The advantages of UAV-

based carbon monitoring include; AI-powered drones 

use image processing techniques to detect pollutant 

hotspots, such as high-traffic areas and industrial 

zones (Okolie et al., 2021). UAVs equipped with 

hyperspectral cameras and infrared sensors measure 

CO₂, CH₄, and NO₂ levels. AI algorithms analyze 

sensor data to determine pollution intensity and 

dispersion. AI-driven object detection models identify 

vehicles in real-time and estimate their emission 

contributions. Integrating drone data with traffic flow 

analysis helps urban planners implement policies to 

reduce vehicular pollution. By utilizing AI-powered 

UAVs, cities can monitor air quality dynamically, 

respond to pollution events, and develop data-driven 

urban sustainability strategies (Jessa, 2017). 

 

Predictive analytics, powered by AI and machine 

learning, plays a crucial role in forecasting emission 

trends and assessing their impact on climate change 

(Basiru et al., 2023). AI models trained on historical 

emission data and climate patterns provide insights 

into future pollution levels and help design mitigation 

strategies (Okolie et al., 2022). Key predictive 

analytics techniques in carbon monitoring include; 

Algorithms such as Gradient Boosting Machines 

(GBMs), Random Forests, and Neural Networks 

process large datasets to identify emission trends. 

These models help policymakers understand the 

progression of industrial and urban emissions over 

time. AI-powered simulations integrate emission data 

with climate models to assess potential environmental 

impacts. By analyzing temperature changes, weather 

patterns, and atmospheric carbon levels, AI can predict 

long-term consequences of current emission trends 

(Nwulu et al., 2023). AI models detect emerging 

pollution trends and provide early warnings for 

regions at risk of exceeding safe air quality limits. 

These insights enable timely interventions, such as 

traffic restrictions and industrial emission controls. 

Predictive analytics enhances decision-making by 

providing governments, industries, and environmental 

agencies with data-driven recommendations for 

reducing carbon footprints. AI-powered computer 

vision has transformed carbon monitoring by enabling 

precise, scalable, and real-time emission detection 

(Egbumokei et al., 2021). AI-enhanced satellite 

imagery improves industrial emission tracking, UAV-

based monitoring enhances urban air quality 

assessments, and predictive analytics provides insights 

into future emission trends. These advancements 

contribute to environmental policy enforcement, 

sustainable urban planning, and climate change 

mitigation efforts (Fredson et al., 2021; Basiru et al., 

2023). By leveraging AI-driven solutions, researchers 

and policymakers can develop more effective 

strategies for reducing carbon emissions and ensuring 

a healthier, more sustainable future. 

 

2.5 Challenges and Limitations 

Artificial intelligence (AI) has revolutionized carbon 

emission detection through remote sensing, predictive 

modeling, and real-time monitoring (Basiru et al., 

2023). However, despite its potential, AI-driven 

approaches face several challenges and limitations that 

hinder their effectiveness and widespread adoption. 

These challenges include data availability and quality 

issues, concerns about model interpretability and 

accuracy, and ethical and policy considerations that 

affect the implementation of AI-powered monitoring 

systems. Addressing these limitations is essential for 

developing reliable and scalable AI solutions for 

carbon emission detection. 

 

One of the most significant challenges in AI-driven 

carbon emission detection is ensuring the availability 

and quality of data. AI models require vast amounts of 

high-resolution, accurately labeled data to train and 

perform effectively. Remote sensing technologies, 

including satellite imagery and drone-based 

monitoring systems, generate massive datasets, but 

these datasets often suffer from inconsistencies due to 

factors such as atmospheric interference, cloud cover, 

and sensor calibration errors (Fredson et al., 2021; 

Anaba et al., 2022). The lack of standardized datasets 

for training AI models further complicates data 

reliability, leading to inconsistencies in emission 

estimations across different regions and timeframes. 

Moreover, ground-based sensors, which provide 

essential real-time emissions data, are not uniformly 

distributed. Many developing regions lack the 

infrastructure for comprehensive sensor deployment, 

resulting in data gaps that hinder AI-based analysis 

(Basiru et al., 2023). Data privacy concerns also pose 

restrictions on access to industrial emission records, 

making it difficult for researchers to validate AI 
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models using ground-truth data. Addressing these 

issues requires collaborative efforts between 

governments, industries, and research institutions to 

create standardized, high-quality datasets that improve 

AI performance in emission detection. 

 

AI models, particularly deep learning architectures 

such as convolutional neural networks (CNNs), 

generative adversarial networks (GANs), and 

transformers, offer high accuracy in emission 

detection and analysis (Egbuhuzor et al., 2021; 

Fredson et al., 2022). However, their complexity often 

results in a lack of interpretability, making it difficult 

for policymakers and environmental scientists to 

understand how decisions are made. This “black box” 

nature of deep learning models raises concerns about 

transparency, as stakeholders require clear 

explanations of how AI systems classify emissions, 

differentiate pollution sources, and predict future 

trends. Furthermore, model accuracy is influenced by 

biases in training data, sensor limitations, and 

environmental variability (Agbede et al., 2023). AI 

models trained on limited datasets may struggle to 

generalize their predictions to new geographical areas, 

reducing their reliability in diverse environments. 

Additionally, adversarial conditions such as extreme 

weather, urban heat islands, and industrial byproducts 

can introduce noise into the data, reducing the 

precision of AI-driven carbon footprint assessments. 

Developing more interpretable AI models with 

explainable AI (XAI) techniques and integrating 

uncertainty quantification methods can enhance trust 

in AI-powered emission monitoring (Fredson et al., 

2021; Amafah et al., 2023). 

 

The deployment of AI for carbon emission detection 

raises several ethical and policy challenges that must 

be addressed for responsible implementation (Elete et 

al., 2022). One major concern is data privacy, 

particularly when monitoring emissions from 

industrial facilities. Companies may be reluctant to 

share emissions data due to fears of regulatory 

penalties, competitive disadvantages, or public 

scrutiny. Ensuring secure data sharing protocols and 

regulatory compliance frameworks is essential to 

balance transparency with corporate confidentiality. 

Additionally, AI-powered monitoring systems must 

align with international climate policies and legal 

frameworks. The regulatory landscape for AI in 

environmental monitoring is still evolving, and 

inconsistent policies across different jurisdictions 

create uncertainties in AI adoption (Olisakwe et al., 

2021; Basiru et al., 2023). Governments must 

establish clear guidelines on AI-driven emission 

monitoring, including data governance, accountability 

measures, and mechanisms for verifying AI-generated 

emission reports. Another ethical challenge involves 

the socio-economic implications of AI deployment. 

While AI can enhance carbon emission monitoring 

efficiency, it may also lead to job displacement in 

traditional environmental monitoring roles. 

Policymakers must address workforce transitions by 

investing in AI education and reskilling programs to 

ensure that affected workers can adapt to AI-integrated 

monitoring systems. While AI presents a promising 

approach for carbon emission detection and analysis, 

several challenges must be addressed to improve its 

effectiveness. Data availability and quality issues 

impact model performance, while interpretability and 

accuracy concerns limit trust in AI-driven monitoring 

systems (Jessa, 2023). Ethical and policy challenges 

further complicate implementation, necessitating clear 

regulatory frameworks and responsible AI deployment 

strategies. Overcoming these limitations requires 

interdisciplinary collaboration among AI researchers, 

environmental scientists, policymakers, and industries 

to ensure that AI contributes to sustainable and 

transparent carbon emission monitoring (Fagbule et 

al., 2023; Nwulu et al., 2023). 

 

2.6 Future Directions and Opportunities 

The integration of artificial intelligence (AI) and 

computer vision into remote sensing has significantly 

improved the accuracy and efficiency of carbon 

emission monitoring (Onukwulu et al., 2023). As AI 

technology continues to advance, new opportunities 

are emerging to enhance real-time carbon tracking, 

develop smarter monitoring systems, and establish 

stronger regulatory frameworks. This explores future 

directions in AI-powered carbon emission detection, 

focusing on advancements in AI models, emerging 

technologies such as edge computing and the Internet 

of Things (IoT), and the policy implications of AI-

driven carbon tracking systems. 

 

AI models have evolved rapidly, with increasing 

capabilities in processing and analyzing vast amounts 

of environmental data (Opia et al., 2022). Future 
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advancements in AI-powered carbon emission 

tracking will likely focus on enhancing real-time 

monitoring through improved deep learning 

architectures and hybrid AI techniques. Traditional 

deep learning models require large datasets for 

training. Self-supervised learning (SSL) and few-shot 

learning (FSL) will enable AI systems to recognize 

emission patterns with minimal labeled data, making 

real-time monitoring more efficient. Federated 

learning enables multiple devices, such as satellites, 

drones, and ground sensors, to collaboratively train AI 

models without sharing raw data (Chukwuneke et al., 

2022). This enhances privacy while ensuring accurate 

carbon emission analysis across different geographic 

locations. A key challenge in AI-powered 

environmental monitoring is the interpretability of 

deep learning models. Neural-symbolic AI combines 

machine learning with rule-based reasoning, providing 

greater transparency and reliability in carbon tracking. 

With these advancements, AI models will not only 

detect emissions more accurately but also provide real-

time insights for proactive environmental management 

(Akinsooto et al., 2014). 

 

The integration of AI with emerging technologies such 

as edge computing and IoT is set to revolutionize 

carbon monitoring. These technologies enhance real-

time data collection, processing, and analysis, 

reducing latency and improving the efficiency of 

emission detection systems (Olisakwe et al., 2022). 

Edge computing reduces the reliance on centralized 

cloud processing by performing AI computations 

closer to the data source. This enables faster and more 

localized carbon emission analysis, making it 

particularly useful for UAV-based air quality 

monitoring and industrial emission tracking. IoT 

sensors embedded in urban infrastructure, industrial 

facilities, and transportation networks can 

continuously collect air quality data. AI-powered IoT 

systems analyze this data in real-time to detect 

pollution hotspots, helping cities implement dynamic 

emission control strategies. Ensuring the accuracy and 

authenticity of carbon emission data is crucial for 

regulatory compliance. Blockchain technology can 

provide a decentralized and tamper-proof system for 

recording AI-driven emissions data, fostering greater 

transparency and trust among stakeholders (Akintobi 

et al., 2023). These emerging technologies will 

enhance the scalability, accuracy, and reliability of AI-

powered carbon emission tracking, enabling more 

proactive environmental management. 

 

As AI-powered systems play a growing role in carbon 

emission monitoring, regulatory frameworks must 

evolve to ensure ethical, transparent, and effective 

implementation (Oyedokun, 2019). Policymakers will 

need to address several key areas; Regulatory bodies 

should establish standardized protocols for AI-driven 

emission detection to ensure consistency and 

reliability across different industries and regions. This 

includes defining acceptable AI model performance 

metrics and validation procedures. The widespread 

deployment of AI-powered surveillance systems raises 

privacy concerns, particularly in urban areas. 

Policymakers must create legal frameworks that 

balance environmental monitoring with individual 

privacy rights. Governments can encourage industries 

to adopt AI-powered carbon tracking by providing tax 

incentives, subsidies, and regulatory benefits for 

companies that implement AI-based sustainability 

solutions. Climate change is a global challenge that 

requires cross-border cooperation. International 

organizations, such as the United Nations and the 

European Commission, can facilitate AI-powered 

carbon monitoring initiatives to track and mitigate 

emissions on a global scale. By integrating AI-driven 

carbon tracking into policy frameworks, governments 

and environmental agencies can ensure that AI 

technologies contribute effectively to global 

sustainability goals (Adewoyin et al., 2022). 

 

The future of AI-powered carbon emission tracking is 

driven by advancements in AI models, the adoption of 

emerging technologies, and the development of robust 

regulatory frameworks. Real-time emission tracking 

will become more precise with self-supervised 

learning and federated AI techniques, while edge 

computing and IoT will enhance data collection and 

processing (Basiru et al., 2023; Elete et al., 2023). To 

maximize the benefits of these technologies, 

policymakers must establish clear regulations that 

ensure transparency, data integrity, and ethical AI 

deployment. By leveraging AI for environmental 

sustainability, industries and governments can take 

proactive steps toward reducing greenhouse gas 

emissions and mitigating climate change. 
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CONCLUSION 

 

AI-driven techniques for carbon emission detection 

and analysis have demonstrated significant potential in 

enhancing environmental monitoring and 

sustainability efforts. By leveraging image processing, 

deep learning models, and data fusion techniques, AI 

enables accurate and real-time tracking of carbon 

footprints across urban and industrial settings. 

However, several challenges persist, including data 

availability and quality concerns, model 

interpretability, and ethical and policy considerations. 

Addressing these limitations is critical to fully 

realizing the potential of AI in carbon emission 

monitoring. 

 

AI-powered computer vision plays a crucial role in 

sustainable urban and industrial planning by providing 

high-resolution spatial and temporal insights into 

emission patterns. Through remote sensing and sensor 

integration, AI enables policymakers and urban 

planners to identify pollution hotspots, optimize 

transportation networks, and implement adaptive 

mitigation strategies. Additionally, AI-driven 

predictive models can support proactive decision-

making, allowing industries to minimize emissions 

through optimized energy consumption and process 

improvements. As cities and industries transition 

toward greener practices, AI-powered monitoring 

solutions will become essential for enforcing 

regulatory compliance and achieving carbon neutrality 

goals. 

 

Despite these advancements, further research is 

needed to enhance AI’s accuracy, transparency, and 

scalability in emission monitoring. Developing more 

interpretable AI models and improving data-sharing 

frameworks will strengthen trust in AI-driven insights. 

Additionally, policy support is essential to establish 

standardized regulations for AI-based environmental 

monitoring, ensuring ethical implementation and data 

security. Governments, industries, and researchers 

must collaborate to integrate AI solutions into global 

sustainability initiatives effectively. By fostering 

interdisciplinary innovation and policy alignment, AI 

can drive transformative change in carbon emission 

management, contributing to a more sustainable and 

climate-resilient future. 
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