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Abstract- Quick diagnosis of COVID-19 through 

chest X-ray images has gained significant attention 

due to its potential to aid in rapid screening. In this 

study, we presented a comprehensive approach 

utilizing convolutional neural networks (CNNs) for 

feature extraction from chest X-ray images, followed 

by an ensemble of classifiers including Decision 

Tree, Support Vector Machine, Random Forest, and 

AdaBoost for accurate classification. Our CNN 

architecture, trained on Google Colab with GPU 

runtime, comprises 20 layers incorporating Conv2D, 

MaxPooling2D, Dropout, and fully connected layers 

with ReLU activation function and a dropout 

threshold of 0.25, achieving an accuracy of 97.10%. 

By using a dataset that consists of 33,920 chest X-ray 

(CXR) images including 11,956 COVID-19, 11,263 

Non-COVID infections (Viral or Bacterial 

Pneumonia), 10,701 Normal with Ground-truth lung 

segmentation masks provided for the entire dataset 

from the Kaggle COVID-19 Radiography Database. 

Our final ensemble classifier, employing Soft voting, 

attained a heightened accuracy of 97.51%. 

Moreover, to gain insights into the CNN's internal 

processes, we visualized intermediate layer 

activations. Subsequently, we deployed the final 

model using a Flask API for seamless integration 

into healthcare systems. Our approach promised 

efficient and accurate diagnosis of COVID-19 from 

chest X-ray images, facilitating timely patient 

management. 

 

Indexed Terms- Deep learning. Convolutional 

Neural Networks. Ensemble Learning. Chest X-ray 

 

I. INTRODUCTION 

 

In the world of medical diagnostics, the rapid and 

accurate identification of COVID-19 has become one 

of the most critical challenge worldwide. Chest X-ray 

imaging stands as a pivotal tool in this endeavor, 

offering a non-invasive means to detect characteristic 

pulmonary abnormalities associated with the disease 

[1]. Using advancements in artificial intelligence, 

particularly convolutional neural networks (CNNs), 

has shown promise in automating this diagnostic 

process [2]. CNNs, inspired by the hierarchical 

structure of the human visual cortex, excel at 

extracting intricate features from complex data such as 

medical images [3].  

 

Through successive layers of convolutions, pooling, 

and non-linear activations, these networks learn to 

discern subtle patterns indicative of COVID-19 

infection, facilitating accurate classification [4]. 

Furthermore, ensemble learning techniques have been 

widely adopted to bolster the robustness and 

generalization capabilities of such models [5]. The 

journey towards an effective CNN-based diagnostic 

system encompasses several crucial stages. First and 

foremost, the architecture of the CNN must be 

meticulously crafted, accounting for factors such as 

depth, kernel size, and activation functions [6]. 

Additionally, the availability of high-quality, 

annotated datasets plays a pivotal role in training and 

validating these models, ensuring their reliability and 

generalizability [7]. 

 

Moreover, the interpretability of CNNs remains a 

paramount concern, particularly in medical 
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applications where transparency and trustworthiness 

are imperative [8]. Visualizing intermediate layer 

activations provides valuable insights into the 

decision-making process of these networks, 

elucidating the features they deem salient in 

distinguishing between COVID-19-positive and 

negative cases [9].  

 

In this paper, we presented a comprehensive approach 

for automated COVID-19 diagnosis from CXR images 

using a CNN-based ensemble classifier. We also 

explored techniques for visualizing intermediate layer 

activations within the CNN architecture to gain 

insights into the model's decision-making process. 

Throughout this study, we aimed to contribute to the 

ongoing efforts in medical image analysis with the 

ultimate goal of improving diagnostic accuracy and 

facilitating knowledge discovery in healthcare 

domains. 

 

The dataset consists of 33,920 chest X-ray (CXR) 

images [10] including 11,956 COVID-19, 11,263 

Non-COVID infections (Viral or Bacterial 

Pneumonia), 10,701 Normal with Ground-truth lung 

segmentation masks provided for the entire dataset. 

The experiments were conducted on two CXR sets, 

where each set is divided into train, validation and test 

sets - Lung Segmentation Data and Entire COVID-

QU-Ex dataset (33,920 CXR images with 

corresponding ground-truth lung masks). 

 

Section 2 presents the review of relevant literature. 

The methodology, data source, pre-processing, and 

model architecture are presented in Sect. 3 while Sect. 

4 focuses on results and discussions. The conclusion 

drawn from the research is presented in Sect. 5 

 

II. RELATED WORKS 

 

Several studies have investigated the application of 

deep learning techniques in COVID-19 diagnosis, 

contributing to the advancement of diagnostic tools 

and methods. This section reviews relevant literature 

that explores similar approaches to deep learning-

based COVID-19 diagnosis, focusing on 

convolutional neural networks (CNNs) and ensemble 

machine learning techniques. 

 

[11] proposed a deep learning framework utilizing a 

CNN architecture for COVID-19 detection from chest 

X-ray images. Their model demonstrated promising 

results in distinguishing COVID-19 cases from other 

pneumonia types, achieving high accuracy rates. 

Similarly, [12] introduced a CNN-based approach for 

COVID-19 diagnosis using computed tomography 

(CT) images. Their study emphasized the 

effectiveness of CNNs in automatic feature extraction 

and classification tasks, highlighting the potential of 

deep learning in aiding medical professionals in timely 

diagnosis. In addition to individual deep learning 

models, ensemble learning techniques have been 

explored to enhance COVID-19 diagnosis accuracy. 

[13] employed an ensemble of deep neural networks 

for the classification of COVID-19 cases based on CT 

images. By combining multiple models, their 

ensemble approach demonstrated improved 

generalization performance and robustness against 

variations in data distribution. 

 

Furthermore, efforts have been made to integrate 

various modalities of medical imaging data into a 

unified diagnostic framework. For instance, [14] 

proposed a comprehensive approach that combines 

features extracted from chest X-ray and CT images 

using ensemble machine learning methods. Their 

study emphasized the synergistic effects of integrating 

multiple imaging modalities for more accurate and 

reliable COVID-19 diagnosis. [15] proposed a CNN-

based model for COVID-19 detection from chest X-

ray images, incorporating transfer learning to leverage 

pre-trained networks. Their approach showcased 

promising results in terms of accuracy and 

computational efficiency, highlighting the potential of 

transfer learning in medical imaging analysis. 

 

[16] addressed the urgent need for accurate COVID-

19 diagnosis by using deep convolutional neural 

networks (DCNN) and transfer learning. Through a 

comprehensive evaluation of eight pre-trained models 

on chest X-ray images, the study demonstrated the 

efficacy of fine-tuning DenseNet121, achieving a 

remarkable test accuracy of 98.69% and a macro f1-

score of 0.99 for four-class classification. Notably, the 

findings revealed that only 62% of total parameters 

needed retraining, underscoring the computational 

efficiency and accuracy of the fine-tuned models.  
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This study in [17] utilized X-ray image datasets 

containing cases of bacterial pneumonia, confirmed 

Covid-19, and normal incidents to automatically 

detect Coronavirus disease using state-of-the-art 

convolutional neural network architectures and 

transfer learning. The experiment involved two 

datasets, sourced from public medical repositories, 

comprising a total of 1427 and 1442 X-ray images 

respectively. Results indicated that deep learning with 

X-ray imaging showed promise in extracting 

significant biomarkers related to Covid-19, achieving 

high accuracy (96.78%), sensitivity (98.66%), and 

specificity (96.46%), suggesting the potential for 

incorporating X-rays into the disease diagnosis 

process pending further evaluation by the medical 

community.  

 

To address the challenges posed by the COVID-19 

pandemic, particularly in the context of diagnosing the 

virus accurately amidst a surge in cases, [18] utilized 

Convolutional Neural Networks (CNNs) on X-ray 

images, the study aimed to automate COVID-19 

detection, providing a scalable solution for hospitals 

overwhelmed with patient volumes. Experimental 

findings demonstrated the effectiveness of CNNs in 

achieving precise and accurate COVID-19 detection, 

with an impressive accuracy of 96.8%. The COVID-

19 pandemic, declared by the WHO in 2019, has 

resulted in over 6.18 million confirmed cases and 

104,000 deaths globally, underscoring the urgency for 

effective diagnostic methods. [19] developed a deep 

learning model based on CNN algorithms, utilizing 

chest X-ray images for early COVID-19 diagnosis, 

achieving notable accuracy rates above 95% through 

modified architectures such as EfficientNet, Inception 

MobileNetV2, ResNet, and Xception. The COVID-19 

pandemic has profoundly impacted global health and 

economies, necessitating early and accurate screening 

methods to curb further transmission. [20] introduced 

a Mask R-CNN approach for detecting ground-glass 

opacities (GGOs) in chest CT images of COVID-19 

patients, achieving a high accuracy of 98.25% during 

instance segmentation, thus offering a valuable tool to 

expedite screening and validation processes for 

healthcare professionals. 

 

[21] employed convolutional neural networks (CNN) 

for feature extraction from CT exams and XGBoost 

for classification, achieving high accuracy (95.07%) 

and demonstrating its potential as a diagnostic aid 

system for specialists. The methodology consisted of 

using a CNN to extract features from 708 CTs, 312 

with COVID-19, and 396 Non-COVID-19. After the 

extracted data, the team used XGBoost for 

classification. The results show an accuracy of 95.07, 

recall of 95.09, precision of 94.99, F-score of 95, AUC 

of 95, and a kappa index of 90.  

 

The limitations of this work presented in this section 

include the study's reliance on a single modality. Also, 

most of the work had restriction of practical 

application and scalability of the developed deep 

learning models. Without a dedicated platform or 

software solution, healthcare providers may face 

challenges in deploying and utilizing these models 

effectively in clinical settings. Others are CNNs can be 

prone to overfitting, especially when trained on 

limited or imbalanced datasets. More specifically, the 

objective of the research was to create a system 

allowing users, particularly medical professionals, to 

upload patient images, enabling the system to provide 

a diagnosis indicating whether the X-ray image shows 

signs of COVID-19 or appears normal. Additionally, 

the study explored the integration of three distinct 

machine learning models to enhance performance, 

evaluating their effectiveness using various metrics. 

 

III. METHODOLOGY 

 

In the section below, we presented four important 

techniques in our research. 

 

3.1 Data Source 

The dataset consists of 33,920 chest X-ray (CXR) 

images [10] including 11,956 COVID-19, 11,263 

Non-COVID infections (Viral or Bacterial 

Pneumonia), 10,701 Normal with Ground-truth lung 

segmentation masks provided for the entire dataset. 

The experiments were conducted on two CXR sets, 

where each set is divided into train, validation and test 

sets - Lung Segmentation Data and Entire COVID-

QU-Ex dataset (33,920 CXR images with 

corresponding ground-truth lung masks). 

 

3.2 Data Preprocessing 

This marks the initial stage of our research. Following 

data collection, we proceeded to randomly select 2531 

COVID X-ray images for training, 723 for validation, 
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and 362 for testing purposes. A similar process was 

carried out for normal X-ray images within the dataset. 

Subsequently, all images were scaled to dimensions of 

(299,299,3) and normalized. After preprocessing, the 

data was divided into train and validation data. The test 

data was used for performance analysis of the system. 

CNN was used for feature extraction of images as 

stated earlier. An Ensemble model was developed 

based on the four machine learning models used. The 

architecture of the system is shown in Fig. 1. 

 
Fig. 1 Architecture of the Proposed Covid-19 

Diagnosis System 

 

3.3  Feature Extraction using CNN 

Feature extraction using Convolutional Neural 

Networks (CNNs) is a critical process in image 

analysis and computer vision tasks. It involves 

extracting relevant patterns or features from raw image 

data to represent them in a more abstract and 

meaningful way. To reduce dimensionality of the 

image data and capture essential information from 

images, such as edges, textures, shapes, and other 

discriminative patterns, feature extraction process is 

paramount. 

 

CNNs consist of multiple convolutional layers. Each 

convolutional layer applies a set of learnable filters 

(kernels) to the input image, performing convolutions 

to produce feature maps. These feature maps represent 

the presence of specific patterns or features at various 

spatial locations within the input image. 

Mathematically, the operation of applying a filter 𝑊𝑖 

to a portion of the input image X can be represented as 

a convolution operation followed by a bias term and 

an activation function as shown in Eq. 1. 

 

𝑍𝑖 = f (∑ ∑ (𝑋(𝑙,𝑚) ∗  𝑊𝑖(𝑙,𝑚)) + 𝑏𝑖
𝑑
𝑚=1

𝑑
𝑙=1 )  (1) 

 

where 𝑍𝑖 is the output feature map corresponding to 

the i-th filter, 𝑋(𝑙,𝑚) is the input image patch centered 

around pixel (l,m), 𝑊𝑖(𝑙,𝑚) is the corresponding filter 

weights, 𝑏𝑖 is the bias term for the i-th filter and f is the 

activation function such as ReLU. 

 

For pooling layers after each convolutional layer, 

pooling layers (max pooling) was applied to reduce the 

spatial dimensions of the feature maps. 

Mathematically, the max pooling operation can be 

represented as 𝑌(𝑖,𝑗) in Eq. 2. 

 

𝑌(𝑖,𝑗) = (𝑍(𝑖+𝑝,𝑗+𝑞))
(𝑝,𝑞) 𝜖 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛

𝑚𝑎𝑥
  (2) 

 

where 𝑌(𝑖,𝑗) is the output of the max pooling operation 

at position (i, j), (𝑍(𝑖+𝑝,𝑗+𝑞)) is the feature map value 

at position (i + p,j + q). The max pooling operation is 

applied over a predefined pooling region. 

 

Non-linear activation functions ReLU (Rectified 

Linear Unit) was applied after each convolutional and 

pooling operation to introduce non-linearity and 

enable the network to learn complex representations. 

The Activation functions introduces non-linearity into 

the network which is represented in Eq. 3. 

 

f(x) = max (0, x)     (3) 

 

Eventually, the feature maps are flattened into a vector 

representation, which serves as the input to fully 

connected layers (also known as dense layers) in the 

network. For the research work, the flatten operation 

result was 25088 which corresponds to the total 

number of neurons in the output feature maps of the 

preceding convolutional and pooling layers. The fully 

connected layers further process the extracted features 

to perform tasks like classification or regression as 

represented in Eq. 4.  

 

A = f(W X + b)     (4) 

 

where A is the output vector, W is the weight matrix 

of the layer, X is the input vector, b is the bias vector 

and f is the activation function. These layers combine 

the learned features from previous layers and map 

them to the desired output classes. For the research, 

there are 64 individual neurons in the layer meaning 

there are 64 sets of weights and biases that will be 

learned during the training process. To curtail 

overfitting, a dropout of 0.25 was used during training. 
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Fig. 2 shows the diagrammatic representation of each 

process. 

 

 
Fig. 2 Step-by-Step Representation of CNN for 

feature extraction 

 

The CNN has 20 layers of various types including 

Conv2D, MaxPooling2D, Dropout and FCL. ReLu 

activation function was used for the inner layers and 

dropout threshold of 0.25. The CNN learns to extract 

meaningful features from a labeled training dataset 

consisting of images and corresponding ground-truth 

labels. The trained CNN is evaluated on a separate test 

dataset that it hasn't seen during training. This ensures 

unbiased assessment of the model's performance on 

unseen data. The feature extraction process remains 

the same during testing, but the extracted features are 

used for inference or prediction without further 

parameter updates. 

 

In CNN, the number of epochs refers to the number of 

times the entire training dataset is passed forward and 

backward through the neural network. Each epoch 

consists of one forward pass (computing predictions 

and losses) and one backward pass (updating weights 

using backpropagation). For the purpose of this 

research, 50 epochs were used due to complexity of 

the model, size of the training dataset and learning rate 

which determines the size of the steps taken during 

gradient descent optimization. To measure the 

performance of the epoch function, Fig. 3 shows the 

accuracy function and Fig. 4 shows the loss function 

graph. It can be seen on the graph (Fig. 3) that both 

training accuracy and validation accuracy increase 

rapidly and approach 1.0 as the number of epochs 

increases. Also, both training loss and validation loss 

decrease rapidly and approach a minimum value as the 

number of epochs increases. The graph suggests that 

the CNN model is effectively learning from the 

training data and generalizing well to unseen data 

which is due to the early epoch and overfitting 

avoidance in the model. 

 
Fig. 3 Accuracy/Validation Accuracy Graph 

 
 

Fig. 4 Loss/Validation Loss Graph 

 

Th next stage is to performance analysis of the CNN 

model. Table 1 shows the classification report for the 

binary classification between COVID-19 and Normal 

cases. Precision measures the proportion of true 

positive predictions (correctly identified COVID-19 

cases) out of all positive predictions (all cases 

predicted as COVID-19). A precision of 0.9749 for 

COVID-19 and 0.9671 for Normal indicated that the 

model had a high percentage of correct positive 

predictions for both classes. Recall measures the 

proportion of true positive predictions (correctly 

identified COVID-19 cases) out of all actual positive 

cases (all COVID-19 cases in the dataset). A recall of 

0.9669 for COVID-19 and 0.9751 for Normal 

indicated that the model captured a high percentage of 

actual positive cases for both classes. F1-score is the 

harmonic mean of precision and recall, providing a 

single metric that balances both precision and recall. 

A high F1-score (0.9709 for COVID-19 and 0.9711 

for Normal) indicated a good balance between 

precision and recall for both classes. Support 

represents the number of samples in each class in the 

dataset. There are 362 samples for both COVID-19 

and Normal classes. Accuracy measures the overall 

correctness of the model's predictions across all 

classes. An accuracy of 0.9710 indicated that the 
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model correctly predicted the class for approximately 

97.10% of the samples. The macro average calculates 

the average of precision, recall, and F1-score across all 

classes. In this case, the macro average for precision, 

recall, and F1-score is 0.9710, indicating balanced 

performance across classes. The weighted average 

calculates the average of precision, recall, and F1-

score, weighted by the number of samples in each 

class. In this case, the weighted average for precision, 

recall, and F1-score was 0.9710, indicating balanced 

performance considering the class distribution. 

 

Table 1 Classification report for CNN Model 

 precisio

n 

recall F1-

score 

Suppor

t 

Covid 0.9749 0.966

9 

0.970

9 

362 

Normal 0.9671 0.975

1 

0.971

1 

362 

     

Accuracy   0.971

0 

724 

Macro 

avg 

0.9710 0.971

0 

0.971

0 

724 

Weighte

d avg 

0.9710 0.971

0 

0.971

0 

724 

 

Overall, the classification report suggested that the 

model achieved high precision, recall, and F1-score 

for both COVID-19 and Normal classes, indicating 

strong performance in distinguishing between the two 

classes. The high accuracy further confirms the overall 

effectiveness of the model in classification. Fig. 5 

shows the confusion matrix for the CNN model. There 

are 350 instances (True Negative) correctly predicted 

as Covid when they are actually Covid, 12 instances 

(False Positive) incorrectly predicted as Normal when 

they are actually Covid, 9 instances (False Negative) 

incorrectly predicted as Covid when they are actually 

Normal and 353 instances (True Positive) correctly 

predicted as Normal when they are actually Normal. 

 
Fig. 5 Confusion Matrix for CNN 

 

3.4 Machine Learning Models 

The objective of the research is to use machine 

learning models and combine all to form an Ensemble 

model to predict whether a patient as Covid-19 or not 

using a software. The models used for the research are 

decision tree, Random forest, Support Vector Machine 

and Ada Boost. 

 

3.4.1 Decision Tree 

A decision tree is a non-linear supervised learning 

algorithm used for classification and regression tasks. 

It partitions the feature space into regions and makes 

predictions based on the majority class within each 

region. We can denote a decision tree as T. The 

prediction of a decision tree for a sample x can be 

represented as: 

 

ŷT = T(x)     (5) 

 

3.4.2 Random Forest  

Random Forest aggregates predictions from multiple 

decision trees. Let 𝑇𝑖  represent the i-th decision tree in 

the Random Forest. The prediction of the Random 

Forest for a sample x can be represented as: 

 

ŷRF = 
1

𝑁
 ∑ 𝑇𝑖(𝑥)𝑁

𝑖=1     (6) 

 

where N is the number of trees in the Random Forest. 

 

3.4.3 Support Vector Machine (SVM) 

Support Vector Machine finds the hyperplane that best 

separates the classes in the feature space. Let's denote 

an SVM model as SVM. The prediction of an SVM for 

a sample x can be represented as: 

 

ŷSVM = SVM (x)    (7) 
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3.4.4 AdaBoost 

AdaBoost combines predictions from multiple weak 

learners. Let 𝐻𝑖  represent the i-th weak learner. The 

prediction of AdaBoost for a sample x can be 

represented as: 

 

ŷ𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡  = sign (∑ 𝛼𝑖𝐻𝑖  (𝑥)𝑁
𝑖=1 )   (8) 

 

3.4.5 Soft Voting Classifier (Ensemble Model) 

In a Soft Voting Classifier, predictions from individual 

models are combined by averaging their class 

probabilities. Let's denote the Soft Voting Classifier as 

Voting. The prediction of the Soft Voting Classifier 

for a sample xx can be represented as: 

 

ŷVoting = argmax (
1

𝑀
∑ 𝑝𝑗(𝑥)𝑀

𝑗=1 )   (9) 

 

where M is the number of individual models (in this 

case, 4) and 𝑝𝑗(𝑥) represents the probability estimates 

from the j-th model for each class. 

 

To combine the predictions from the Decision Tree, 

Random Forest, SVM, and AdaBoost models into a 

Soft Voting Classifier, we computed the probability 

estimates 𝑝𝑗(𝑥) for each sample x using each model, 

and then average these probabilities across all models. 

We then chose the class with the highest average 

probability as the final prediction for the software. 

 

IV. DISCUSSION OF FINDINGS 

 

The experiment setup for deep learning was 

implemented on Google Colab with GPU runtime 

using the following packages: Tensorflow, Scikit-

learn, pandas, numpy, matplotlib, flask in Python 

3.7.12 

 

4.1 Decision Tree Performance Metrics 

For the decision tree, the confusion matrix is shown in 

Fig. 6 and classification table shown in Table 2. A 

precision of 0.9635 for Covid and 0.9484 for Normal 

indicated that the model had a high percentage of 

correct positive predictions for both classes. It had a 

recall of 0.9475 for Covid and 0.9641 for Normal 

indicates that the model captured a high percentage of 

actual positive cases for both classes. A high F1-score 

(0.9554 for Covid and 0.9562 for Normal) indicated a 

good balance between precision and recall for both 

classes. There are 362 samples for both Covid and 

Normal classes. An accuracy of 0.9558 indicated that 

the model correctly predicted the class for 

approximately 95.58% of the samples. In this case, the 

macro average for precision, recall, and F1-score was 

0.9559, indicating balanced performance across 

classes. The weighted average for precision, recall, 

and F1-score was 0.9559, indicating balanced 

performance considering the class distribution. 

Overall, the classification report suggested that the 

model achieved high precision, recall, and F1-score 

for both Covid and Normal classes, indicating strong 

performance in distinguishing between the two 

classes. 

 

4.2 Support Vector Machine (SVM) classifier 

Performance Metrics 

A precision of 0.9670 for Covid and 0.9722 for 

Normal indicated that the model had a high percentage 

of correct positive predictions for both classes. A 

recall of 0.9724 for Covid and 0.9669 for Normal 

indicated that the model captured a high percentage of 

actual positive instances for both classes. A high F1-

score (0.9697 for Covid and 0.9695 for Normal) 

indicated a good balance between precision and recall 

for both classes. There are 362 instances for both 

Covid and Normal classes. An accuracy of 0.9696 

indicated that the model correctly predicted the class 

for approximately 96.96% of the instances. In this 

case, the macro average for precision, recall, and F1-

score was 0.9696, which indicated balanced 

performance across classes. In this case, the weighted 

average for precision, recall, and F1-score was 0.9696, 

indicating balanced performance considering the class 

distribution. In general, the classification report 

suggested that the SVM model achieved high 

precision, recall, and F1-score for both Covid and 

Normal classes, indicating strong performance in 

distinguishing between the two classes. The confusion 

matrix is as shown in Fig. 7 and classification table in 

Table 3. 
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Fig. 6 Confusion Matrix for Decision Tree 

 
Fig. 7 Confusion Matrix for SVM 

 

Table 2 Classification report for Decision Tree Model 

 Precisio

n 

Recall F1-

score 

Suppor

t 

Covid 0.9635 0.947

5 

0.955

8 

362 

Normal 0.9484 0.964

1 

0.956

2 

362 

     

Accuracy   0.955

8 

724 

Macro 

avg 

0.9559 0.955

8 

0.955

8 

724 

Weighte

d avg 

0.9559 0.955

8 

0.955

8 

724 

 

Table 3 Classification report for SVM Model 

 precisio

n 

recall F1-

score 

Suppor

t 

Covid 0.9670 0.972

4 

0.969

7 

362 

Normal 0.9722 0.966

9 

0.969

5 

362 

     

Accuracy   0.969

6 

724 

Macro 

avg 

0.9696 0.969

6 

0.969

6 

724 

Weighte

d avg 

0.9696 0.969

6 

0.969

6 

724 

 

4.3 Random Forest Performance Metrics 

A precision of 0.9721 for Covid and 0.9617 for 

Normal indicated that the model had a high percentage 

of correct positive predictions for both classes. A 

recall of 0.9613 for Covid and 0.9724 for Normal 

indicated that the model captured a high percentage of 

actual positive instances for both classes. A high F1-

score (0.9667 for Covid and 0.9670 for Normal) 

indicated a good balance between precision and recall 

for both classes. There are 362 instances for both 

Covid and Normal classes. An accuracy of 0.9669 

indicated that the model correctly predicted the class 

for approximately 96.69% of the instances. In this 

case, the macro average for precision, recall, and F1-

score is approximately 0.9669, indicating balanced 

performance across classes. The weighted average for 

precision, recall, and F1-score is approximately 

0.9669, indicating balanced performance considering 

the class distribution. The classification report 

suggested that the Random Forest model achieved 

high precision, recall, and F1-score for both Covid and 

Normal classes, indicating strong performance in 

distinguishing between the two classes. The confusion 

matrix is as shown in Fig. 8 and classification table in 

Table 4. 

 

4.4 Ada Boost Performance Metrics 

A precision of 0.9614 for Covid and 0.9640 for 

Normal indicated that the AdaBoost model had a high 

percentage of correct positive predictions for both 

classes. A recall of 0.9641 for Covid and 0.9613 for 

Normal indicated that the model captured a high 

percentage of actual positive instances for both 

classes. A high F1-score (0.9628 for Covid and 0.9627 

for Normal) indicated a good balance between 

precision and recall for both classes. There are 362 

instances for both Covid and Normal classes. An 

accuracy of 0.9627 indicated that the AdaBoost model 

correctly predicted the class for approximately 96.27% 

of the instances. In this case, the macro average for 

precision, recall, and F1-score was approximately 
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0.9627, indicating balanced performance across 

classes. The weighted average for precision, recall, 

and F1-score was approximately 0.9627, indicating 

balanced performance considering the class 

distribution. The classification report suggested that 

the AdaBoost model achieved high precision, recall, 

and F1-score for both Covid and Normal classes, 

indicating strong performance in distinguishing 

between the two classes. The confusion matrix is as 

shown in Fig. 9 and classification table in Table 5. 

 
Fig. 8 Confusion Matrix for Random Forest 

 
Fig. 9 Confusion Matrix for Ada Boost 

 

Table 4 Classification report for Random Forest 

Model 

 Precisio

n 

Recall F1-

score 

Suppor

t 

Covid 0.9721 0.961

3 

0.966

7 

362 

Normal 0.9617 0.972

4 

0.967

0 

362 

     

Accuracy   0.966

9 

724 

Macro 

avg 

0.9669 0.966

9 

0.966

8 

724 

Weighte

d avg 

0.9669 0.966

9 

0.966

8 

724 

 

Table 5 Classification report for Ada Boost Model 

 precisio

n 

Recall F1-

score 

Suppor

t 

Covid 0.9614 0.972

4 

0.962

8 

362 

Normal 0.9640 0.966

9 

0.962

7 

362 

     

Accuracy   0.962

7 

724 

Macro 

avg 

0.9627 0.962

7 

0.962

7 

724 

Weighte

d avg 

0.9627 0.962

7 

0.962

7 

724 

 

4.5 Ensemble Model Performance Metrics 

A precision of 0.9751 for both Covid and Normal 

classes indicated that the ensemble model had a high 

percentage of correct positive predictions for both 

classes. A recall of 0.9751 for both Covid and Normal 

classes indicated that the model captured a high 

percentage of actual positive instances for both 

classes. A high F1-score (0.9751 for both Covid and 

Normal) indicated a good balance between precision 

and recall for both classes. There are 362 instances for 

both Covid and Normal classes. An accuracy of 

0.9751 indicated that the ensemble model correctly 

predicted the class for approximately 97.51% of the 

instances. The macro average for precision, recall, and 

F1-score is approximately 0.9751, indicating balanced 

performance across classes. In this case, the weighted 

average for precision, recall, and F1-score was 

approximately 0.9751, indicating balanced 

performance considering the class distribution. 

Overall, the classification report suggested that the 

ensemble model, which combined predictions from 

multiple individual models (Decision Tree, Random 

Forest, Support Vector Machine, and AdaBoost), 

achieved exceptional performance in distinguishing 

between Covid and Normal classes, with high 

precision, recall, F1-score, and accuracy. The 

confusion matrix is as shown in Fig. 10 and 

classification table in Table 6. 
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Table 6 Classification report for Ensemble Model 

 precision Recall F1-

score 

Support 

Covid 0.9751 0. 

9751 

0. 

9751 

362 

Normal 0. 9751 0. 

9751 

0. 

9751 

362 

     

Accuracy   0. 

9751 

724 

Macro 

avg 

0. 9751 0. 

9751 

0. 

9751 

724 

Weighted 

avg 

0. 9751 0. 

9751 

0. 

9751 

724 

 

 
Fig. 10 Confusion Matrix for Ensemble 

 

4.6 COVID-19 Diagnosis System 

The COVID-19 Diagnosis System is a software 

application designed using flask API for medical 

practitioners to upload chest X-ray images of patients. 

Using machine learning techniques, the system can 

predict whether the image indicates COVID-19 

infection or shows a normal condition. Upon image 

upload, the system processes the image, generates a 

pie chart displaying the likelihood of COVID-19 or 

normalcy, and allows medical practitioners to interpret 

the results for informed decision-making. The system 

prioritizes user-friendliness, security, and compliance 

with healthcare regulations to ensure effective and 

confidential diagnosis assistance. A screenshot of the 

system is shown in Fig. 11 and sample X-ray image 

uploaded into the system. 

 
Fig. 11 Screenshot of the Proposed Covid-19 

Diagnosis System 

 

CONCLUSION 

 

This study provides a comprehensive evaluation of a 

deep learning-based COVID-19 diagnosis software, 

employing convolutional neural networks (CNNs) and 

ensemble machine learning techniques. One of the 

main issues with prediction of Covid-19 using 

machine learning models was the failure to provide 

medical personnel with a simple and easy to use 

system that can quickly identity covid cases. The 

system shed light on the efficacy and potential of 

utilizing advanced machine learning algorithms in 

medical diagnostics. One of the key observations from 

this study is the remarkable accuracy achieved by the 

software in distinguishing between COVID-19 and 

normal cases. The CNNs demonstrated exceptional 

capability in capturing intricate patterns and features 

indicative of COVID-19 infection. Furthermore, the 

ensemble machine learning approach, combining 

multiple models (Decision Trees, Random Forests, 

Support Vector Machines, and AdaBoost) yielded 

robust and reliable predictions. The synergy among 

these models contributed to improved diagnostic 

accuracy and robustness. However, it is essential to 

acknowledge certain limitations and areas for future 

exploration. While the current study focused on CNNs 

and ensemble machine learning, there exist alternative 

approaches and techniques that warrant investigation. 

For instance, future research could explore the 

integration of additional deep learning architectures, 

such as recurrent neural networks (RNNs) or 

transformer models, to further enhance diagnostic 

performance. Additionally, the incorporation of 

advanced feature engineering techniques and data 
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augmentation strategies may contribute to better 

generalization and scalability of the diagnostic 

software.  

 

Funding There was no outside funding for the study. 

Data availability the data that support the findings of 

this study are openly available in COVID-QU-Ex 

Dataset Retrieved from 

https://www.kaggle.com/datasets/anasmohammedtahi

r/covidqu 
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