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Abstract- The study of the signed domatic number of 

graphs explores the theoretical aspects of signed 

dominating functions f:V(G)→{−1,1}f: V(G) \to \{-1, 

1\}f:V(G)→{−1,1}, defined such that the sum of 

function values over any closed neighborhood is at 

least one, thereby introducing the signed domination 

number γs(G)\gamma_s(G)γs(G), the minimum 

weight of such functions, and the signed domatic 

number ds(G)d_s(G)ds(G), the maximum number of 

distinct signed dominating functions whose sum at 

any vertex does not exceed one, with key results 

establishing bounds like 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 

1γs(G)+ds(G)≤n+1 for a graph GGG of order nnn, 

exact values for special graph classes such as 

complete graphs, cycles, fans, and circulant graphs, 

and necessary conditions for achieving equality in 

these bounds; this investigation, which uses 

algebraic and combinatorial methods, also extends to 

Nordhaus-Gaddum-type results, providing insights 

into the relationship between ds(G)d_s(G)ds(G) and 

ds(G‾)d_s(\overline{G})ds(G), confirmed through 

examples like Petersen graphs and circulant graphs, 

thus contributing significantly to graph theory, 

discrete mathematics, and applications in network 

topology, optimization, and computational 

algorithms. 

 

Indexed Terms- Signed Domatic Number, Signed 

Dominating Function, Graph Theory, Signed 

Domination Number, Circulant Graphs, Nordhaus-

Gaddum-Type Results 

 

I. INTRODUCTION 

 

The study of signed domination and domatic numbers 

in graph theory extends traditional domination 

parameters by defining a signed dominating function 

f:V→{−1,1}f: V \to \{-1, 1\}f:V→{−1,1} such that the 

sum of function values over any closed neighborhood 

N[v]N[v]N[v] satisfies ∑u∈N[v]f(u)≥1\sum_{u \in 

N[v]} f(u) \geq 1∑u∈N[v]f(u)≥1, with the weight of 

such a function given as w(f)=∑v∈Vf(v)w(f) = 

\sum_{v \in V} f(v)w(f)=∑v∈Vf(v) and the signed 

domination number γs(G)\gamma_s(G)γs(G) 

representing the minimum weight of a signed 

dominating function while introducing the signed 

domatic number ds(G)d_s(G)ds(G), which is the 

maximum number of distinct signed dominating 

functions f1,f2,…,fdf_1, f_2, \ldots, f_df1,f2,…,fd 

satisfying ∑i=1dfi(v)≤1 ∀v∈V\sum_{i=1}^d f_i(v) 

\leq 1 \, \forall v \in V ∑i=1dfi(v)≤1∀v∈V, with key 

results such as γs(G)+ds(G)≤n+1\gamma_s(G) + 

d_s(G) \leq n + 1γs(G)+ds(G)≤n+1 for a graph of order 

nnn, equality conditions for specific classes of graphs 

like complete and circulant graphs, and the interplay 

of these parameters with graph properties like 

regularity and balance in signed graphs, further 

explored through exact values and Nordhaus-

Gaddum-type results as well as applications to 

symmetric graph structures, optimization, and 

computational algorithms, supported by the 

foundational work of researchers like Volkmann and 

Zelinka (2005) and Dunbar et al. (1995), and further 

enriched by modern investigations into network 

design and combinatorial mathematics (Dunbar, J., 

Hedetniemi, S. T., Henning, M. A., & Slater, P. J., 

1995, Volkmann, L., & Zelinka, B., 2005, Wikipedia 

contributors, 2022). The exploration of signed 

domination and domatic numbers in graph theory 

delves into the structural intricacies of graphs by 

introducing signed dominating functions 

f:V→{−1,1}f: V \to \{-1, 1\}f:V→{−1,1} 

characterized by the condition 

∑u∈N[v]f(u)≥1\sum_{u \in N[v]} f(u) \geq 1∑u∈N[v]

f(u)≥1 for all vertices vvv and their associated weights 

w(f)=∑v∈Vf(v)w(f) = \sum_{v \in V} f(v)w(f)=∑v∈V

f(v), with the signed domination number 

γs(G)\gamma_s(G)γs(G) defined as the minimum 

such weight and the signed domatic number 

ds(G)d_s(G)ds(G) representing the maximum count of 

distinct signed dominating functions f1,f2,…,fdf_1, 

f_2, \ldots, f_df1,f2,…,fd ensuring 

∑i=1dfi(v)≤1\sum_{i=1}^d f_i(v) \leq 1∑i=1dfi(v)≤1, 
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yielding results like the inequality 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the graph’s order, and 

special equality cases for complete graphs and 

circulant graphs, while also examining broader 

applications such as Nordhaus-Gaddum-type results 

and their implications for optimization and algorithm 

design in symmetric and asymmetric graphs, 

especially considering their balance when extended to 

signed graphs with edge signs, where each cycle's 

product of edge signs determines balance, further 

integrating combinatorial properties of regular graphs, 

circulant matrices, and symmetric structures to derive 

insights into domination-based partitions, constraints, 

and invariants, as seen in the foundational 

contributions of researchers like Volkmann and 

Zelinka (2005) and practical implementations in 

network reliability, resource allocation, and 

connectivity optimization, supported by tools of 

algebraic graph theory, where adjacency matrices of 

circulant graphs are defined by their cyclically shifted 

rows, offering a natural symmetry for studying the 

signed domatic number, particularly its application to 

Petersen graphs and specific conditions for attaining 

maximum partitions, with theoretical advances paving 

the way for applications to real-world networked 

systems (Dunbar et al., 1995, Volkmann & Zelinka, 

2005). 

 

Statement of the research problem 

The research problem addressed in this study revolves 

around the extension of classical domination in graph 

theory to the concept of signed domination and signed 

domatic numbers, wherein the signed domination 

number γs(G)\gamma_s(G)γs(G) is defined as the 

minimum weight of a signed dominating function 

f:V(G)→{−1,1}f: V(G) \to \{-1, 1\}f:V(G)→{−1,1}, 

such that for every vertex v∈V(G)v \in V(G)v∈V(G), 

the sum of function values over its closed 

neighborhood satisfies ∑u∈N[v]f(u)≥1\sum_{u \in 

N[v]} f(u) \geq 1∑u∈N[v]f(u)≥1, and the signed 

domatic number ds(G)d_s(G)ds(G) is the maximum 

number of distinct signed dominating functions 

f1,f2,…,fdf_1, f_2,\ldots, f_df1,f2,…,fd defined on 

V(G)V(G)V(G) such that 

∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d f_i(v) \leq 1 \, 

\forall v \in V(G)∑i=1dfi(v)≤1∀v∈V(G), with key 

challenges lying in determining bounds, such as 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the order of the graph, 

characterizing the conditions under which equality 

holds, deriving exact values of ds(G)d_s(G)ds(G) for 

specific graph classes like complete graphs, circulant 

graphs, cycles, and Petersen graphs, and analyzing the 

relationships between γs(G)\gamma_s(G)γs(G) and 

ds(G)d_s(G)ds(G) under Nordhaus-Gaddum-type 

constraints, which extend to results like 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, while simultaneously 

addressing the computational and theoretical 

challenges in verifying these properties through 

combinatorial methods and algebraic tools such as 

circulant matrices, adjacency representations, and 

regular graph properties, with applications to real-

world domains such as network optimization, resource 

allocation, and connectivity studies, making it 

imperative to establish a robust framework for 

determining γs(G)\gamma_s(G)γs(G) and 

ds(G)d_s(G)ds(G) values and their bounds for 

different graph structures while posing questions for 

further research to extend these concepts to more 

complex graph configurations or dynamic networks 

(Dunbar et al., 1995, Volkmann & Zelinka, 2005). 

 

Significance of the research study 

The study of signed domatic numbers is an important 

area of research in graph theory because it 

systematically examines and extends the concepts of 

signed dominating functions in relation to the basic 

theory and practical significance of domination 

concepts in finite, undirected, simple graphs, where a 

two-valued function 

f:V(G)→{−1,1}f:V(G)→{−1,1}f:V(G)→{−1,1} 

satisfies the condition Σfi(x)≤1\Sigma f_i(x) \leq 1Σfi

(x)≤1, and whose weight w(f)w(f)w(f) is minimized, 

leading to the exploration of the signed domination 

number γs(G)\gamma_s(G)γs(G) which represents the 

minimum weight, as well as the signed domatic 

number ds(G)d_s(G)ds(G) that indicates the 

maximum number of distinct signed dominating 

functions satisfying those vertex constraints in terms 

of total weight clarification like 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1 which has been verified for some 

classes of graph such as complete graphs, cycles, fans 

and circulant graphs, and also provide insight on the 

conditions under which both are either achieved or fail 

with the help of comprehensive but necessary tools 
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including algebraic and combinatorial tools that 

establish Nordhaus-Gaddum-type results such as 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1 with equality only valid for 

complete graphs of odd order or for the complements 

of complete graphs, creating a breadth of 

understanding relative to the basic theory and practical 

significance of domination, so this kind of study, 

which is particularly valuable to the fields of 

mathematical optimization, discrete mathematics, and 

computer science, lays the foundation for future work 

in this area, since one requires only through even very 

interesting extensions such as to broader classes of 

graphs or for applications in the real world, such as 

applications in modeling network reliability, security 

configurations, and resource allocations in distributed 

systems. 

 

Review of relevant literature related to the study 

The study of the signed domatic number of a graph 

builds upon the foundational concept of domination in 

graph theory, introduced as the idea of dominating sets 

D⊆V(G)D \subseteq V(G)D⊆V(G) where each vertex 

v∈V(G)∖Dv \in V(G) \setminus Dv∈V(G)∖D is 

adjacent to at least one vertex in DDD, with the 

domination number γ(G)\gamma(G)γ(G) representing 

the smallest size of such a set, which was later 

generalized to dominating functions f:V(G)→{0,1}f: 

V(G) \to \{0, 1\}f:V(G)→{0,1}, defined to satisfy 

∑u∈N[v]f(u)≥1\sum_{u \in N[v]} f(u) \geq 1∑u∈N[v]

f(u)≥1 for all vertices vvv, where N[v]N[v]N[v] is the 

closed neighborhood of vvv, and further extended to 

signed dominating functions f:V(G)→{−1,1}f: V(G) 

\to \{-1, 1\}f:V(G)→{−1,1} that meet the same 

condition ∑u∈N[v]f(u)≥1\sum_{u \in N[v]} f(u) \geq 

1∑u∈N[v]f(u)≥1, with the weight of such a function 

defined as w(f)=∑v∈V(G)f(v)w(f) = \sum_{v \in 

V(G)} f(v)w(f)=∑v∈V(G)f(v) and the signed 

domination number γs(G)\gamma_s(G)γs(G) being 

the minimum weight among all signed dominating 

functions, which was first formalized by researchers 

like Dunbar et al. (1995) to address scenarios requiring 

weighted or signed influences in graph models 

(Dunbar et al., 1995). Expanding upon this, the 

concept of the signed domatic number ds(G)d_s(G)ds

(G) was introduced to study the maximum number of 

distinct signed dominating functions f1,f2,…,fdf_1, 

f_2, \ldots, f_df1,f2,…,fd defined on the vertex set 

V(G)V(G)V(G), subject to the constraint 

∑i=1dfi(v)≤1\sum_{i=1}^d f_i(v) \leq 1∑i=1dfi(v)≤1 

for every vertex vvv, where ds(G)d_s(G)ds(G) 

captures the graph's ability to be partitioned into 

multiple signed dominating functions, resulting in key 

results such as the inequality 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the graph's order, and 

further inequalities involving complements, such as 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, with equality conditions 

analyzed for specific classes of graphs like complete 

graphs, cycles, fans, Petersen graphs, and circulant 

graphs, which are graphs defined by cyclic symmetries 

in their adjacency matrices (Volkmann & Zelinka, 

2005, Haynes et al., 1998). The analysis of circulant 

graphs, whose adjacency matrices are circulant 

matrices characterized by rows that are cyclic 

permutations of the first row, provides a symmetric 

framework for studying signed domination and 

domatic numbers, with researchers determining exact 

values of γs(G)\gamma_s(G)γs(G) and ds(G)d_s(G)ds

(G) for circulant graphs, such as ds(Gn)=5d_s(G_n) = 

5ds(Gn)=5 for certain circulant graphs on 

Z5lZ_{5l}Z5l with specific connection sets, derived 

through combinatorial arguments ensuring the 

partitioning criteria of signed domatic numbers 

(Favaron, 1995, Patil, 2007). The study of signed 

domination is not limited to theoretical pursuits but 

extends to practical applications in network 

optimization, resource allocation, and connectivity 

studies, where signed dominating functions model the 

influence of positive and negative factors within 

networks, and the signed domatic number reflects the 

network's capacity to sustain multiple independent 

influences under constraints, making these parameters 

vital in designing reliable, fault-tolerant systems, as 

well as in security configurations and distributed 

systems analysis (Walikar & Patil, 2009). Moreover, 

the relationship between the signed domatic number 

and other graph invariants, such as chromatic and 

independence numbers, has been an area of focus, 

where inequalities and combinatorial techniques have 

revealed deeper insights into graph structure, as seen 

in the Nordhaus-Gaddum-type results that relate the 

signed domatic number of a graph and its complement, 

ds(G)+ds(G‾)d_s(G) + d_s(\overline{G})ds(G)+ds

(G), constrained by the order of the graph, with 

applications extending to dynamic network systems 
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and algorithmic complexity (Dunbar et al., 1995). The 

computational challenges of determining 

γs(G)\gamma_s(G)γs(G) and ds(G)d_s(G)ds(G) arise 

from the combinatorial nature of these problems, 

particularly for large or complex graphs, where 

adjacency matrix representations and optimization 

algorithms play critical roles, and exact values are 

determined through exhaustive enumeration or 

advanced combinatorial reasoning, as demonstrated in 

studies of Petersen graphs and specific configurations 

of circulant graphs (Haynes et al., 1998). Additionally, 

signed domination intersects with signed graph theory, 

where each edge of a graph is assigned a positive or 

negative sign, and the balance of cycles is evaluated to 

understand graph properties, with signed domination 

offering a vertex-centric perspective that complements 

the edge-focused nature of signed graphs, thereby 

broadening the scope of theoretical exploration and 

practical utility (Volkmann & Zelinka, 2005). The 

synthesis of signed domination and domatic number 

concepts has led to the establishment of a robust 

framework for studying graph partitions influenced by 

signed weights, setting the stage for future research to 

explore more complex or dynamic graph structures, 

such as time-varying or weighted graphs, where the 

principles of signed domination could address real-

world scenarios involving dynamic influences, 

competitive networks, or resource constraints, 

highlighting the enduring relevance and potential 

expansion of this domain in graph theory (Favaron, 

1995, Patil, 2007). 

 

Research Gap related to the study 

The research gap in the study of the signed domatic 

number of a graph arises from the limited exploration 

of this parameter in dynamic, weighted, and directed 

graphs where existing results primarily focus on 

undirected simple graphs and specific classes such as 

circulant graphs, complete graphs, and Petersen 

graphs, leaving unexplored the extension of the signed 

domatic number ds(G)d_s(G)ds(G), which represents 

the maximum number of distinct signed dominating 

functions f1,f2,…,fdf_1, f_2, \ldots, f_df1,f2,…,fd 

defined on the vertex set V(G)V(G)V(G) such that 

∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d f_i(v) \leq 1 \, 

\forall v \in V(G)∑i=1dfi(v)≤1∀v∈V(G), to broader 

graph configurations and practical applications such as 

optimization in complex networks, real-time systems, 

and multi-layered graph structures, with particular 

challenges lying in determining inequalities like 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the graph's order, and 

their tightness conditions for graphs with non-uniform 

or hierarchical topologies, as well as computational 

challenges in verifying these properties for large-scale 

graphs using advanced techniques such as spectral 

graph theory, eigenvalue analysis, and algorithmic 

graph partitioning, which remain inadequately 

addressed in existing literature despite their potential 

to generalize results like ds(G)+ds(G‾)≤n+1d_s(G) + 

d_s(\overline{G}) \leq n + 1ds(G)+ds(G)≤n+1 for 

complements and applications to network reliability 

and resource allocation models, while further gaps 

include the study of signed domination in 

hypergraphs, bipartite graphs, and edge-weighted 

graphs, where the interplay between vertex and edge 

parameters could reveal new combinatorial insights 

and broaden the utility of these concepts in applied 

domains such as cybersecurity, social network 

analysis, and distributed computing, necessitating the 

development of new mathematical tools and 

computational frameworks to extend the applicability 

of signed domination theory to real-world scenarios 

(Xu, 2011, Akbari et al., 2013, Harary & Kabell, 

1980). 

 

Major objectives of the study 

1. To explore the properties of signed dominating 

functions f:V(G)→{−1,1}f: V(G) \to \{-1, 

1\}f:V(G)→{−1,1} and their implications on 

graph invariants, including the signed domination 

number γs(G)\gamma_s(G)γs(G), across various 

classes of graphs. 

2. To calculate the signed domatic number 

ds(G)d_s(G)ds(G) for specific graph types such as 

circulant graphs, complete graphs, Petersen 

graphs, and fans, and to establish conditions for 

achieving equality in inequalities like 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 

1γs(G)+ds(G)≤n+1. 

3. To derive and analyze bounds and relationships 

involving ds(G)d_s(G)ds(G), 

γs(G)\gamma_s(G)γs(G), and their complements, 

such as Nordhaus-Gaddum-type results 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) 

\leq n + 1ds(G)+ds(G)≤n+1, for different graph 

configurations. 
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4. To extend the theoretical findings on signed 

domination and domatic numbers to practical 

applications in network topology, resource 

allocation, optimization problems, and distributed 

systems. 

 

Properties of signed dominating functions 

f:V(G)→{−1,1}f: V(G) \to \{-1, 1\}f:V(G)→{−1,1} 

and their implications on graph invariants, including 

the signed domination number γs(G)\gamma_s(G)γs

(G), across various classes of graphs 

The properties of such functions 

f:V(G)→{−1,1}f:V(G) \to \{-1, 1\}f:V(G)→{−1,1} 

are fundamental in building up the signed domination 

number γs(G)\gamma_s(G)γs(G) as the minimum 

weight w(f)=∑v∈V(G)f(v)w(f) = \sum_{v \in V(G)} 

f(v)w(f)=∑v∈V(G)f(v) over all such functions, wover 

the whole weight of such signed dominating functions 

as wover the whole weighted dominating function on 

the connected dominated graph G+over all these type 

weights γs(G)\gamma_s(G)γs(G), some effective 

properties lead to the conclusion of graph invariants 

such that γs(G)=specific value for some class of 

graphs, for example, for KnK_nKn, we have 

γs(Kn)=1\gamma_s(K_n) = 1γs(Kn)=1 for any odd 

nnn, or inclusive classes of circulant graphs, such 

properties allow the systematic identification of 

graphs for which γs(G)\gamma_s(G)γs(G) with its 

properties have maximal or extremal assignments, and 

in fact, the adjacency symmetries in class G have been 

shown as a verification of functional properties on 

signed domination [9] and the computational or 

theoretical exploits in verifying γs(G)\gamma_s(G)γs

(G) in complex topological graphs like hypergraphs or 

weighted graphs remain inquisitive, the current body 

of work addressing characterizations of γs(G) such 

that γs(G)⋅ds(G)≤n\gamma_s(G) \cdot d_s(G) \leq nγs

(G)⋅ds(G)≤n, not only establishes such elementary 

relationships, more broadly us on the performance of 

partitions inside mixed and random graphs making 

minimum necessaries applicable through complexity 

of the computation [2], [4], [5], we treat such partitions 

and properties compliant in the most systematic 

assignments even for some particular classes, and 

where the defining limits of height and propagation of 

fff are subjectively related, the existence for example 

to make characterizations correlatively through signed 

weighted components for constructions of G itself has 

a lot open variety of the median through domination 

solutions, these aggregate properties can be better 

exploited in the computation of propagation of 

γs(G)\gamma_s(G)γs(G) values on arbitrary graphs 

and theoretically reflected on the eye of regular 

graphs, full block graphs and bipartite graphs, these 

both symmetries of chronological forms and their 

existence with furthers may allow the edge-

connectivity, value, chromatic number and the 

independence invariant to be inferred mainly through 

signed domination, while this seem fundamental it 

must give some general notions kconnect tabular in 

any form characteropathies known management in 

networks [3], [6] in turns this ranges up new research 

capacity especially the unique partition and support 

indicators and definition γs(G)=sum based measures 

defined fff composite objects which are gives the most 

challenged part in design and experimental analysis 

within original graphs. Farré (1995), Favaron (1995), 

Haynes et al. Doty et al (1998) and recent applications 

(Akbari et al.2013, Xu2011, Harary & Kabell 1980) 

on the modelling of dynamic networks and security 

systems. 

 

Signed domatic number ds(G)d_s(G)ds(G) for specific 

graph types such as circulant graphs, complete graphs, 

Petersen graphs, and fans, and to establish conditions 

for achieving equality in inequalities like 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1 

The signed domatic number ds(G)d_s(G)ds(G), 

defined as the maximum number of distinct signed 

dominating functions f1,f2,…,fdf_1, f_2, \ldots, f_df1

,f2,…,fd such that 

∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d f_i(v) \leq 1 \, 

\forall v \in V(G)∑i=1dfi(v)≤1∀v∈V(G), has been 

analyzed for specific graph types like circulant graphs, 

complete graphs, Petersen graphs, and fans, with 

results indicating that for complete graphs KnK_nKn, 

ds(Kn)=nd_s(K_n) = nds(Kn)=n if nnn is odd and 

ds(Kn)=n/2d_s(K_n) = n/2ds(Kn)=n/2 if nnn is even, 

and for Petersen graphs, the established value 

ds(G)=1d_s(G) = 1ds(G)=1 reflects the constraints 

imposed by its symmetry and regularity, while for 

circulant graphs, ds(G)d_s(G)ds(G) values depend on 

the graph’s connection set and adjacency matrix cyclic 

properties, such as in circulant graphs GnG_nGn on 

Z5lZ_{5l}Z5l where ds(Gn)=5d_s(G_n) = 5ds(Gn)=5, 

and for fans FnF_nFn, ds(Fn)d_s(F_n)ds(Fn) values 

vary based on structural properties like vertex degrees, 
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with conditions for achieving equality in inequalities 

like γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 

1γs(G)+ds(G)≤n+1, where γs(G)\gamma_s(G)γs(G) is 

the signed domination number, being satisfied in 

complete graphs of odd order or other configurations 

like graphs with only pendent or support vertices, as 

derived through combinatorial proofs and 

optimization techniques, while further insights include 

Nordhaus-Gaddum-type results 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, where G‾\overline{G}G is the 

complement of GGG, and nnn is the graph order, 

demonstrating that equality holds only for regular 

graphs like KnK_nKn or symmetric graphs with 

structured neighborhoods, and while these results are 

well-established for certain graph classes, challenges 

remain in determining ds(G)d_s(G)ds(G) for irregular, 

weighted, or dynamically evolving graphs, indicating 

gaps for future research to extend these results to 

broader graph categories and practical applications in 

network resource allocation and distributed systems, 

as discussed in studies like Favaron (1995), Patil 

(2007), and Harary & Kabell (1980), alongside recent 

advancements in combinatorial graph theory 

(Favaron, 1995, Xu, 2011, Harary & Kabell, 1980). 

Derive and analyze bounds and relationships 

involving ds(G)d_s(G)ds(G), γs(G)\gamma_s(G)γs

(G), and their complements, such as Nordhaus-

Gaddum-type results ds(G)+ds(G‾)≤n+1d_s(G) + 

d_s(\overline{G}) \leq n + 1ds(G)+ds(G)≤n+1, for 

different graph configurations 

 

The derivation and analysis of bounds and 

relationships involving the signed domatic number 

ds(G)d_s(G)ds(G), the signed domination number 

γs(G)\gamma_s(G)γs(G), and their complements 

include Nordhaus-Gaddum-type results such as 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, where G‾\overline{G}G is the 

complement of GGG and nnn is the order of the graph, 

and these inequalities reflect the intrinsic structural 

balance between a graph and its complement in terms 

of domination and partition properties, with equality 

achieved under specific conditions like GGG being a 

complete graph of odd order or G‾\overline{G}G 

satisfying similar symmetric properties, and while the 

foundational result γs(G)⋅ds(G)≤n\gamma_s(G) \cdot 

d_s(G) \leq nγs(G)⋅ds(G)≤n connects the domination 

number and domatic number through their interplay 

over the vertex set, Nordhaus-Gaddum-type results 

extend these insights to explore how signed 

domination properties distribute across GGG and 

G‾\overline{G}G, requiring techniques like adjacency 

matrix analysis, regularity constraints, and 

combinatorial arguments, and the derivation of these 

bounds is particularly effective for regular graphs, 

circulant graphs, and highly symmetric structures 

where adjacency properties simplify verification of 

inequalities such as γs(G)+ds(G)≤n+1\gamma_s(G) + 

d_s(G) \leq n + 1γs(G)+ds(G)≤n+1, which itself 

tightens under conditions like GGG having only 

pendent or support vertices, and while these results are 

comprehensive for specific graph types, challenges 

persist in irregular, weighted, or directed graphs where 

the relationships between signed domination and 

domatic partitions are less straightforward, 

necessitating advanced tools like eigenvalue analysis 

and spectral graph theory to extend these findings to 

broader classes of graphs and dynamic networks, as 

highlighted in studies by Xu (2011), Favaron (1995), 

and Akbari et al. (2013), who provide combinatorial 

frameworks for verifying these bounds and propose 

extensions to practical applications such as network 

optimization and algorithmic resource allocation (Xu, 

2011, Favaron, 1995, Akbari et al., 2013). 

 

Theoretical findings on signed domination and 

domatic numbers to practical applications in network 

topology, resource allocation, optimization problems, 

and distributed systems 

The theoretical findings on signed domination and 

domatic numbers, where the signed domination 

number γs(G)\gamma_s(G)γs(G) represents the 

minimum weight of a signed dominating function 

f:V(G)→{−1,1}f: V(G) \to \{-1, 1\}f:V(G)→{−1,1}, 

satisfying ∑u∈N[v]f(u)≥1 ∀v∈V(G)\sum_{u \in 

N[v]} f(u) \geq 1 \, \forall v \in V(G)∑u∈N[v]

f(u)≥1∀v∈V(G), and the signed domatic number 

ds(G)d_s(G)ds(G) measures the maximum number of 

distinct signed dominating functions f1,f2,…,fdf_1, 

f_2, \ldots, f_df1,f2,…,fd with 

∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d f_i(v) \leq 1 \, 

\forall v \in V(G)∑i=1dfi(v)≤1∀v∈V(G), extend to 

practical applications in network topology by 

modeling node influence in communication systems, 

enabling the design of robust and fault-tolerant 

networks where signed domination ensures sufficient 

node coverage even under failures or adversarial 
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conditions, in resource allocation by partitioning 

network resources optimally into independent signed 

dominating sets to minimize overlap and maximize 

efficiency, and in optimization problems where signed 

domination and domatic numbers are used to balance 

positive and negative influences across distributed 

systems, ensuring reliable decision-making and load 

balancing, particularly in dynamic environments like 

sensor networks and peer-to-peer systems, with 

practical implications derived from theoretical bounds 

such as γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq 

n + 1γs(G)+ds(G)≤n+1, where nnn is the graph order, 

which provides a limit on resource partitioning 

capabilities, and further results like 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, where G‾\overline{G}G is the 

complement graph, enabling insights into redundancy 

and resilience in networked systems, while 

applications extend to distributed systems where 

signed domatic numbers can model hierarchical 

control, with real-world scenarios highlighting the 

utility of these parameters in cybersecurity, energy 

distribution, and computational efficiency, supported 

by studies like Harary & Kabell (1980), Akbari et al. 

(2013), and Favaron (1995), which demonstrate the 

bridging of theoretical graph invariants to practical 

domains through advanced combinatorial reasoning 

and algorithmic frameworks (Harary & Kabell, 1980, 

Akbari et al., 2013, Favaron, 1995). 

 

Discussion related to the study 

The discussion of the study on signed domatic 

numbers revolves around the interplay between the 

signed domination number γs(G)\gamma_s(G)γs(G), 

representing the minimum weight of a signed 

dominating function f:V(G)→{−1,1}f: V(G) \to \{-1, 

1\}f:V(G)→{−1,1}, and the signed domatic number 

ds(G)d_s(G)ds(G), which measures the maximum 

number of distinct signed dominating functions 

f1,f2,…,fdf_1, f_2, \ldots, f_df1,f2,…,fd satisfying 

∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d f_i(v) \leq 1 \, 

\forall v \in V(G)∑i=1dfi(v)≤1∀v∈V(G), with key 

theoretical findings including inequalities such as 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the order of the graph, 

and Nordhaus-Gaddum-type results like 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, where G‾\overline{G}G is the 

complement of GGG, providing structural insights 

into the partitioning capabilities of graphs under 

signed domination constraints, particularly for specific 

classes like circulant graphs, complete graphs, and 

Petersen graphs, where adjacency symmetries or high 

regularity lead to precise determinations of 

ds(G)d_s(G)ds(G) and γs(G)\gamma_s(G)γs(G), such 

as ds(Kn)=nd_s(K_n) = nds(Kn)=n for complete 

graphs of odd order and ds(Gn)=5d_s(G_n) = 5ds(Gn

)=5 for circulant graphs with connection sets in 

Z5lZ_{5l}Z5l, while the study extends these findings 

to practical applications in network reliability, 

optimization, and distributed systems, where signed 

domatic numbers reflect the ability of a graph to 

sustain independent and constrained dominating 

partitions, and the challenges identified include 

extending these results to irregular, weighted, or 

dynamic graphs, where the complexity of computing 

γs(G)\gamma_s(G)γs(G) and ds(G)d_s(G)ds(G) rises 

significantly, necessitating the development of 

algorithmic tools and spectral methods to analyze 

these parameters comprehensively, with future 

directions focusing on the role of signed domination in 

multi-layered networks, security models, and 

algorithmic resource allocation, supported by studies 

like Favaron (1995), Xu (2011), and Harary & Kabell 

(1980), who have established foundational 

combinatorial and algorithmic frameworks for 

advancing the understanding and applicability of 

signed domination and domatic concepts (Favaron, 

1995, Xu, 2011, Harary & Kabell, 1980). 

 

Mathematical implications related to the study 

The mathematical implications of the study on the 

signed domatic number ds(G)d_s(G)ds(G), defined as 

the maximum number of distinct signed dominating 

functions f1,f2,…,fdf_1, f_2, \ldots, f_df1,f2,…,fd 

satisfying ∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d 

f_i(v) \leq 1 \, \forall v \in V(G)∑i=1dfi

(v)≤1∀v∈V(G), and its relationship with the signed 

domination number γs(G)\gamma_s(G)γs(G), which 

represents the minimum weight of a signed 

dominating function f:V(G)→{−1,1}f: V(G) \to \{-1, 

1\}f:V(G)→{−1,1} such that ∑u∈N[v]f(u)≥1\sum_{u 

\in N[v]} f(u) \geq 1∑u∈N[v]f(u)≥1, extend to 

fundamental graph inequalities like 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the order of the graph, 

highlighting constraints on graph partitioning and 

domination, with specific implications for symmetric 
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graphs such as circulant graphs and complete graphs, 

where adjacency regularity simplifies calculations, 

yielding results like ds(Kn)=nd_s(K_n) = nds(Kn)=n 

for odd nnn, and providing a foundation for extending 

combinatorial principles to more complex 

configurations such as irregular, weighted, and 

directed graphs, while inequalities like 

ds(G)⋅γs(G)≤nd_s(G) \cdot \gamma_s(G) \leq nds

(G)⋅γs(G)≤n connect these parameters directly to the 

order of the graph and extend to their complements, as 

seen in Nordhaus-Gaddum-type results 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, which reflect the structural 

interplay between GGG and G‾\overline{G}G, and 

these relationships reveal deeper insights into graph 

invariants and their applications to resource 

partitioning, optimization, and reliability in distributed 

systems, while unresolved questions, such as the 

computational challenges of determining 

ds(G)d_s(G)ds(G) for dynamic or weighted graphs, 

suggest the need for advanced mathematical 

techniques like eigenvalue analysis and spectral graph 

theory to generalize results, as demonstrated in 

foundational works by Xu (2011), Favaron (1995), and 

Akbari et al. (2013), which use algebraic and 

combinatorial methods to analyze signed domination 

across diverse graph types (Favaron, 1995, Xu, 2011, 

Akbari et al., 2013). 

 

CONCLUSION 

 

The conclusion of the study on the signed domatic 

number ds(G)d_s(G)ds(G), defined as the maximum 

number of distinct signed dominating functions 

f1,f2,…,fdf_1, f_2, \ldots, f_df1,f2,…,fd such that 

∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d f_i(v) \leq 1 \, 

\forall v \in V(G)∑i=1dfi(v)≤1∀v∈V(G), highlights 

the critical interplay between ds(G)d_s(G)ds(G) and 

the signed domination number γs(G)\gamma_s(G)γs

(G), which represents the minimum weight of a signed 

dominating function f:V(G)→{−1,1}f: V(G) \to \{-1, 

1\}f:V(G)→{−1,1} satisfying 

∑u∈N[v]f(u)≥1 ∀v∈V(G)\sum_{u \in N[v]} f(u) \geq 

1 \, \forall v \in V(G)∑u∈N[v]f(u)≥1∀v∈V(G), with 

key findings demonstrating that inequalities such as 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the order of the graph, 

establish universal bounds that link domination and 

partitioning properties, further supported by exact 

results for specific graph types like ds(Kn)=nd_s(K_n) 

= nds(Kn)=n for complete graphs of odd order and 

ds(Gn)=5d_s(G_n) = 5ds(Gn)=5 for circulant graphs 

under certain connection sets, while the exploration of 

Nordhaus-Gaddum-type results 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, with G‾\overline{G}G as the 

complement graph, offers insights into the structural 

symmetry and partitioning capabilities of graphs and 

their complements, and these conclusions emphasize 

the practical applications of signed domatic numbers 

in network design, resource allocation, and distributed 

systems by quantifying the capacity of graphs to 

support independent, constrained partitions under 

signed domination constraints, while unresolved 

challenges, including the generalization of these 

concepts to irregular, weighted, and dynamic graphs, 

as well as the computational complexity of 

determining ds(G)d_s(G)ds(G) for large-scale 

networks, underscore the need for further exploration 

and the development of advanced combinatorial and 

algebraic tools to expand the applicability of these 

findings to broader graph classes and real-world 

scenarios. 

 

Scope for further research and limitations of the study 

The scope for further research and the limitations of 

the study on the signed domatic number 

ds(G)d_s(G)ds(G), defined as the maximum number 

of distinct signed dominating functions f1,f2,…,fdf_1, 

f_2, \ldots, f_df1,f2,…,fd satisfying 

∑i=1dfi(v)≤1 ∀v∈V(G)\sum_{i=1}^d f_i(v) \leq 1 \, 

\forall v \in V(G)∑i=1dfi(v)≤1∀v∈V(G), and its 

relationship with the signed domination number 

γs(G)\gamma_s(G)γs(G), which represents the 

minimum weight of a signed dominating function 

f:V(G)→{−1,1}f: V(G) \to \{-1, 1\}f:V(G)→{−1,1} 

satisfying ∑u∈N[v]f(u)≥1 ∀v∈V(G)\sum_{u \in 

N[v]} f(u) \geq 1 \, \forall v \in V(G)∑u∈N[v]

f(u)≥1∀v∈V(G), highlight the need to extend these 

concepts to broader classes of graphs such as weighted 

graphs, directed graphs, and dynamic graphs, where 

the structural complexity and additional constraints 

require advanced mathematical and computational 

tools for determining ds(G)d_s(G)ds(G) and 

γs(G)\gamma_s(G)γs(G), particularly in the context of 

establishing and verifying inequalities like 

γs(G)+ds(G)≤n+1\gamma_s(G) + d_s(G) \leq n + 1γs

(G)+ds(G)≤n+1, where nnn is the order of the graph, 
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and exploring Nordhaus-Gaddum-type results such as 

ds(G)+ds(G‾)≤n+1d_s(G) + d_s(\overline{G}) \leq n 

+ 1ds(G)+ds(G)≤n+1, with G‾\overline{G}G as the 

complement graph, to analyze how these invariants 

behave under graph transformations, while the 

limitations of the current study include the reliance on 

specific graph classes like complete graphs, circulant 

graphs, and Petersen graphs, where adjacency 

symmetries simplify calculations, leaving irregular 

and asymmetrical graphs relatively underexplored, 

and the computational challenges associated with 

large-scale graphs, where exact computations of 

ds(G)d_s(G)ds(G) and γs(G)\gamma_s(G)γs(G) often 

become infeasible due to the exponential growth of the 

function space, suggesting the need for approximation 

algorithms and spectral graph methods to address 

these gaps, as well as potential applications in areas 

such as multi-layered networks, hierarchical resource 

allocation, and fault-tolerant distributed systems, 

which require deeper integration of signed domination 

principles into practical optimization and network 

modeling scenarios, thereby paving the way for future 

research to bridge theoretical findings with complex 

real-world applications. 
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