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Abstract- to ensure a reliable operation of power 

system, power transformers’ health condition must 

be continuously monitored and assessed for 

appropriate operation and maintenance decisions. 

Currently, there are various insulation condition 

monitoring of power transformers. Such as dissolved 

gas analysis (DGA), Duval Triangular Method 

(DTM) and Rogers Ratio Method (RRM) Artificial 

neural network (ANN) etc. In the paper, 132/33 kV 

Bauchi substation was used as the study system and 

a selected injection feeder simulated for fault impact 

tests using Power System Computer Aided Design 

(PSCAD). The results which emanate from the study 

revealed that the current magnitude of bus voltage 

was 7.472%, bus voltage drop below 5% 

recommended while the oil and impregnated paper 

insulation degradation characterized with Kelman 

Transport X test equipment and MATLAB based 

ANN fault detection and classification jointly 

correlated that the sample oil only suffered for 

thermal faults greater 7000C but other 

characteristics such as arc faults, water contents 

were 73 ppm etc remained satisfactory for in the 

reference substation. Therefore, this paper has 

demonstrated detection, location and restoration of 

faults in the installed transformers. 

 

Indexed Terms- Power Transformer, Dissolved Gas 

Analysis, Fault Diagnosis Tools, Artificial neural 

network 

 

I. INTRODUCTION 

 

A fault diagnostic tool is needed to facilitate a large 

analysis, visual inspection, testing and robust 

maintenance of power transformers. The maintenance 

planners can reduce the increasing rate of internal 

faults. Accurate diagnostic can also improve the 

service reliability of this important asset whose 

optimal conditions largely depend upon the state of 

the oil-paper insulation. A power transformer is one 

of the most important and expensive assets in a power 

system. The reliable operation of transformers has a 

significant impact on the availability of electricity 

supply to customers [1]-[2]. Power transformer has a 

number of subsystems including winding, On Load 

Tap Changer (OLTC), bushing, cooling systems and 

other peripherals. Transformers both power and 

distribution in the power station operate to ensure the 

transmission and the distribution of the electrical 

energy. The power transformer works without several 

moving components; the only component moving in 

the power transformers is the OLTC [3]. The integrity 

of transformer must be continuously monitored for 

appropriate operational decisions and maintenance 

schedules. Effective methodologies and innovative 

techniques need to be developed to pave way for 

comprehensive condition monitoring and diagnosis of 

power transformers. The conditions of the cooling 

system used in a power transformer have significant 

impacts on the overall reliability and service ability of 

the apparatus [4]. The faults diagnosis is a powerful 

tool that carries out a large analysis; visual inspection; 

test and the maintenance of the power transformer to 

prevent faults and ensure normal operating 

conditions. 

 

II. RELATED WORK 

 

Diagnostic tools to detect some latent faults in 

transformer are based upon the study of characteristic 

nature of the insulating materials used for cooling the 

device during normal or abnormal operation. The 

nature of the insulating materials involved in the fault 

and the fault itself affect the distribution of dissolved 

gases monitored in the transformers. [5]. 

 

Dissolved Gas analyser (DGA) is a tool which allows 

diagnosis of insulation oil for power equipment. It has 

been used several decades in transformer oil condition 
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test to monitor the operating conditions of the unit and 

to detect the early faults aimed at avoiding failures 

and serious damage of transformer [6]. 

 

Safe and reliable operation of the power transformer 

play major role in the stability of the power system and 

relevant apparatus. Since any fault in the transformers 

influences some sections of power system, the precise 

diagnosis of the faults and quick interruption of the 

faulty transformers from the rest of the power system 

is essential to reduce damage caused by the high fault 

current that cause instability of the power system 

and/or fire outbreak. A number of articles involving 

several subjects about power transformer faults 

diagnosis have been documented. It has been 

confirmed that the conventional fault diagnosis 

methods such as the ratio methods (Rogers, 

Dornenburg, Duval triangle and IEC) and the key gas 

methods involving the quantity of hydrogen (H2), 

methane   (CH4),   ethane   (C2H6),   ethylene   

(C2H4), acetylene (C2H2), carbon monoxide (CO), 

carbon dioxide (CO2) have limitations in giving 

actionable alerts on the real problem of the 

transformers [7]. The Duval triangle dissolved gas 

analysis tool has also been proven to be helpful in 

interpreting possible faults within a transformer. It 

uses the proportions of the three key gases acetylene, 

ethylene, and methane to determine what type of fault 

might have occurred in the transformer. However, 

Duval’s triangle should be used with caution because 

it will always indicate that there is some kind of faults 

in the transformer even if it is operating normally. 

In most cases, this tool is used after a fault has been 

determined by some other methods as validating tool. 

More specifically, the benefit of DTM is that it is not 

only useful in determination of the types of fault but 

also gives its severity. Therefore, this is a need to 

reassess the set of diagnostic methods to develop the 

compendium of the causes, effects and remedy 

catalogue in power diagnosis. 

 

Also, the diagnosis of electrical and thermal faults in 

vegetable-insulating oils require some modifications. 

Refs. [10, 11] proposed modified Duval triangle 

method referred to as DTM type 3 to diagnose the 

thermal and electrical fault. This method has the 

advantages of high diagnostic accuracy and 

consistency. 

Incipient faults can also be diagnosed using on DGA 

tools to identify dissolved gases in power transformer 

under diagnostic themes of key gas methods, Rogers's 

ratio methods, Duval triangle method, Doernenburg 

Ratio method, Basic Gas Ratio, and artificial 

intelligence based methods. 

 

For key gas method applicable in incipient faults 

diagnosis, the key gas identifies each type of fault and 

uses the percent of this gas to determine faults by IEEE 

standard C57.104. The percent of gas is then obtained 

in terms of the total combustible gases (TCG). The 

main disadvantage of this method is that the 

interpretation by the individual gases is difficult in 

practice since each incipient fault produces traces of 

other gases in addition to the key gas of such fault. 

 

The ratio methods for fault diagnosis use certain ratios 

of dissolved gas concentrations according to 

combinations of codes. An incipient fault is detected 

when a code combination matches with the code 

pattern of the fault. The most widely used ratio 

methods are the Doernenburg Ratio Method, Rogers 

Ratio Method, and IEC standard. 

 

Various AI techniques include artificial neural 

networks (ANN) may help solve the problems and 

present a better solution [8]. In paper, artificial 

intelligence technique is used as a diagnostic tool for 

diagnosing the power transformer health. By using 

artificial intelligence, the rule can be generated 

automatically and the decision could be made with 

high assurances. In fact, one of the benefits of 

artificial intelligence is to minimize the subjective 

rules in perspective diagnostic techniques. Fuzzy 

logic and artificial neural network are the most 

commonly used artificial intelligence techniques for 

power transformer diagnosis [9]. The ratio methods 

for fault diagnosis use certain ratios of dissolved gas 

concentrations according to combinations of codes. 

An incipient fault is detected when a code 

combination matches with the code pattern of the 

fault. The most widely used ratio methods are the 

Doernenburg ratio method, Roger’s ratio method, and 

IEC standard. Six gas ratios have been used by 

different researchers [12]. 
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III. METHODOLOGY 

 

3.1 Complete transformer fault diagnosis 

The complete flowchart for determining the faults of 

power transformer based on lab fault diagnosis and 

neural network techniques from Matlab is presented in 

Figure 1. The first step in fault diagnosis for detecting 

the faults of power transformer is to take oil sample 

specimen from the transformer and then processed in 

the laboratory using optical gas analyser described in 

section 3.3.4. Following the analysis of the samples 

from the laboratory, the concentrations of dissolved 

gases are obtained using some standard DGA ratios 

such as KGM: DTM and RRM methods. The 

alternative method to the aforementioned classical 

ratio tests is to input the oil concentrations into the NN 

(Neural Network) to identify the types of faults 

 

 
Figure 1. Flowchart for determining the faults of 

power transformers based on neural networks. 

 

3.2 Transformer diagnosis case study of Bauchi –

Nigeria substation 

 

DGA samples of transformer T3 in Bauchi-Nigeria 

with nameplate information is shows in table 1 was 

sampled for routine testing on the 04-September- 

2021. Figure2. Shows the summary of the procedure 

invoked when using ANN as an alternative tool for 

DGA analysis. 

 

TABLE 1. NAME PLATE INFORMATION 

 

Bauchi T/S 132/33 kv 30/40 MVA, 

transformer 

T3 

 

Name plate data  

Manufacturer Transformers 

& electicals telk 

kerala 

limlited,India 

Serial n° 120345-1 

Type SOLOCR 

Year of manufacture 1995 

From 3NYCP 

Stardand(specifications) IEC 76 

[part1&2]- 

1993,[part3]- 

1980&[part5]- 

1976 

Rated power 30/40MVA 

Cooling method ONAN/ONAF 

Volume of oil in litres 17950L 

Frequency 50 Hz 

Masse of oil in Kg 16160Kg 

Phase 3 

Masse of core & winding 

in Kg 

38000Kg 

Air circulation M3/mm 6*90 

Connection symbol YNd11 

Guaranteed max temp rise 

of 

oil 

50°C 

Winding 55°C 

Winding Impulse test 

voltage Kv peak 

Power 

frequency 

test voltage 

Kv rms 

HV line 650 275 

HV neutral 95 35 

LV line 170 75 
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Figure 2. Fault diagnosis model 

 

3.3 63-Bus bank road distribution network 

In this research the virtual lab. Simulator developed 

by [13] has been adopted. for the study of the causes 

and impacts of faults on power transformer failures in 

the network. Herein, the Bauchi-Nigeria 63-bus, 

33/11 kV Bank Road feeder was used as the candidate 

feeder; analysed using PSCAD. PSCAD model is 

shown in Figure 3. 

 

 
Figure 3. PSCAD Model of 63-Bus Distribution 

Bauchi-Nigeria Bank Road network 

 

3.4 Transformer oil sample 

The transformer oil sample was collected from the 

Bauchi-Nigeria 132/33 kV substation power 

transformer. In the transformer under maintenance 

about 60 cl of the oil was scooped for DGA analysis. 

 

3.5 Kelman transport X DGA 

Kelman transport X DGA was used to measure all 

seven (7) critical faults one after the other. The gases 

as well as water content (moisture) were determined. 

The oil sample manually obtained from Bauchi 

132/33/11KV sub-transmission station were analysed. 

Plate I shows the Kelman Transport X DGA 

instrument available in Gombe TCN. The equipment 

was used to analyse the oil sample according to the 

operating procedure summarized in the salient steps: 

 

i. Boot the equipment and then follow the onscreen 

menu drive instructions of the machine 

ii. Inject 50 ml of the oil sample using the plunger 

apparatus and insert magnet into the bottle 

iii. Print the test results: 

 

 
Plate I kelman transport X 

 

IV. RESULTS AND DISCUSSION 

 

4.1 Causes and Impacts of faults on power 

transformers 

Faults in power systems can be initiated by transient 

operations such as switching of large loads, short 

circuit or open circuit of lines. The protective schemes 

should guarantee quick detection and location of the 

faults so as to safeguard all other essential equipment 

particularly transformers. Herein, the results are 

presented for short circuit of the main 15MVA, 33/11 

kV substation transformer at Bank Road, Bauchi. 

Figure 4 shows the inception fault 

 

 
(a) (b)  (c) (d) (e) 
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5.91114 6.31683 6.27204 0.130399 2.29173 

(f) (g) (h) (i) (j) 

Figure 5. Substation Meters for Fault Analysis: 

Lateral (a-e) and main (f-h) 

 

occurring at the substation upstream few meters away 

with the circuit breaker simulating the fault from 6s to 

6.5s. Also, there was another downstream short circuit 

fault initiated after 2s up to 10s with the system 

responses shown in Figure 5 (a-l) representing three 

sinusoidal waveforms phase voltages A to C, RMS 

voltage oscillograph of phase A, three sinusoidal 

waveforms phase current A to C, RMS voltage 

oscillograph of phase B, three real power signals at A, 

B & C and RMS voltage oscillograph of phase C 

respectively. In this situation the percentage voltage 

regulation of the line is computed as in Equation (4.1) 

yielded 0.115%, 0.584% and - 0.576% for phases A, 

B and C respectively in the lateral bus numbers 13 to 

22. 

 

%voltage regulation =
𝑣sending end−𝑣receving end

2𝑎𝑣𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑒𝑛𝑑
 

×100      (1) 

 

The positive regulation indicates volt drop and 

negative indicates rise in voltage. These results were 

obtained from PSCAD described in the previous 

section 

 

 
Figure 4. The inception fault at bus 1-13. 

 

The causes and impact of fault on transformer failure 

are simulated in PSCAD corresponding to commonly 

experienced abnormalities in the power system. 

Analytic failure tests are carried out to establish the 

tolerable limits of power systems apparatus 

particularly power transformers in terms of insulation 

degradation or breakdown. These tests are divided in 

two groups: Low Voltage (LV) and High Voltage 

(HV) tests where the limit is set at 1 kV. Most HV 

tests, such as induced voltage tests, partial discharge 

(PD) test or lightning impulse test, require the usage 

of heavy or highly specialised test devices and the 

appropriate expertise to interpret the results. Those 

tests are mostly carried out in the factory and rarely 

onsite. On the other hand, LV tests, like winding 

resistance, insulation resistance, tangent delta and 

voltage ratio, are relatively easy to perform in the 

factory as well as onsite. 

 

In the research work both HV and LV tests were 

simulated in the study distribution network. In Figure 

4 the incoming voltage phases A to C under normal 

and abnormal conditions were measured while in 

Figure 5 the normal voltage profile is monitored. 

 

i. The lowest normal voltage of the incoming feeder 

for one of the laterals injected powerat bus 13 was 

found to be 5.9114× √3 = (10.238 kV) which is 

6.927% slightly above the 5% specification in NEC 

210-19 FPN No: 4. In the farthest receiving end of 

the lateral, the voltage drop was 7.472%. 

ii. Under fault condition, the inception power grew up 

16 MW and 600 kvAr far above the normal rate of 

15 MW and 3.75MVAr which is 5.5% and 84% 

respectively. 

 

 
Figure 6. Downstream short circuit fault at the 

lateral between bus 13 and 22 

 

4.2 Fault detection and prediction 

The ANN fault detection and prediction are considered 

with the standard DGA data adopted for validation 

[14] while the oil specimens analysed with KTX 

equipment are compared appropriately. 
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4.2.1 Optimal neural network architecture for DGA 

fault detection 

Table 2 Shows the various network architectures 

tested. It can be seen that the architecture with [30 30 

30] obtained the best performance of lowest error of 

3.41% classification architecture and therefore the 

lowest error percentage. Single layer networks with 10 

neurons performed poorly. But as the number of 

neurons was increased the performance improved. The 

best performance of 78% for single layer was obtained 

at around 30 Neurons. Increasing the number did not 

improve the performance. For two layers architecture, 

the best results obtained was with [20 20]. For three 

layers the best architecture obtained was [30 30 30]. It 

had a performance of 91%. Increasing the number of 

layers beyond three layers did not result to any 

significant increase in performance. As the number of 

neurons and layers increased it was noticed that the 

training time also increased. Figure 7 shows the 

optimal neural network architecture selected. The 

iteration curve for DGA fault detection is shown in 

figure 8 and The ROC curve is shown in figure 9 

 

 
Figure 7. Neural network architecture for DGA fault 

detection 

 

TABLE 2. OPTIMAL NEURAL NETWORK 

ARCHITECTURE FOR DGA FAULT DETECTION 

Architectur

e 

% Error Train (RMSE) Test 

(RMSE) 

Validation 

(RMSE) 

10 17.06 0.65 0.71 0.33 

20 16.24 0.23 0.73 0.43 

30 13.67 0.25 0.01 0.04 

20-20 15.41 0.56 0.23 0.10 

30-30 17.20 0.17 0.33 0.27 

10-10-10 15.74 0.00 0.44 0.95 

20-20-20 29.71 0.18 0.29 0.71 

30-30-30 3.41 0.29 0.91 0.21 

30-20-10 11.16 0.88 0.05 0.45 

25-25-25 17.41 0.97 0.38 0.53 

40-40-40 17.17 0.52 0.21 0.83 

 

4.2.2 Optimal neural network training algorithm 

for DGA fault detection 

 

Table 3. Shows the various training algorithms tested. 

The various training algorithms are Trainscg, 

Trainbfg, Traincbg, Traingda, Trainrp and Trainlm. 

From this table its seen that Trainscg had 17.11%, 

Trainbfg 23.04%, Traincbg 0.54%, Traingda 13.98%, 

Trainrp 0.19% and Trainlm 0.19%. The best training 

algorithm is trainlm and trainrp which both had 

percentage error of 0.1. 

 

 
Figure 8.    Iteration curve for DGA fault detection 

 

 
Figure 9. ROC curve for DGA fault detection 

 

TABLE 3. OPTIMAL NEURAL NETWORK 

TRAINING ALGORITHM FOR DGA FAULT 

DETECTION 

Algorith 

   m

  

% 

Error

  

 

Train

  

 

Test

  

Valid 

ation  



© NOV 2021 | IRE Journals | Volume 5 Issue 5 | ISSN: 2456-8880 

IRE 1702978          ICONIC RESEARCH AND ENGINEERING JOURNALS 152 

Trainscg 17.11 0.82 0.77 0.49 

Trainbfg 23.04 0.66 0.02 0.66 

Traincbg 0.54 0.92 0.64 0.80 

Traingda 13.98 0.05 0.64 0.24 

Trainrp 0.19 0.74 0.64 0.60 

Trainlm 0.19 0.12 0.11 0.27 

 

4.3 Fault classification 

 

4.3.1 Optimal neural network architecture for 

DGA fault classification 

Table 4 shows the various network architectures 

tested. It can be seen that the architecture with [30 30 

30] obtained the lowest error percentage. The plot 

showing the performance of tested architectures is 

shown in figure 10 figure 11. Shows the network 

architecture with 3 layers and 30 neurones in each 

layer. 

 

TABLE 4. OPTIMAL NEURAL NETWORK 

ARCHITECTURE FOR DGA FAULT 

CLASSIFICATION 

 

Architec 

   ture

  

 

% Error

  

Train 

(RMSE)

  

Test 

(RMSE)

  

Validation 

(RMSE)  

10 34.87 0.67 0.18 0.02 

20 22.37 0.21 0.47 0.44 

30 42.53 0.65 0.18 0.35 

20-20 16.14 0.06 0.92 0.50 

30-30 16.73 0.20 0.04 0.78 

10-10-10 29.76 0.16 0.24 0.73 

20-20-20 32.41 0.59 0.20 0.43 

30-30-30 11.39 0.20 0.42 0.64 

30-20-10 43.20 0.60 0.21 0.14 

25-25-25 28.00 0.72 0.71 0.18 

40-40-40 21.08 0.05 0.30 0.50 

 

 
Figure 10. Performance of network architecture for 

DGA fault classification 

 

 
Figure 11. Neural network architecture for DGA fault 

detection 

 

4.3.2 Optimal neural network training algorithm 

for DGA fault classification 

 

The results obtained for the training algorithms tested 

during the determination of the best training algorithm 

for fault classification show that trainscg, trainbfg, 

traincbg, traingda, trainrp and trainlm obtained a 

training percentage of 91%, 58%, 46%, 67%, 58%, 

and 78% respectively. This is shown in Table 5 and it 

can be seen that trainlm obtained the best results and 

therefore it was chosen as the algorithm to be used. 

Figure 12 shows the receiver operating characteristic 

(ROC) curve for fault classification. ROC provides 

model prediction for true positive equivalent to hitting 

the target, true negative which is clear rejection and 

their opposite: false positive and false negative. It is 

the plot of true positive rate against the false positive 

rate at various threshold settings. The statistical 

representation of the ROC is established from the 

confusion matrix. The confusion matrix for the fault 

classification in power transformers is shown in figure 

13. The diagonal cells show the number of cases that 

were correctly classified, and the off-diagonal cells 

show the misclassified cases. The blue cell in the 

bottom right shows the total percent of correctly 
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classified cases (in green) and the total percent of 

misclassified cases (in red). The results show very 

good recognition. Out of the six classes considered, 

class four outperformed the other five counterpart 

yielding positive classifier of 97.4%. 

 

TABLE    5.    OPTIMAL NEURAL NETWORK 

TRAINING ALGORITHM FOR DGA FAULT 

CLASSIFICATION 

 

   

Algorithm

  

% Error

  

Train

  

Test

  

Validation  

trainscg 17.01 0.82 0.56 0.60 

trainbfg 11.31 0.73 0.45 0.37 

traincbg 28.29 0.73 0.22 0.89 

traingda 65.72 0.52 0.54 0.65 

trainrp 8.01 1.00 0.61 0.87 

trainlm 5.25 0.24 0.13 0.53 

 

 
Figure 12. ROC curve for fault classification 

 

 
Figure 13. Confusion matrix for fault classification 

 

CONCLUSION 

 

Three different tests namely Roger’s ratio method, 

Duval triangle method and Key gas method have been 

studied and reported in this research. These tests are 

conducted to reveal the degradation in oil and 

impregnated paper used in power transformer for 

cooling and insulation. The insulation oil and paper 

characteristics of the transformer were determined 

based on the three ratio test methods. After running the 

diagnostics using there classical dissolved gas 

analytical tools with samples data taken from the 

power transformer, two of the models DTM, RRM 

indicated that there was a thermal fault with high 

energy. Other specific observations from each 

analytical tool are considered in sequel. 

 

The ANN optimally tested with DGA data has shown 

the effect of various network architectures for 

detection of transformer faults. It has been observed 

that performance of ANN architecture is a function 

numbers of neurons and levels of hidden layers. For 

instance, with [30 30 30] which signifies 3 levels of 

hidden layers, each level having 30 neurons has been 

adjudged the best performed ANN architecture with 

the lowest error of 3.41%: Other conclusions can be 

drawn from the research as follows: 

 

i. Single layer networks with 10 neurons performed 

poorly. But as the number of neurons increased the 

network performance improved. The best 

performance of 78% for single layer was obtained 

at around 30 Neurons. Increasing the number did 

not improve the performance. 
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ii. For two layers architecture, the best results 

obtained was with [20 20]. 

iii. For three layers the best architecture obtained was 

[30 30 30] with accuracy of 91%. Increasing the 

number of layers beyond three layers did not result 

to any significant increase in performance. 

iv. As the number of neurons and layers increased it 

was noticed that the training time also increased. 

The final iteration was 100 and out of the six 

classes considered, class four outperformed the 

other five counterpart yielding positive classifier of 

97.4%. 
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