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Abstract -- In this paper, we describe two different finite 

difference schemes for solving the time fractional 

diffusion equation. And, we study the method of lines 

discretizations. Then, we use to check the   stability of 

finite difference schemes by using Von Neumann 

analysis.   
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I. INTRODUCTION 

 

We study finite difference methods for time-

dependent partial differential equations, where 

variations in space are related to variations in time. 

 The heat equation (or diffusion equation), 

                             t xxu k u
.          (1)  

 

This is the classical example of a parabolic equation, 

and many of the general properties seen here carry 

over to the design of numerical methods for other 

parabolic equations. We will assume 1k   for 

simplicity but some comments will be made about 

how the results scale to other values of 0k  . 

 

Along with this equation we need initial conditions at 

some time 0t , which we typically take to be 0 0t 
,  

 

( ,0) ( )u x x 
   (2) 

 

and   also boundary conditions if we are working on a 

bounded domain, 

 

for   example, the Dirichlet conditions 

    0(0, ) ( )u t g t
for 0t   

    1(1, ) ( )u t g t
for 0t               ( 3) 

       if 0 1x  .   

 

We have already studied the steady state version of 

this equation and spatial discretizations of xxu
. We 

have also studied discretizations of the time 

derivatives. 

 

In practice we generally apply a set of finite 

difference equations on a discrete grid with grid 

points 
( , )i nx t

 where ix ih
, nt nk

. 

Here h x   is the mesh spacing on the x-axis and 

k t   is the time step. Let ( , )n

i i nU u x t  represent 

the numerical approximation at grid point  
( , )i nx t

. 

 

Since the heat equation is an evolution equation that 

can be solved forward in time, we set up our 

difference equations in a form where we can march 

forward in time, determining the value 
1n

iU 

 for all i 

from the values
n

iU  at the previous time level, or 

perhaps using also values at earlier time levels with a 

multistep formula. 

 

As an example, one natural discretizations of 

Equation (  1) would be    

   

1

1 12

1
( 2 )

n n
n n ni i
i i i

U U
U U U

k h



 


  

. (4) 

 

This uses our standard centered difference in space 

and a forward difference in time. This is an explicit 

method since we can compute each  
1n

iU 

explicity in 

terms of the previous data 

     

1

1 12
( 2 )n n n n n

i i i i i

k
U U U U U

h



    
. (5) 

 

This is a one-step method in time, which is also 

called a two-level method in the context of partial 

differential equations since it involves the solution at 

two different time levels. 

 

  
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Another one-step method, which is much more useful 

in practice as we will see below, is the Crank-

Nicolson method, 

   

1n n

i iU U

k

  2 2 11
( )

2

n n

i iD U D U  
 (6) 

1 1 1

1 1 1 12

1
( 2 2 )

2

n n n n n n

i i i i i iU U U U U U
h

  

        

 

 which can be rewritten as   for  i =1,….,m. 

   

1

1 1 1

1 1 1 12
( 2 2 )

2

n n

i i

n n n n n n

i i i i i i

U U

k
U U U U U U

h



  

   



     
 

(7)                                                                 

                       or 
1 1 1

1 1 1 1(1 2 ) (1 2 )n n n n n n

i i i i i irU r U rU rU r U rU  

          

,                                                                  (8) 

For   i =1,….,m. 

 

 where 
22

k
r

h


. This is an implicit method and gives 

a  tridiagonal system of equations to solve for all the 

values 
1n

iU 

 simultaneously. The   boundary  

conditions 0(0, ) ( )u t g t
 , 1(1, ) ( )u t g t

 come into 

these equations. 

 

Since a tridiagonal system of m equations can be 

solved with O( )m  work, this method is essentially as 

efficient per time step as an explicit method. The heat 

equation is “stiff”, and hence this implicit method, 

which allows much larger time steps to be taken than 

an explicit method, is a very efficient method for the 

heat equation. 

 

II. METHOD OF LINES DISCRETIZATIONS 

 

The time-dependent partial differential equations 

relates to the stability theory we have already 

developed for time-dependent ordinary differential 

equations, it is easiest to first consider the so-called 

Method of lines discretization of the partial 

differential equation.  

For example, we will discredited the heat Equation 

(1) in space at grid point  ix
 by   

1 12

1
( ) ( ( ) 2 ( ) ( ))i i i iU t U t U t U t

h
   

,        (9) 

 for  
1, 2, ,i m 

.                 

 

where prime now means differentiation with respect 

to time. 

 

If   1i  , then
1 0 1 22

1
( ) ( ( ) 2 ( ) ( ))U t U t U t U t

h
   

  

                       
 0 1 22

1
( ) 2 ( ) ( )  g t U t U t

h . 

If   2i  , then
 2 1 2 32

1
( ) ( ) 2 ( ) ( )U t U t U t U t

h
   

. 

 

If   2i  , then
3 2 3 42

1
( ) ( ( ) 2 ( ) ( ))U t U t U t U t

h
   

. 

  

If i m , then
1 12

1
( ) ( ( ) 2 ( ) ( ))m m m mU t U t U t U t

h
 

   
    

                      
1 12

1
( ( ) 2 ( ) ( ))m mU t U t g t

h
  

. 

 

We can find this as a coupled system of m ordinary 

differential equations for the variables 
( )iU t

, which 

vary continuously in time along the lines . This 

system can be written as, 
( ) ( ) ( )U t AU t g t  

.      

(10) where the tridiagonal matrix A and 
( )g t

 

includes the terms needed for the boundary 

conditions, 

 

2

2 1

1 2 1

1 2 11

1 2 1

1 2

A
h

 
 
 
 

  
 
 
 

 

  

  

0 0( ) ( )U t g t
 and 1 1( ) ( )mU t g t 

,  



© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880 
 

IRE 1701519        ICONIC RESEARCH AND ENGINEERING JOURNALS 281 

 

0

2

1

( )

0

01
( )

0

( )

g t

g t
h

g t

 
 
 
 

  
 
 
 
 



.  (11) 

 

 

III. DEFINITION 

 

Suppose a finite difference method for a linear 

boundary value problem gives a sequence of matrix 

equations of the form 
h h hA U g  where h is the mesh 

width. We say that the method is stable if 
1( )hA 

 

exists for all h sufficiently small (for 0h h
, say) and 

if there is a constant C, independent of h, such that 

 
1( )hA C 

 fo all 0h h
.  (12) 

 

 

IV. STABILITY IN THE  2 –Norm 

 

If the matrix A from Equation (11 ) is symmetric,  

the 2-norm of A is equal to its spectral radius is  

2
A ( )A 

1
max p

p m 
  , 

p is the 
thp eigen 

value of the matrix. The matrix 
1A
 is also 

symmetric and the eigen values of 
1A
 are simply 

the inverses of the eigen values of A. 

 

So, 
1

2
A 1( )A 

  
1

1
max ( )p

p m



 
 

   

 
1

1
min p

p m



 
  .

 

 

So all we need to do is compute the eigen values of A 

and show that they are bounded away from zero as 

0h . 

 

Then the m eigen values of A are given 

by
2

2
(cos( ) 1)p p h

h
    , for  1, 2, ,p m  . ( 13 ) 

The eigenvector 
pu  corresponding to 

p  has 

components 
p

ju  for 1, 2, ,j m   given by    

sin( )p

ju p jh 
                                

 (  14 ) 

 

We can be verified by checking   that p p

pAu u  . 

The 
thj  component of the vector 

pAu  is
 

1 12

1
( ) ( 2 )p p p p

j j j jAu u u u
h

   

 2

1
sin( ( 1) ) 2sin( ) sin( ( 1) )p j h p jh p j h

h
       

2

1
sin( ) cos( ) cos( )sin( )p jh p h p jh p h

h
     

2sin( ) sin( )cos( ) cos( )sin( )p jh p jh p h p jh p h       

 2

1
sin( )cos( ) 2sin( ) sin( )cos( )p jh p h p jh p jh p h

h
       

p

p ju  . 

 

For 1j  and j m , the 
thj  component of  

pAu  

looks slightly different (the 1

p

ju    or 1

p

ju   term is 

missing) but that the above form and trigonometric 

manipulations are still valid provided that we define 

0 1 0p p

mu u   , 

 

as is consistent with Equation ( 14 ). From Equation 

(13 ) we see that the smallest eigenvalue of A (in 

magnitude) is     

1 2

2
(cos( ) 1)h

h
  

2 2 4 4 6

2

2 1 1
O( )

2 24
h h h

h

 
       

2 2O( )h   . 

 

This is clearly bounded away from zero as   0h , 

and so we see that the method is stable in the 2-norm. 

 

 

V. VON NEUMANN ANALYSIS 

 

The Von Neumann approach to stability analysis is 

based on Fourier analysis and hence is generally 

limited to constant coefficient linear partial 

differential equations. For simplicity it is usually 

applied to the Cauchy problem, which is the partial 

differential equation on all space with no boundaries, 
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 in the one-dimensional case. Von 

Neumann analysis can also be used to study the 

stability of problems with periodic boundary 

conditions. 

 

The Cauchy problem for linear partial differential 

equations can be solved using Fourier transforms. 

The basic reason this works is that the functions
i xe 

  

with wave number constant   are eigen functions 

of the differential operator  x ,
i x i xx e i e   

, 

and hence of any constant coefficient linear 

differential operator. Von Neumann analysis is based 

on the fact that the related grid function 
ijh

jW e 
is 

an eigen function of any standard finite difference 

operator. For example, if we approximate 
( )jv x

 by 

0 1 1

1
( )

2
j j jD V V V

h
  

, then in general the grid 

function 0D V
 is not just a scalar multiple of V. 

 

But for the special case of W, we obtain 

    o jD W
( 1) ( 1)1

( )
2

i j h i j he e
h

    
 

         

1
( )

2

ih ih ijhe e e
h

     sin( ) ijhi
h e

h

 
   

       
sin( ) j

i
h W

h
 

. 

 

So W is an “eigen  gridfunciton” of the operator 0D
, 

with eigen value 
sin( )

i
h

h


. 

 

Note the relation between these and the eigen 

functions and eigen values of the operator x  found 

earlier: jW
 is simply the eigen function

( )x
 of x  

evaluated at the point jx
, and for small 

h
 we can 

approximate the eigenvalue of 0D  by 

 

      
sin( )

i
h

h
 3 3 5 51

O( )
6

i
h h h

h

 
       

     

              

2 3

6

i
i h    

. 

This corresponds with the eigenvalue 
i

 of x  to 
2 3O( )h  . 

 

We will consider the Equation ( 5). To apply Von 

Neumann analysis we consider how this method 

works on a single wave number   


, 

   we    set         
n ijh

jU e 
.                   ( 15 ) 

 

Then we expect that,     
1 ( )n ijh

jU g e  
 ,         ( 16 ) 

where 
( )g 

 is the amplification factor for this wave 

number. 

 

Inserting these expressions into Equation ( 5) 

give

( 1) ( 1)

2
( ) ( 2 )ijh ijh i j h ijh i j hk

g e e e e e
h

          
 

                
2

1 ( 2 )i h i h ijhk
e e e

h

    
     

 

   
( )g  2

1 ( 2 )i h i hk
e e

h

     
    

          
2

1 ( 2 2cos( ))
k

h
h

    
,and   hence 

2

2
( ) 1 (cos( ) 1)

k
g h

h
    

. 

Since 
1 cos( ) 1h   

 for any value of   


, 

we see that 
2

1 4 ( ) 1
k

g
h

   
, for all 


. 

 

Then, 
( ) 1g  

 is equivalent to 

2

2
( ) 1 (cos( ) 1)

k
g h

h
    

1    

                

2

2

2
1 ( 2sin ( ))

2

k h

h


 

1 , 

              

2

2

4
1 sin ( )

2

k h

h




1 . 

  So, 1 

2

2

4
1 sin ( )

2

k h

h




1 , 
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      2 

2

2

4
sin ( )

2

k h

h




0 , 

                Thus,
2

4 2
k

h


, 
2

1

2

k

h


. 

This is exactly the stability restriction  
2

1

2

k
r

h
 

. 

Now we will prove that the Crank-Nicolson method 

is stable for all k and h can also be shown using Von 

Neumann analysis. Substituting Equation (15) and 

Equation (16) into the difference Equation ( 7) and 

cancelling the common factor 
ijhe 

 gives the 

following 

relation,

 ( 1) ( 1) ( 1) ( 1)

2

( )

2 ( ) 2 ( ) ( )
2

ijh ijh

i j h ijh i j h i j h ijh i j h

g e e

k
e e e g e g e g e

h

 

         

 

        

 

Then,
2

1 ( 2 )(1 )
2

i h i hk
g e e g

h

      
, 

and hence 
g

1 (1 )
2

z
g  

, 2

zg
g  1

2

z
 

. 

 

Thus,

(1 )
2

z
g 

1
1

2
z 

, 

         So,

1
2

1
2

1

1

z
g

z





,    

where 
2

( 2 )i h i hk
z e e

h

    
 

                   
2

2
(cos( ) 1)

k
h

h
  

.Since 0z   for all 


Therefore, 

1g 
  and the method is stable for 

any k and h. 

 

 

VI. CONCLUSION 

 

This paper has presented two finite difference 

methods   for solving diffusion equation. Next, we 

proved that finite difference Crank- Nicolson method 

is stable by using Von Neumann analysis 
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