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Abstract -- Generally, a classical computer (which works 

on a layer of millions of transistors) is said to be an efficient 

computing device which can find out the solution of any 

computational problem in polynomial order of time .But 

with the advent of quantum computers and quantum 

algorithms it was found that such computational problems 

and the other problems which cannot be solved even by the 

classical computers were solved in much lesser time by 

these quantum computers. Introductory Topics covered by 

this paper include: introduction to quantum computing 

and quantum algorithms, a brief description about vector 

complex numbers, complex vector spaces, quantum states, 

quantum systems, bits, qbits and cbits .the further sections 

will include LAS VEGAS algorithm for finding discrete 

logarithms and factoring integers on a quantum computer 

that take a number of steps which is polynomial in the input 

size, these problems are generally thought to be hard on a 

classical computer and which have been used as the basis 

of several proposed cryptosystems. This review paper is 

written with the aim to lay out a foundation for quantum 

computing in the minds of readers. 

 

I. INTRODUCTION 

 

The fundamental basis of quantum computation is 

Landauer’s observation that all information is 

ultimately physical [1, 2]. Information, the 1's and 0's 

of classical computers, must inevitably be recorded by 

some physical system - be it paper or silicon. Which 

brings us to the key point. As far as we know today, 

all matter is composed of atoms - nuclei and electrons 

- and the interactions and time evolution of atoms are 

governed by the laws of quantum mechanics. 

Although the peculiarities of the quantum world may 

not seem readily apparent at first glance, a closer look 

reveals that applications of quantum mechanics are all 

around us (see for example Ref. [3]). As has been 

emphasized by Minsky [4], the very existence of 

atoms owes everything not to the chaotic uncertainties 

of classical mechanics, but rather to the certainties of 

quantum mechanics with the Pauli exclusion principle 

and well-defined and stable atomic energy levels! 

Indeed without our quantum understanding of the solid 

state and the band theory of metals, insulators and 

semiconductors, the whole of the semiconductor 

industry with its transistors and integrated circuits - 

and hence the computer on which I am writing this 

lecture - could not have developed. The same can be 

said about quantum optics and lasers: huge industries 

- from optical communications to music and video 

CDs - have their basis in these intrinsically quantum 

technologies. 

At bottom then, everything is quantum mechanical 

and, like Feynman in his visionary 1959 ‘Plenty of 

Room at the Bottom’ talk [5], we can certainly 

envisage storing bits of information on single atoms or 

electrons. However, these microscopic objects do not 

obey Newton's Laws of classical mechanics: instead, 

they evolve and interact according to the Schroedinger 

equation, the ‘Newton's Law’ of quantum mechanics. 

In fact, we know now that even this is only a suitable 

approximation for everyday speeds and energies: at 

high speeds and energies, we must use the Dirac 

equation and Einstein's relativity, with its predictions 

of relativistic mass increase and particle antiparticle 

creation, must be taken into account. However, for 

most of our everyday concerns, it is safe for us to 

ignore these complications and use the non-relativistic 

version of quantum mechanics embodied by 

Schroedinger's equation. Information is ultimately not 

an abstract concept - it must be recorded and stored on 

media that are fundamentally quantum mechanical. 

We must therefore broaden our definition of 

information as merely a string of 1's and 0's and 

examine the consequences of the quantum nature of 

media for information. The implications of this new 

field of quantum information theory are still being 

explored and may yet deliver more surprises. 

However, to introduce quantum computing, we shall 

only need a few quantum concepts and principles. But 

before we turn to a discussion of qubits and the like, 

we must now make an apparently puzzling diversion 

and introduce some ideas of Ed Fredkin and Charles 

Bennett about reversible computing and reversible 

logic gates. 
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II. REVERSIBLE COMPUTING 

 

In 1973, Charles Bennett of IBM Research made a 

remarkable discovery [6]. Classical computation can 

be broken down into a series of steps, each logically 

reversible, and this in turn allows physical reversibility 

of the computation. This result has implications for the 

energy dissipated by the computation. Rolf Landauer, 

Bennett's long-term colleague and mentor, had earlier 

shown that it is the act of discarding information that 

incurs an unavoidable energy loss. This is Landauer's 

Principle and, for example, this is now central to our 

current understanding of the problem of Maxwell's 

Demon as given by Bennett [7, 8]. Bennett's result 

means that we can arrange our computer to calculate 

reversibly, very slowly, with an energy as small as we 

please. In his lectures on computation in the 1980's [9], 

Feynman discusses a reversible computer that 

calculates for a few steps, then drifts back a bit, 

‘uncalculating’ as it goes, before it drifts forward again 

to eventually complete the calculation with almost 

zero energy loss. 

To build such a reversible computer requires us to use 

new types of logic gates that are reversible, i.e. from 

the output of the gate one can reconstruct the input. It 

is easy to see that a conventional AND gate is not 

reversible. If the output of an AND gate is 0, the 

signals on the two input wires could be any one of 

three possibilities - 00, 01 and 10. The possibility of 

reversible logic gates was considered by Fredkin and 

Toffoli nearly 20 years ago [10]. Let us consider a 

simple example. The truth table for a classical NOT 

gate is shown below (Fig. 1). It is clearly reversible: 

from its output we can deduce its input. For this reason 

Feynman prefers to use the symmetrical notation for a 

NOT gate shown in Fig. 2. Two NOT gates put back 

to back evidently bring us back to the same place and 

manifestly demonstrate the reversibility. Consider 

now the two-input gate shown in Fig.3. This is called 

a ‘Controlled NOT’ or CN gate, since the NOT 

operation on the lower input line is only operative 

when there is a ‘1’ on the upper input: a ‘0’ on the 

upper input means that the lower bit passes through 

unchanged. In effect, what appears on the lower output 

is just the XOR operation on the two input bits (Fig. 

4). However, the CN gate is more than just an XOR 

gate since we retain information about the control bit. 

This is a general feature of reversible gates: the price 

for reversibility is that we need to carry round extra 

bits of information. But, because we are not discarding 

any information, such a gate is, in principle, more 

energy efficient than a classical XOR 

 

gate.Again, as shown in Fig. 5, the CN gate can be 

shown to be manifestly reversible by putting two CN 

gates back to back. Any logical operation can be built 

from one of several complete sets of classical logic 

gates - a choice from NOT, AND, OR, XOR, NAND 

and so on. Similarly, one can show that there are 

complete sets of reversible gates that allow us to 

perform any logic operation. In fact, we need more 

than just the CN gate: we can add a Controlled 

Controlled NOT (CCN) or ‘Toffoli’ gate (Fig. 6) or a 

more complicated Fredkin exchange gate (Fig. 7). 

Why do we care about all this? Well for one thing it is 

possible that use of such gates may one day be needed 

to reduce power consumption of microprocessors 

implemented in CMOS silicon technology. At present, 

the Intel Pentium discards something like 100,000 bits 

per flop with each discarded bit incurring at least the 

minimum Landauer energy loss [11]. In our case, 
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however, we are interested because the laws of 

quantum physics are reversible in time. This 

guarantees that probability is conserved as a state 

evolves with time. Technically speaking, the 

Schroedinger time evolution operator is unitary and 

preserves the norm of quantum mechanical states (see 

below). To build a quantum computer with quantum 

states evolving according to the Schroedinger equation 

therefore necessarily requires us to use realisations of 

reversible logic gates. 

 

 

III. QUANTUM COMPLEXITY 

 

Complexity is the study of algorithms. The 

‘universality’ of Turing Machines makes it possible 

for computer scientists to classify algorithms into 

different ‘complexity classes’. For example, 

multiplication of two N x N matrices requires an 

operation count that grows like N3 with the size of the 

matrix. This can be analysed in detail for a simple 

Turing machine implementation of the algorithm. 

However, the important point about ‘universality’ is 

that although you may be able to multiply matrices 

somewhat faster than on a Turing machine, you cannot 

change from an N3 growth of operations no matter 

what Pentium chip or special purpose matrix multiply 

hardware you choose to use. Thus algorithms, such as 

matrix multiply, for which execution time and 

resources grow polynomially with problem size, are 

said to be ‘tractable’ and in the complexity class ‘P’. 

Algorithms for which time and resources are found to 

grow exponentially with problem size are said to be 

‘intractable’. There are many subtleties to this 

classification scheme: the famous ‘Travelling 

Salesperson Problem’, for example, is in the rather 

mysterious complexity class ‘NP’. The book by David 

Harel [12] contains an excellent introduction to this 

subject. 

What has this to do with quantum information and 

quantum computers? In 1985 David Deutsch pointed 

out that since a quantum computer was not a Turing 

machine there was the possibility of new complexity 

classification of algorithms [13]. As we will see, 

quantum computers evolve a coherent superposition of 

quantum states so that each of these states could follow 

a distinct computational path until a final measurement 

is made at the output. It is therefore certainly 

conceptually possible that at least for some problems, 

quantum computers could surpass the power of 

classical Turing computers. The first speculation that 
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this might be so is probably due to Feynman in 1981 

[14]. However, it was not until 1994 that interest in 

this subject exploded after Peter Shor's discovery of a 

new quantum algorithm for factorizing large numbers 

[15]. 

 

Mathematicians believe (although it has yet to be 

proved) that the number of steps required on  a 

classical computer to factorize a number with N 

decimal digits grows exponentially with N. Since the 

computational work required grows very rapidly, the 

difficulty of factorizing very large numbers has been 

made the basis of the security of the RSA encryption 

method (see Ref. [13] for a good review of encryption 

techniques). This system is widely used to protect 

electronic bank accounts, for example. The 

significance of Shor's result was that his algorithm, 

running on a quantum computer, could solve the 

factorization problem in polynomial time. What this 

could mean for the RSA cryptographic system may be 

illustrated by the time required to factorize a 129 digit 

number known as RSA129 [16]. In 1994 this required 

5000 MIPS-years of computer time to factorize into its 

64 and 65 bit prime factors, using over 1000 

workstations over a period of 8 months. A quantum 

computer using Shor's algorithm with a clock speed of 

100 MHz could factor RSA129 in a few seconds. This 

explains the interest of various ‘secret’ government 

agencies around the world in the feasibility of building 

quantum computers! 

 

IV. QUBITS AND QUANTUM GATES 

 

Instead of using high and low voltages to represent the 

1's and 0's of binary data, there is no reason in principle 

for us not to be able to any two state quantum system. 

Two commonly discussed possibilities are the two 

spin states of an electron: 

 

or two polarization states of a photon: 

       

The time evolution of a quantum system is usually 

well approximated by the Schroedinger equation. In a 

coordinate space representation, for example, the 

Schroedinger equation is a linear partial differential 

equation with the property that any linear 

superposition of eigenfunctions is also a solution. This 

superposition property of quantum mechanics means 

that the general state may be written as a superposition 

of eigenstates. In the case of our 2-state quantum 

system the general state may be written as: 

                    

According to the standard interpretation of quantum 

mechanics, any measurement (of spin or polarization) 

made on this state will always yield one of the two 

eigenvalues with no way of knowing which one. 

Normalization of the state to unity guarantees: 

 

                     

and this normalization and hence the probability 

interpretation is maintained by any unitary operator U 

defined by the property: 

                         

Information stored in a 2-state quantum system is 

called a quantum bit or ‘qubit’: besides storing 

classical ‘1’ and ‘0’ information there is also the 

possibility of storing information as a superposition of 

‘1’ and ‘0’ states. We can define quantum analogues 

of classical reversible gates by means of unitary 

operators acting on the qubit basis states. For example, 

a quantum version of the NOT operator may be 

defined as follows: 

 

        

The phase is chosen for consistency of interpretation 

in terms of rotations of a spin half particle. The NOT 

gate corresponds to a 180 degree spin rotation. An 

overall phase makes no difference to the probability of 

measuring the particular basis state although any 

relative phase difference does affect measurements 

which depend on the interference between the two 

basis states.We now see two possible quantum 

generalisations compared to computation with 

classical bits. First, we can perform unitary operations 
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on coherent linear combinations of the two basis 

states: 

            

Second, we can consider operations on qubits that 

have no classical analogue. For example, 

Deutsch introduces the ‘Square Root of NOT’ operator 

defined by: 

 

     

In physical terms, such an operation merely 

corresponds to a 90 degree spin rotation1. 

Generalizing away from this specific spin 

interpretation, a transformation that takes a basis state 

and transforms it into a linear combination of the two 

basis states is very useful in the construction of 

quantum algorithms and is called a ‘Hadamard’ 

transformation. 

We have considered a single electron system for 

storing a single qubit. By considering multiparticle 

systems we can construct quantum registers. Thus an 

n-bit register may be written as: 

             

If we now apply our SRN or Hadamard transformation 

to this state we now generate a superposition of all 2n 

states: 

        

In other words, by applying a linear number of 

operations to the quantum register we are able to 

generate a register state with an exponential (2n) 

number of terms. The ability to create such 

superpositions is one of the key properties that gives 

quantum parallel processing its power.We now seem 

to have all the ingredients - logic gates and registers - 

to construct a quantum computer. However, neither 

reversible gates nor superpositions are specifically 

quantum mechanical.Quantum algorithms derive their 

remarkable power from one intrinsically quantum 

phenomenon that we have not so far considered. This 

is the property called quantum entanglement and, as 

we shall see, takes us to the very heart of the 

peculiarities of quantum mechanics. 

 

V. PRIME FACTORIZATION 

 

It has been known since before Euclid that every 

integer n is uniquely decomposable into a product of 

primes. Mathematicians have been interested in the 

question of how to factor a number into this product of 

primes for nearly as long. It was only in the 1970’s, 

however, that researchers applied the paradigms of 

theoretical computer science to number theory, and 

looked at the asymptotic running times of factoring 

algorithms [Adleman 1994]. This has resulted in a 

great improvement in the efficiency of factoring 

algorithms. The best factoring algorithm 

asymptotically is currently the number field sieve 

[Lenstra et al. 1990, Lenstra and Lenstra 1993], which 

in order to factor an integer n takes asymptotic running 

time exp(c (log n)1/3 (log (log n))2/3) for some constant 

c. 

Since the input, n, is only log n bits in length, this 

algorithm is an exponential-time algorithm. Our 

quantum factoring algorithm takes asymptotically 

O((log n)2(log log n) (log log log n)) steps on a 

quantum computer, along with a polynomial (in log n) 

amount of post-processing time on a classical 

computer that is used to convert the output of the 

quantum computer to factors of n. While this post-

processing could in principle be done on a quantum 

computer, there is no reason not to use a classical 

computer if they are more efficient in practice. Instead 

of giving a quantum computer algorithm for factoring 

n directly, we give a quantum computer algorithm for 

finding the order of an element x in the multiplicative 

group (mod n); that is, the least integer r such that xr ≡ 
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1 (mod n). It is known that using randomization, 

factorization can be reduced to finding the order of an 

element [Miller 1976]; we now briefly give this 

reduction. To find a factor of an odd number n, given 

a method for computing the order r of x, choose a 

random x (mod n), find its order r, and compute 

gcd(xr/2 − 1, n). Here, gcd(a, b) is the greatest common 

divisor of a and b, i.e., the largest integer that divides 

both a and b. The Euclidean algorithm [Knuth 1981] 

can be used to compute gcd(a, b) in polynomial time. 

Since (xr/2−1)(xr/2+1) = xr−1 ≡ 0 (mod n), the 

gcd(xr/2−1, n) fails to be a non-trivial divisor of n only 

if r is odd or if xr/2 ≡ −1 (mod n). Using this criterion, 

it can be shown that this procedure, when applied to a 

random x (mod n), yields a factor of n with probability 

at least 1−1/2k−1, where k is the number of distinct odd 

prime factors of n. A brief sketch of the proof of this 

result follows. Suppose that 

                       
Let ri be the order of x (mod piai ). Then r is the least 

common multiple of all the ri. Consider the largest 

power of 2 dividing each ri. The algorithm only fails 

if all of these powers of 2 agree: if they are all 1, then 

r is odd and r/2 does not exist; if they are all equal and 

larger than 1, then xr/2 ≡ −1 (mod n) since xr/2 ≡ −1 

(mod piαi ) for every i. By the Chinese remainder 

theorem [Knuth 1981, Hardy and Wright 1979, 

Theorem 121], choosing an x (mod n) at random is the 

same as choosing for each i a number xi (mod piai ) at 

random, where piai is the ith prime power factor of n. 

The multiplicative group (mod pα) for any odd prime 

power pα is cyclic [Knuth 1981], so for any odd prime 

power piai , the probability is at most 1/2 of choosing 

an xi having any particular power of two as the largest 

divisor of its order ri. Thus each of these powers of 2 

has at most a 50% probability of agreeing with the 

previous ones, so all k of them agree with probability 

at most 1/2k−1, and there is at least a 1 − 1/2k−1 

chance that the x we choose is good. This scheme will 

thus work as long as n is odd and not a prime power; 

finding factors of prime powers can be done efficiently 

with classical methods. 

We now describe the algorithm for finding the order 

of x (mod n) on a quantum computer. This algorithm 

will use two quantum registers which hold integers 

represented in binary. There will also be some amount 

of workspace.This workspace gets reset to 0 after each 

subroutine of our algorithm, so we will not include it 

when we write down the state of our machine. Given 

x and n, to find the order of x, i.e., the least r such that 

xr ≡ 1 (mod n), we do the following. First, we find q, 

the power of 2 with n2 ≤ q < 2n2. We will not include 

n, x, or q when we write down the state of our machine, 

because we never change these values. In a quantum 

gate array we need not even keep these values in 

memory, as they can be built into the structure of the 

gate array. Next, we put the first register in the uniform 

superposition of states representing numbers a (mod 

q). This leaves our machine in state 

                  

This step is relatively easy, since all it entails is putting 

each bit in the first register into the superposition 

1/√2(|0> + |1>). Next, we compute xa (mod n) in the 

second register as described in §3. Since we keep a in 

the first register this can be done reversibly. This 

leaves our machine in the state 

           

We then perform our Fourier transform Aq on the first 

register, as described in §4, mapping |a> to 

        

That is, we apply the unitary matrix with the (a, c) 

entry equal to 

 

 

                
 

This leaves our machine in state 

 

Finally, we observe the machine. It would be sufficient 

to observe solely the value of |c> in the first register, 
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but for clarity we will assume that we observe both |c> 

and |xa (mod n)>. We now compute the probability 

that our machine ends in a particular state |c, xk (mod 

n)> , where we may assume 0 ≤ k < r. Summing over 

all possible ways to reach the state |c, xk (mod n)> , we 

find that this probability is 

 

 
where the sum is over all a, 0 ≤ a < q, such that xa ≡ 

xk(mod n). Because the order of x is r, this sum is over 

all a satisfying a ≡ k (mod r). Writing a = br + k, we 

find that the above probability is 

 

 
We can ignore the term of exp(2∏ikc/q), as it can be 

factored out of the sum and has magnitude 1. We can 

also replace rc with {rc}q, where {rc}q is the residue 

which is congruent to rc (mod q) and is in the range 

−q/2 < {rc}q ≤ q/2. This leaves us with the expression 

 
We will now show that if {rc}q is small enough, all the 

amplitudes in this sum will be in nearly the same 

direction (i.e., have close to the same phase), and thus 

make the sum large. Turning the sum into an integral, 

we obtain 

 

 
 

If |{rc}q| ≤ r/2, the error term in the above expression 

is easily seen to be bounded by O(1/q). We now show 

that if |{rc}q| ≤ r/2, the above integral is large, so the 

probability of obtaining a state |c, xk (mod n)> is large. 

Note that this condition depends only on c and is 

independent of k. Substituting u = rb/q in the above 

integral, we get 

 
 

Since k < r, approximating the upper limit of 

integration by 1 results in only a O(1/q) error in the 

above expression. If we do this, we obtain the integral 

 

 
 

 

Letting {rc}q/r vary between −1/2 and 1/2 , the 

absolute magnitude of the integral (5.10) is easily seen 

to be minimized when {rc}q/r = ±1/2 , in which case 

the absolute value of expression (5.10) is 2/(∏r). The 

square of this quantity is a lower bound on the 

probability that we see any particular state |c, xk (mod 

n)> with {rc}q ≤ r/2; this probability is thus 

asymptotically bounded below by 4/(∏2r2), and so is 

at least 1/3r2 for sufficiently large n. The probability of 

seeing a given state 

 

 

 
i.e., if there is a d such that 

 
Dividing by rq and rearranging the terms gives 
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We know c and q. Because q > n2, there is at most one 

fraction d/r with r < n that satisfies the above 

inequality. Thus, we can obtain the fraction d/r in 

lowest terms by rounding c/q to the nearest fraction 

having a denominator smaller than n. This fraction can 

be found in polynomial time by using a continued 

fraction expansion of c/q, which finds all the best 

approximations of c/q by fractions [Hardy and Wright 

1979, Chapter X, Knuth 1981]. The exact probabilities 

as given by equation (5.7) for an example case with r 

= 10 and q = 256 are plotted in Figure 5.1. The value r 

= 10 could occur when factoring 33 if x were chosen 

to be 5, for example. Here q is taken smaller than 332 

so as to make the values of c in the plot 

distinguishable; this does not change the functional 

structure of P(c). Note that with high probability the 

observed value of c is near an integral multiple of q/r 

= 256/10.If we have the fraction d/r in lowest terms, 

and if d happens to be relatively prime to r, this will 

give us r. We will now count the number of states |c, 

xk (mod n)> which enable us to compute r in this way. 

There are ø(r) possible values of d relatively prime to 

r, where ø is Euler’s totient function [Knuth 1981, 

Hardy and Wright 1979, §5.5]. Each of these fractions 

d/r is close to one fraction c/q with |c/q − d/r| ≤ 1/2q. 

There are also r possible values for xk, since r is the 

order of x. Thus, there are r ø(r) states |c, xk (mod n) | 

which would enable us to obtain r. Since each of these 

states occurs with probability at least 1/3r2, we obtain 

r with probability at least ø (r)/3r. Using the theorem 

that _(r)/r > _/ log log r for some constant _ [Hardy 

and Wright 1979,Theorem 328], this shows that we 

find r at least a _/ log log r fraction of the time, so by 

repeating this experiment only O(log log r) times, we 

are assured of a high probability of success. In 

practice, assuming that quantum computation is more 

expensive than classical computation, it would be 

worthwhile to alter the above algorithm so as to 

perform less quantum computation and more post 

processing. First, if the observed state is |c>, it would 

be wise to also try numbers close to c such as c ± 1, c 

± 2, . . ., since these also have a reasonable chance of 

being close to a fraction qd/r. Second, if c/q ≈ d/r, and 

d and r have a common factor, it is likely to be small. 

Thus, if the observed value of 

c/q is rounded off to d’/r′ in lowest terms, for a 

candidate r one should consider not only r′ but also its 

small multiples 2r′, 3r′, . . . , to see if these are the 

actual order of x. Although the first technique will only 

reduce the expected number of trials required to find r 

by a constant factor, the second technique will reduce 

the expected number of trials for the hardest n from 

O(log log n) to O(1) if the first (log n)1+€ multiples of 

r′ are 

considered [Odylzko 1995]. A third technique is, if 

two candidate r’s have been found, say r1 and r2, to 

test the least common multiple of r1 and r2 as a 

candidate r. This third technique is also able to reduce 

the expected number of trials to a constant [Knill 

1995], and will also work in some cases where the first 

two techniques fail. Note that in this algorithm for 

determining the order of an element, we did not use 

many of the properties of multiplication (mod n). In 

fact, if we have a permutation f mapping the set {0, 1, 

2, . . . , n − 1} into itself such that its kth iterate, f(k)(a), 

is computable in time polynomial in log n and log k, 

the same algorithm will be able to find the order of an 

element a under f, i.e., the minimum r such that f(r)(a) 

= a. 

 

VI. DISCRETE LOGARITHMS 

 

For every prime p, the multiplicative group (mod p) is 

cyclic, that is, there are generators g such that 1, g, g2, 

gp−2 comprise all the non-zero residues (mod p) [Hardy 

and Wright 1979, Theorem 111, Knuth 1981]. 

Suppose we are given a prime p and such a generator 

g. The discrete logarithm of a number x with respect 

to p and g is theinteger r with 0 ≤ r < p−1 such that gr 

≡ x (mod p). The fastest algorithm known for finding 

discrete logarithms modulo arbitrary primes p is 

Gordon’s [1993] adaptation of the number field sieve, 

which runs in time exp(O(log p)1/3(log log p)2/3)). We 

show how to find discrete logarithms on a quantum 

computer with two modular exponentiations and two 

quantum Fourier transforms. 

This algorithm will use three quantum registers. We 

first find q a power of 2 such that q is close to p, i.e., 

with p < q < 2p. Next, we put the first two registers in 

our quantum computer in the uniform superposition of 

all |a> and |b> (mod p − 1), and compute gax−b (mod 

p) in the third register. This leaves our machine in the 

state 
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As before, we use the Fourier transform Aq to send |a> 

→ |c> and |b> → |d> with probability amplitude 1/q 

exp(2∏i(ac+bd)/q). This is, we take the state |a, b> to 

the state 

 
This leaves our quantum computer in the state 

 
Finally, we observe the state of the quantum computer. 

The probability of observing a state |c, d, y> with y ≡ 

gk (mod p) is 

 
where the sum is over all (a, b) such that a − rb ≡ k 

(mod p − 1). Note that we now have two moduli to deal 

with, p − 1 and q. While this makes keeping track of 

things more confusing, it does not pose serious 

problems. We now use the relation 

 
and substitute (6.5) in the expression (6.4) to obtain 

the amplitude on | c, d, gk (mod p) >, which is 

 
The absolute value of the square of this amplitude is 

the probability of observing the State | c, d, gk (mod p) 

> . We will now analyze the expression (6.6). First, a 

factor of exp(2∏ikc/q) can be taken out of all the terms 

and ignored, because it does not change the 

probability. Next, we split the exponent into two parts 

and factor out b to obtain 

 

 
 

Here by {z}q we mean the residue of z (mod q) with 

−q/2 < {z}q ≤ q/2, as in equation (5.7). We next 

classify possible outputs (observed states) of the 

quantum computer into “good” and “bad.” We will 

show that if we get enough “good” outputs, then we 

will likely be able to deduce r, and that furthermore, 

the chance of getting a “good” output is constant. The 

idea is that if 

 
where j is the closest integer to T/q, then as b varies 

between 0 and p − 2, the phase of the first exponential 

term in equation (6.7) only varies over at most half of 

the unit circle. Further, if 

 
then |V | is always at most q/12, so the phase of the 

second exponential term in equation (6.7) never is 

farther than exp(∏i/6) from 1. If conditions (6.10) and 

(6.11) both hold, we will say that an output is “good.” 

We will show that if both conditions hold, then the 

contribution to the probability from the corresponding 

term is significant. Furthermore, both conditions will 

hold with constant probability, and a reasonable 

sample of c’s for which condition (6.10) holds will 

allow us to deduce r. We now give a lower bound on 

the probability of each good output, i.e., an output that 

satisfies conditions (6.10) and (6.11). We know that as 

b ranges from 0 to p − 2, the phase of exp(2∏ibT/q) 

ranges from 0 to 2∏iW where 

 

 
 

and j is as in equation (6.10). Thus, the component of 

the amplitude of the first exponential in the summand 

of (6.7) in the direction 
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is at least cos(2∏ |W/2 −Wb/(p − 2)|). By condition 

(6.11), the phase can vary by at most ∏i/6 due to the 

second exponential exp(2∏iV/q). Applying this 

variation in the manner that minimizes the component 

in the direction (6.13), we get that the component in 

this direction is at least 

 

 
Thus we get that the absolute value of the amplitude 

(6.7) is at least 

 

 
 

Replacing this sum with an integral, we get that the 

absolute value of this amplitude is at least 

 

 
 

From condition (6.10), |W| ≤ 1/2 , so the error term is 

O( 1/pq ). As W varies between −1/2 and 1/2 , the 

integral (6.16) is minimized when |W| = 1/2 . Thus, the 

probability of arriving at a state |c, d, y> that satisfies 

both conditions (6.10) and (6.11) is at least 

 
 

or at least .054/q2 > 1/(20q2). We will now count the 

number of pairs (c, d) satisfying conditions (6.10) and 

(6.11). The number of pairs (c, d) such that (6.10) 

holds is exactly the number of possible c’s, since for 

every c there is exactly one d such that (6.10) holds. 

Unless gcd(p−1, q) is large, the number of c’s for 

which (6.11) holds is approximately q/6, and even if it 

is large, this number is at least q/12. Thus, there are at 

least q/12 pairs (c, d) satisfying both conditions. 

Multiplying by p−1, which is the number of possible 

y’s, gives approximately pq/12 good states |c, d, y>.. 

Combining this calculation with the lower bound 

1/(20q2) on the probability of observing each good 

state gives us that the probability of observing some 

good state is at least p/(240q), or at least 1/480 (since 

q < 2p). Note that each good c has a probability of at 

least (p − 1)/(20q2) ≥ 1/(40q) of being observed, since 

there p − 1 values of y and one value of d with which 

c can make a good state |c, d, y>. We now want to 

recover r from a pair c, d such that 

 

 
 

where this equation was obtained from condition 

(6.10) by dividing by q. The first thing to notice is that 

the multiplier on r is a fraction with denominator p − 

1, since q evenly divides c(p−1)−{c(p − 1)}q. Thus, 

we need only round d/q off to the nearest multiple of 

1/(p − 1) and divide (mod p − 1) by the integer 

 

 
 

to find a candidate r. To show that the quantum 

calculation need only be repeated a polynomial 

number of times to find the correct r requires only a 

few more details. The problem is that we cannot divide 

by a number c′ which is not relatively prime to p − 1. 

For the discrete log algorithm, we do not know that all 

possible values of c′ are generated with reasonable 

likelihood; we only know this about one-twelfth of 

them. This additional difficulty makes the next step 

harder than the corresponding step in the algorithm for 

factoring. If we knew the remainder of r modulo all 

prime powers dividing 

p−1, we could use the Chinese remainder theorem to 

recover r in polynomial time. We will only be able to 

prove that we can find this remainder for primes larger 

than 18, but with a little extra work we will still be able 

to recover r. 

Recall that each good (c, d) pair is generated with 

probability at least 1/(20q2), and that at least a twelfth 

of the possible c’s are in a good (c, d) pair. From 

equation (6.19), it follows that these c’s are mapped 

from c/q to c′/(p − 1) by rounding to the nearest 

integral multiple of 1/(p − 1). Further, the good c’s are 

exactly those in which c/q is close to c′/(p − 1). Thus, 

each good c corresponds with exactly one c′. We 



© MAR 2018 | IRE Journals | Volume 1 Issue 9 | ISSN: 2456-8880 
 

IRE 1700338         ICONIC RESEARCH AND ENGINEERING JOURNALS 153 

would like to show that for any prime power pαi 

dividing p − 1, a random good c′ is unlikely to 

contain pi. If we are willing to accept a large constant 

for our algorithm, we can just ignore the prime powers 

under 18; if we know r modulo all prime powers over 

18, we can try all possible residues for primes under 

18 with only a (large) constant factor increase in 

running time. Because at least one twelfth of the c’s 

were in a good (c, d) pair, at least one twelfth of the 

c′’s are good. Thus, for a prime power piαi , a random 

good c′ is divisible by piαi with probability at most 

12/piαi . If we have t good c′’s, the probability of 

having a prime power over 18 that divides all of them 

is therefore at most 

 

 
 

where a|b means that a evenly divides b, so the sum is 

over all prime powers greater than 18 that divide p − 

1. This sum (over all integers > 18) converges for t = 

2, and goes down by at least a factor of 2/3 for each 

further increase of t by 1; thus for some constant t it is 

less than 1/2. Recall that each good c′ is obtained with 

probability at least 1/(40q) from any experiment. Since 

there are q/12 good c′’s, after 480t experiments, we are 

likely to obtain a sample of t good c′’s chosen equally 

likely from all good c′’s. Thus, we will be able to find 

a set of c′’s such that all prime powers piαi > 20 

dividing p−1 are relatively prime to at least one of 

these c′’s. To obtain a polynomial time algorithm, all 

one need 

do is try all possible sets of c′’s of size t; in practice, 

one would use an algorithm to find sets of c′’s with 

large common factors. This set gives the residue of r 

for all primes larger than 18. For each prime pi less 

than 18, we have at most 18 possibilities for the 

residue modulo piαi , where αi is the exponent on prime 

pi in the prime factorization of p−1. We can thus try 

all possibilities for residues modulo powers of primes 

less than 18: for each possibility we can calculate the 

corresponding r using the Chinese remainder theorem 

and then check to see whether it is the desired discrete 

logarithm. If one were to actually program this 

algorithm there are many ways in which the efficiency 

could be increased over the efficiency shown in this 

paper. For example, the estimate for the number of 

good c′’s is likely too low, especially since weaker 

conditions than (6.10) and (6.11) should suffice. This 

means that the number of times the experiment need 

be run could be reduced. It also seems improbable that 

the distribution of  bad values of c′ would have any 

relationship to primes under 18; if this is true, we need 

not treat small prime powers separately. 

 

This algorithm does not use very many properties of 

Zp, so we can use the same algorithm to find discrete 

logarithms over other fields such as Zpα, as long as the 

field has a cyclic multiplicative group. All we need is 

that we know the order of the generator, and that we 

can multiply and take inverses of elements in 

polynomial time. The order of the generator could in 

fact be computed using the quantum order-finding 

algorithm given in §5 of this paper. Boneh and Lipton 

[1995] have generalized the algorithm so as to be able 

to find discrete logarithms when the group is abelian 

but not cyclic. 
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