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Abstract Forced convection characteristics of non-

Newtonian fluids over the tube banks have been studied 

numerically for the following governing parameters: solid 

volume fractions of the cylinders; = 0.20, 0.25 and 0.30, 

Reynolds number; Re= 1, 5 and 10; power-law index n= 

0.8, 1 and 1.4 and at a fixed value of Prandtl number of 

Pr=1. The flow and thermal features such as streamlines, 

isotherm patterns, drag coefficients and mean or average 

Nusselt number etc. have been explored and found to be 

strongly dependent over the above parameters. The drag 

coefficients were seen to be increased with the increasing 

values of solid volume fractions and power-law index, 

whereas, an opposite behavior was noticed with increasing 

Reynolds number. Further, the mean Nusselt number were 

found to be enhanced with increasing values of Reynolds 

numbers and porosity, but a decrease was noticed with 

increasing value of power-law index. Overall, a non-

monotonous behavior has been observed for both flow and 

heat transfer features of non-Newtonian fluids through the 

tube banks. 

Index Terms: Porosity, Nusselt number, Power-law index,    

Drag coefficients, Cylinders 

 

I. INTRODUCTION 

 

The momentum and heat transfer features of fluids 

over tube banks are found significant in the various 

heat and mass transfer processes, fluidized bed drying 

of fibrous materials, filtration of paper and pulp 

suspensions etc. [1-3]. The main issue is the 

determination of local and global characteristics of 

flow and thermal parameters across the tube banks 

consisting arrays of cylinders in different 

arrangements. Previously, numerous efforts have been 

made to know the physical insights of different fluids 

and particularly non-Newtonian fluids from such an 

industrially important geometry. It is also pertinent to 

add here that a majority of the previous works are 

concerned with the flow and thermal characteristics of 

Newtonian fluids [4-7]. Conversely, low attention has 

been paid to the similar investigation of non-

Newtonian fluids in spite of their widespread 

applications in food processing, autoclave process to 

synthesize polymer composites, filtration of polymer 

solutions and heating/cooling of process streams, etc. 

[8-12]. Furthermore, most of materials as used in the 

industry display a variety of rheological difficulties 

including shear-thickening, shear-thinning and 

viscoelasticity, etc. These features have been mostly 

investigated independently either for fluid flow [13-

14] or for the heat transfer of shear-thinning fluids 

[15]. Overall scant studies on non-Newtonian fluids 

for an array of cylinders and/or over tube banks are 

available which are not enough to reveal the flow and 

heat transfer features extensively. 

 

II. PROBLEM DESCRIPTION 

 

The flow of power-law fluids across periodic array 

of circular cylinders has been considered in a square 

arrangement as shown in Fig. 1(a). The steady, 

laminar and 2-D flow is occurring in the transverse 

direction. It is assumed that the cylinder arrays have 

a large number of rows through which the fluids are 

flowing and therefore, the end effects are neglected. 

Further, the flow is repeating over the periodic 

geometry, and so it has also been assumed that the 

periodicity occurs in the vicinity of periodic 

boundaries. The above circular cylinders have the 

diameter d and tube pitches p (Fig. 1(a)), which is 

centre to centre distance between the cylinders. 

Further, the porosity of the cylinders in terms of solid 

volume fractions ( ) is defined in terms of tube 

pitches and diameter of the cylinders and is given by 

= ˊ/4(p/d)-2.  
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(a)                                   (b) 

Fig. 1: (a) Schematics of flow diagram and (b) 

computational domain 

The numerical simulations have been done for half of 

the computational domain due to the flow and thermal 

symmetry conditions (Fig. 1(b)). The temperatures of 

flowing fluid and cylinder surfaces are maintained at     

Tf and Tc respectively, where Tc >Tf. Further, the 

properties of the fluids (density, viscosity, heat 

capacity and thermal conductivity) are assumed to be 

temperature independent and the viscous dissipation 

are also neglected.  

 

A. Governing Equations and Boundary 

Conditions 

 

In view of above assumptions and conditions, the 

mathematical equations for the problem defined above 

under the 2-D, steady and laminar flow conditions is 

given as follows: 

 

Continuity Equation:    0v=ÖÐ                  

(1) 

Momentum Equation: vpvv 2Ðm+-Ð=ÐÖr

 

(2)                       

         

Energy Equation: TkTv.c 2

p Ð=Ðr      (3)                         

                 

  

Where, v is the velocity vector,r, cp, ɛ and k are 

density, specific heat, viscosity and thermal 

conductivity, respectively.  

 

The rheological equation of state for the power-law 

fluids is defined by;  

              
ijij 2he=t         (i, j = x, y)                       (4) 

Where, ijeis component of rate of strain tensor 

defined elsewhere (16) and the viscosity (h) of the 

non- Newtonian fluids is given by;                  

                                                                    

( )( )2/1n

2 2/Im
-

=h                                        

(5)                         

 

         

Where, n and m are the power-law indices and I2 is 

known as second invariant of strain tensor [16].  

 

The solution of above governing equations have been 

done by imposing the standard no-slip boundary 

conditions on the cylinder surfaces which are 

maintained at constant temperature (Tw). Further, 

periodically fully developed flow and temperature 

fields are applied across the periodic boundaries. Also, 

the fluid surfaces not in contact of cylinders are taken 

as symmetric and adiabatic. The numerical simulation 

of governing equations along with the boundary 

conditions yields velocity (Vx and Vy), pressure (p) 

and thermal (T) fields, which are further utilized to 

presume the drag [17] and the average Nusselt number 

as defined below;   

           ñ qq
S

d)(Nu=Nu               (6) 

Where, S represents the surface of cylinders exposed 

to the flow.  

 

III.    NUMERICAL METHODOLOGY 

 

The governing equations along with the noted 

boundary conditions have been solved using the CFD 

solver ANSYS FLUENT. Further, an unstructured 

non-uniform grid consisting of triangular cells have 

been created by using commercial grid tool GAMBIT. 

A ýne mesh was generated adjacent to the cylinder 

surfaces to resolve the sharper gradients better. A 

second order upwind scheme has been used to 

discretize the convective terms appearing in both flow 

and thermal equations. The double precision solver 

have been utilized to improve the accuracy of 

solutions and the results were achieved when the 

continuity, momentum and energy residuals reached in 

the order of 10-9 and 10-12, respectively.  
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IV.    RESULT AND DISCUSSIONS  

 

The numerical simulations of power-law fluids have 

been carried out for the following pertinent 

dimensionless parameters: Reynolds number (Re) = 1, 

5, 10; power-law index (n) = 0.8, 1, 1.4 solid volume 

fraction (
sf) = 0.2, 0.25 and 0.30 and Pr=1. The 

numerical results were obtained and discussed in this 

section with the variations of above parameters. 

However, before discussing the new results, present 

numerical approach has been validated with the 

available literature as follows: 

 Table 1 compares the present results for drag 

coefficient (CD) and average Nusselt number (Nu) 

with the available literature. It can be seen that the 

present results of drag coefficient compares well with 

the Vijaysri et al. [3], Soares et al. [12] and Spelt et al. 

[13] with the deviations of 5.90% and 2.05% at Re=1 

and 40, respectively for the 
sf = 0.30 and n=1. 

Similarly, the maximum deviations in the Nu value is 

3.01% with the results of Mangadoddy et al. [15]. In 

view of these well contrast, the present results have 

been generated within the range of parameters studied 

herein and discussed in the next sections. 

Table 1: Comparison of present values of total drag 

coefficient (CD) and Nusselt number with literature (

sf= 0.30) 

 

A.   Streamline Patterns and Total Drag Coefficients 

(CD) 

 

The streamline patterns are shown in Fig. 2(a) with the 

variations of Reynolds number (Re), power-law index 

(n) and solid volume fractions (
sf). In Fig. 2(a), at 

sf=0.30 and Re=1, the curved streamlines can be 

seen nearer to the cylinders for all of the shear-

thinning (n < 1), Newtonian (n=1) and shear-

thickening (n >1) fluids (Fig. 2a). Such streamlines 

were appeared because of the strong interference 

between the two periodic cylinders at the higher value 

of solid volume fraction (
sf=0.30). Further, the dense 

streamlines can be seen for shear-thinning fluids over 

the surface of cylinders in contrast to Newtonian and 

shear-thickening fluid (Fig. 2a). The impact of 

increased solid volume fractions are also displayed in 

Fig. 2(a). As the 
sf=0.30 decreases from 

sf=0.30 to 

0.20, the interference between the two cylinders are 

getting weak, resulting, the streamlines are less curved 

and dense for 
sf=0.20 as compared to 

sf=0.30. The 

influence of increased Reynolds number can be seen 

with the increased fluid circulation behind the cylinder 

with increasing values of Reynolds number for both of 

the n and
sf.  

For instance, at Re = 10, the streamlines are observed 

to be denser and less swirled as compared to Re=1.  

The denser streamlines for Re=10 suggest that the 

discharges between the two consecutive streamlines 

are increasing with the increasing value of Reynolds 

Number. Next, the influences of power-law index can 

also be seen clearly over the streamline patterns in Fig. 

2(a). As the fluid behavior changes from Newtonian to 

shear-thinning and shear-thickening, the density of 

streamlines increases and decreases, respectively for 

all the value of 
sfand Re. 

Source n=1 (CD) n=1.4 

(CD) 

n=1 

(Nu) 

  Re=1 Re=40  Re=1  Re = 1,  

Pr = 5 

Present 

Results 

144.7263 4.1673 202.8281 2.5295 

Vijaysri et al. 

[3] 

136.1900 - - - 

Soares et al. 

[12] 

136.1800 - - - 

Spelt et al. 

[13] 

142.1367 4.2529  205.8700 - 

Mangadoddy 

et al. [15] 

- - - 2.6057 

ŭmax (%) 5.90 2.05 1.50 3.01 
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Fig. 2: (a) Streamline patterns for 
sf =0.30 and 0.20 

and (b) Dependence of CD on
sf, Re and n  

 

So, a stronger dependence of streamline patterns was 

seen for shear-thinning fluids in contrast to shear-

thickening fluids Overall, the complex streamline 

patterns have been observed for the power-law fluids 

owing to shear-thinning and shear-thickening fluids 

behavior across the periodic array of cylinders. The 

above local features have been further explained in 

terms of global parameter (i.e. overall drag 

coefficients) as described below in the next section. 

Further, the Fig. 2(b) shows the dependence of 

total drag coefficient (CD) on the governing 

parameters; n, 
sf 

and Re. In Fig. 2(b), it can be seen 

that as the fluid behavior changes from shear-thinning 

to shear-thickening, the total drag coefficient increases 

with the solid volume fractions. This behavior is 

caused due to the varying the porosity of the cylinders. 

Further, the role of power-index also diminishes with 

the increasing value of solid volume fractions and 

thereby a shift in behavior of the shear-thinning and 

shear-thickening fluids takes place. These trends are 

consistent with the results of Soares et al. [12] and 

Spelt et al. [13].  

B.  Isotherm Profiles and Mean Nusselt Number (Nu) 

 

Fig. 3(a) displays the isotherm patterns with the 

systematic variations of governing parameters; Re, Pr, 

n and
sf. For a given

sf, the gathering of isotherms 

in the flow domain is mounting with the increasing 

inertial effects. Further, the gathering of isotherms is 

more prominent when cylinders are closer to each 

other (
sf= 0.30). At lower value of 

sf= 0.2.0, the 

upstream cylinder displays strongly sharper gradients 

in comparison to the downstream cylinder. Further, 

much steeper temperature gradients are seen nearer to 

the cylinders as Re increases. Certainly, this is because 

the heat transfer takes place mainly by the convection 

with the increasing values of Re. However, at the small 

Re (i. e. Re=1), the symmetrical isotherm patterns is 

seen which suggest that the conduction is dominating 

over convection. Further, the influence of power-law 

index (n) on the isotherm patterns are more insightful 

at higher Re. When the fluid nature shifts from shear-

thickening to shear-thinning, a increasing density of 

isotherms tends to rise the temperature gradients. This 

happens because of the presence of the thinner thermal 

boundary layer in shear-thinning fluids as compared to 

corresponding Newtonian and/or shear-thickening 

fluids. These intricate local heat transfer feature has 

been further elaborated in terms of global behavior 

(i.e. mean Nusselt number) in the following section. 

Further Fig. 3(b) shows the dependence of 

mean Nusselt number (Nu) on the governing 

parameters; Re, Pr, n and
sf. It can be seen that as the 

n decreases, the Nusselt number increases and 

accordingly an improvement in the heat transfer has 

been noticed and specielly in the shear-thinning 

regions. Also, the Nusselt number diminishes with the 

increase in
sf,

 
which suggest that the resultant 

velocity and temperature gradients condense with a 

decrease in 
sf. The reverse patterns can be observed 

for the shear-thickening fluids. The increasing level of 

shear-thickening behavior decreases with increasing 

inertial effects. 
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Fig. 3: (a) Isotherm profiles for 
sf = 0.20 and 0.30 

and (b) Dependence of mean Nusselt number (Nu) on

sf, Re and n 

 

Additionally, the change in Nu is small at low Re 

as compared to high Re and it is concerned with the 

case when the heat transfer is mostly by conduction. 

In fact, a different kind of variations in the mean 

Nusselt number has been seen owing to shear-thinning 

and shear-thickening behaviors.  

V.      CONCLUSIONS 

The steady flow of power-law fluids across periodic 

array of circular cylinders have been examined 

numerically using commercial CFD solver ANSYS-

FLUENT. The local and global behavior have been 

explored with the variations of governing parameters 

(n, ffand Re and Pr). The drag coefficients were seen 

to increase with an increasing shear-thickening 

behavior and solid volume fractions.  Irrespective of 

power-law index, as Re increases, the drag coefficient 

decreases correspondingly for all the solid volume 

fractions. Further, the maximum drags were observed 

when the cylinders were closer and thereafter, a 

corresponding decrease in drag coefficient was 

observed with solid volume fractions. Further, the 

thermal features were observed to be greatly 

influenced by the Re, Pr, n and
sf. Particularly, shear-

thinning behavior enhances the rate of heat transfer 

which further improves with increasing values of Re 

and 
sfalong with the decreasing value of the n. In 

contrast, a reverse trend was observed for shear-

thickening fluids under the alike situations. Overall, 

the flow and heat transfer parameters have shown to 

be strongly dependent over above governing 

parameters.  
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