
© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 543

Edge-Adaptive Jpeg Image Compression Using

MATLAB

DR. THIDA AUNG

Professor and Head, Department of Electronic Engineering, Technological University (Lashio), Lashio,

Myanmar

Abstract- In this paper, Edge-adaptive JPEG image

compression is designed and implemented. The

standard JPEG is a very popular image

compression method results in a good compression

with low computational complexity and memory

requirements. JPEG gives users the ability to take

an image and compresses it with little or no

noticeable quality degradation. Compression is

useful method because it helps to reduce the

consumption of expensive resources such as storage

space or transmission bandwidth. Edge-adaptive

JPEG image compression is a modified image

compression of standard JPEG. This technique

achieves higher visual quality and smaller image

data size than standard JPEG at the same bit rate.

Edge-adaptive JPEG achieves compression at

variable bit rates with minimal loss in visual quality.

Visual activity is measured using a Canny edge

detector; the image is segmented with quadtree

decomposition and apply DCT (discrete cosine

transform) to each of the channels. The

performance of image compression is simulated and

analyzed by using MATLAB.

Indexed Terms- Edge-adaptive JPEG, standard

JPEG, image compression, MATLAB

I. INTRODUCTION

Digital image compression algorithms have become

increasingly popular due to the need to achieve cost-

effective solutions in transmitting and storing images.

The JPEG compression algorithm is at its best on

photographs and paintings of realistic scenes with

smooth variations of tone and color. For web usage,

where the amount of data used for an image is

important, JPEG is very popular. JPEG/Exif is also

the most common format saved by digital cameras.

JPEG may not be as well suited for line drawings and

other textual or iconic graphics, where the sharp

contrasts between adjacent pixels can cause

noticeable artifacts. Such images may be better saved

in a lossless graphics format such as TIFF, GIF,

PNG, or a raw image format. The edge-adaptive

JPEG actually includes a lossless coding mode, but

that mode is not supported in most products.

As the typical use of edge-adaptive JPEG is a lossy

compression method, which somewhat reduces the

image fidelity. It should not be used in scenarios

where the exact reproduction of the data is required

such as some scientific and medical imaging

applications and certain technical image processing

work. Edge-adaptive JPEG is also not well suited to

files that will undergo multiple edits, as some image

quality will usually be lost each time the image is

decompressed and recompressed, particularly if the

image is cropped or shifted, or if encoding

parameters are changed. To avoid this, an image that

is being modified or may be modified in the future

can be saved in a lossless format, with a copy

exported as JPEG for distribution.

 Read and

resize image as

(256×256)

pixels

Split the

R, G, B

channels

Segment each

channel with

Canny edge

detection

 Do quadtree

decomposition to

each of the channels

DCT quantization

 with adaptive

 quantization steps

 De-quantization

 with IDCT and

 median filtering

 Merging the

 R, G, B channels

Output image

(256×256)

pixels

 Decoding and

 merging to output

 image

 Edge-adaptive JPEG

 encoding

 Input 24-bit and

 changing to 8-bit

Input image

(2048×1898)

pixels

 Figure 1. Block Diagram of the System

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 544

In this system, resize 24-bit input image, split to the

(red, green, blue) channels, Canny edge detection,

quadtree decomposition, discrete cosine transform

quantization, de-quantization with inverse discrete

cosine transform, median filtering and merging to the

(red, green, blue) channel images are included.

II. EDGE-ADAPTIVE JPEG IMAGE

COMPRESSION

Edge-adaptive JPEG is a modified JPEG algorithm

that provides better visual quality than the Q-factor

scaling method commonly used with JPEG

implementations. The quantization step sizes are

adapted to the activity level of the block and the

activity selection is based on an edge-driven quadtree

decomposition of the image.

Most image software uses the simpler JFIF format

when creating a JPEG file, which among other things

specifies the encoding method. Here is a brief

description of one of the more common methods of

encoding when applied to an input that has 24 bits

per pixel (eight each of red, green, and blue). This

particular option is a lossy data compression method.

Figure 2 shows the JPEG encoder and decoder

diagram.

Figure 2. JPEG Encoder and Decoder Diagram

A. Edge Detection Techniques

Edge detection is one of the most commonly used

operations in image analysis. Edge detection

identifies locations in an image where the intensity

changes rapidly, that is, intensity boundaries. Edges

characterize boundaries and are therefore a problem

of fundamental importance in image processing.

Image Edge detection significantly reduces the

amount of data and filters out useless information,

while preserving the important structural properties

in an image. Since edge detection is in the forefront

of image processing for object detection, it is

crucial to have a good understanding of edge

detection algorithms. An edge is defined by a

discontinuity in gray level values.

An edge is the boundary between an object and the

background. The shape of edges in images depends

on many parameters: the geometrical and optical

properties of the object, the illumination conditions,

and the noise level in the images. Edge detection is

important data reduction step since it encodes

information based on the structure of the image.

Using edge detection vital information of the image

is preserved while keeping aside less important

information that effectively reduces dynamic range

of the image and eliminates pixel redundancy. Edge

detectors may well be classified into Gradient edge

Detector, Laplacian Method and Gaussian edge

detector.

B. Comparison of Edge Detection Methods

In the edge-adaptive JPEG image compression

algorithm, it is contained various edge detection

methods such as Sobel, Prewitt, Robert, Laplacian

of Gaussian and Canny edge detection. Among all

of these edge detections, Canny edge detector can

detect specially in noise conditions and it has low

error rate than other edge detectors. Figure 3 shows

the edge-adaptive JPEG images with various edge

detectors in image compression.

 Sobel Prewitt

 Robert Laplacian

FDCT Quantizer
Entropy

Encoder

IDCT Quantizer
Entropy

Decoder

 RGB YUV

Encoder

Decoder

Image

Compressed

 image

JPEG

Compressed

Bitstream

RGB YUV

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 545

Canny

Figure 3. Edge-adaptive JPEG Images with Various

Edge Detector

C. Edge-adaptive Quantization

Edge-adaptive JPEG is a modified JPEG image

compression method. Visual activity is measured

using a Canny edge detector and the image is

segmented into different activity regions via

quadtree decomposition. This decomposition is

used to identify the uniform quantizer step sizes

used in various regions of the image. Quadpression,

is based on an edge-driven quadtree decomposition

of the image. The quadpression approach gives

consistently higher visual quality at the same bit

rates than the Q-factor technique with a very small

overhead. For a 512×512 image, the smallest sub-

image is 8×8.

D. Quadtree Decomposition

After the image edges are identified by the Canny

edge detector, the image is segmented into a

quadtree decomposition. A quadtree decomposition

decomposes a 2N × 2N image into a n-level

hierarchy, where all sub-images at level n have a

size 2n × 2n , n ≤ N. This structure corresponds to a

tree, where each 2n × 2n sub-image can either be a

leaf if it is not further subdivided or can branch into

four 2n-1 ×2n-1 more sub-images, each a child node.

To decompose an image or a sub-image at each

level of the tree, a binary decision is made to

determine whether it needs to be divided into four

more sub-images. This procedure is then repeated

recursively on each resulting sub-image.

Figure 4. Quadtree Decomposition for the Lena

Image competence.

The quadtree decomposition is combined with the

results of Canny edge detection to decompose each

sub-image using the presence of edges in the sub-

image as the binary decision to further subdivide

the sub-image or not. If more than t% of the pixels

in the sub-image is identified as edges, the sub-

image is then split into four more sub-images.

Small sub-images correspond to very active areas

while large sub-images correspond to less active

regions of the image. Very active images will have

a quadtree decomposition containing many small

blocks, while less active images will contain large

blocks corresponding to flatter areas of the image.

Figure 4 shows the quadtree segmentation of the

Lena image with its edges identified. Each quadtree

sub-image is represented by the mean value of the

image intensity.

E. Quadpression

With the image segmented into sub-images

corresponding to different activity areas, the image

is compressed using a modified version of JPEG.

For each 8 × 8 DCT block, the step sizes of the

quantization matrix are scaled according to the size

of the quadtree sub-image that contains the 8 × 8

DCT block. The scaling must also be coded with

the image and consist of a maximum of six integer

values for the six sub-image sizes corresponding to

the six levels of the quadtree decomposition. The

DC coefficient is kept intact to avoid large

blocking effects and to smooth out the errors across

the entire image. This is in contrast to the Q-factor

approach, where the entire matrix is scaled.

Scales larger than 8 improve the compression ratios

but it leads to much distorted images. So integers

scaling ranging from 1 to 8 were adopted. A

scaling of 1 for all sub-image sizes corresponds to

the JPEG standard with the recommended matrices.

Quadpression method can be used to assign the

scaling for the different activity sub-images. First,

it assigns large scaling to the larger sub-images and

subsequently smaller scaling to the smaller sub-

images. The same scaling is used for all the sub-

images that have the same size. The user can select

the scaling that will result in the desired bit rate.

Although this method has the disadvantage that the

scaling are not optimized for the particular bit rate,

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 546

it is a fast alternative when the user is simply

interested in improving the image quality and the

overall distribution of blockiness that arises when

the same matrix is used for all the blocks in the

image.

III. THE SYSTEM IMPLEMNETATION

In the edge-adaptive JPEG image compression

algorithm, it is divided into four categories;

 Input and Changing to 8-bit

 Edge Adaptive JPEG Encoding

 Edge Adaptive JPEG Decoding

 Merging to the Output Image

Firstly, the original R, G, B color image must input to

compress the image with edge-adaptive JPEG image

compression. Figure 5 shows the lotus R, G, B

original image. This image is 2048×1898 pixels and

image format is jpeg. Figure 6 shows the flowchart of

the overall system.

Figure 5. Lotus R, G, B Original Image (2048×1898)

Pixels

 Merging the split

R, G, B channels

to output image

Canny edge

detection G

Canny edge

detection R

Canny edge

detection B

Quadtree

decomposition

G

Quadtree

decomposition

B

Quadtree

decomposition

R

De-quantization

with inverse

discrete cosine

transform

Median filtering

channels

 Read and resize

image as

(256×256) pixels

End

Start

DCT quantization

with adaptive

quantization steps

For 24-bit color

image, split the

R, G, B channels

Discrete cosine

transform

Figure 6. The Flowchart of Overall System

A. Input and Changing to 8-bit

Firstly, the original color input image is read. This

image is 2048×1898 pixels and 24-bit color image.

Then, resize the input image as 256×256 pixels.

Split the red, green, blue channels image from 24-

bit to three 8-bit images. This stage reduces the

image data size in any image compression

algorithm.

B. Edge Adaptive JPEG Encoding

The edge-adaptive JPEG encoding process contains

the following steps

 Canny edge detection

 Quadtree decomposition

 Discrete cosine transform

 DCT quantization with adaptive quantization

steps

The split images are segmented and detected with

Canny edge detection. Quadtree decomposition is

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 547

decomposed to each of the split images. The discrete

cosine transform and DCT quantization with adaptive

quantization steps are applied to each of the channels.

C. Canny Edge Detection

Canny R Canny G Canny B

Filter out the

noise of image

Filter out the

noise of image

Filter out the

noise of image

Finding the

edge strength

Finding the

edge strength

Finding the

edge strength

Detection and

computing the

edge

Detection and

computing the

edge

Detection and

computing the

edge

Return Return Return

 (a) (b) (c)

Figure 7. Flowcharts of (a) Red (b) Green (c) Blue

Channels in Canny Edge Detector

In order to implement the canny edge detector

algorithm, a series of steps must be followed. The

first step is to filter out any noise in the original

image before trying to locate and detect any edges.

After smoothing the image and eliminating the noise,

the next step is to find the edge strength by taking the

gradient of the image. Then, the approximate

absolute gradient magnitude (edge strength) at each

point can be found. Finally, canny edge detector

detects and computes the edges of image. The most

obvious is low error rate. It is important that edges

occurring in images should not be missed and that

there be no responses to non-edges. The theory is

explained in the previous chapter. Figure 7 shows the

flowcharts of (a) Red (b) Green (c) Blue channels in

canny edge detector.

D. Quadtree Decomposition

Quadtree decomposition is an analysis technique that

involves subdividing an image into blocks that are

more homogeneous than the image itself. This

technique reveals information about the structure of

the image. It is also useful as the first step in adaptive

compression algorithms.

Quadtree R Quadtree G Quadtree B

Combine with the

result of Canny

edge detection

Combine with the

result of Canny

edge detection

Combine with the

result of Canny

edge detection

Segement the block

size in image

Segement the block

size in image

Segement the block

size in image

Quadtree

decomposing the

image

Quadtree

decomposing the

image

Quadtree

decomposing the

image

Return Return Return

(a) (b) (c)

Figure 8. Flowcharts of (a) Red (b) Green (c) Blue

Channels in Quadtree Decomposition

Quadtree decomposition is combined with the result

of canny edge detection. It is segmented the block

size in image. And then, quadtree decomposing

applied the image. The theory is explained in the

previous chapter. Figure 8 shows the flowcharts of

(a) Red (b) Green (c) Blue channels in quadtree

decomposition.

E. Discrete Consine Transform

In the image compression, all pixel values are

automatically represented by real numbers. DCT

compute two dimensional of image by using 8×8

block for red, green and blue channels. The DCT

compression is based on the fact that most natural

images have sparse edges. Hence, most blocks

contain primarily low frequencies, and can be

represented by a small number of coefficients without

significant precision loss. Edges are problematic

since it is associated with high spatial frequency.

Each DCT block selects a different number of

coefficients with the largest amplitude. Thus, smooth

regions of an image can be represented by a small

number of coefficients, whereas edges and high-

frequency textures would be represented by large

number of coefficients. This will solve the problem

of edges, while leaving the algorithm efficient.

F. DCT Quantization with Adaptive Quantization

Steps

The quantization step sizes are not homogenously the

same. Instead, the quantization step sizes are different

for the overall image according to the rate of pixel

value changes in each of the quadtree blocks.

Choosing the required step size for the specific block

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 548

is such that in a certain block. If there is a greatly

changes in pixel values, the low quantization step

size is chosen. But if there is a little change in pixel

values, the larger quantization step size is chosen.

G. Edge Adaptive JPEG Decoding

The edge-adaptive JPEG decoding process contains

the following steps:

 De-quantization with IDCT

 Median filtering

De-quantization with inverse discrete cosine

transform (IDCT) allows reconstruction of an image

frame that had been encoded by the DCT. And hence,

it transforms back to the time domain. Median

filtering method is used to smooth the red, green,

blue channels of image. It needs to be used in order

to reduce the amount of noise and texture in the

image.

H. Merging to the Output Image

Output image is merged into a 24-bit color image

from three 8-bit split channels by using concatenate

(cat) function. The cat function is a simple way to

build multidimensional arrays; it concatenates a list

of arrays along a specified dimension.

I = cat (dim, A1, A2...) Equation 1

Where A1, A2, and so on are the arrays to

concatenate and dim is the dimension along which to

concatenate the arrays. Output image is (256×256)

pixels and 24-bit R, G, B color image.

IV. RESULT ANALYSIS AND DICUSSION

The performance test and results are discussed in

detail. MATLAB/GUI tools are supported for the

image compression. In the main page of the system, it

needs to press the all buttons sequentially. Firstly,

user has to choose the image in the choose image

button. After choosing the image, it needs to press the

load, resize image, split R, G, B channels, show

Canny, show quadtree, discrete cosine transform,

DCT quantization, inverse discrete cosine transform

and edge-adaptive JPEG buttons. The edge-adaptive

JPEG output image is merged with 24-bit RGB

image after pressing the all buttons. In the choose

image button, it is contained Lotus, Lena, Cruise,

Lilies and Mountain View images. All this images

can be used to start the image compression algorithm

with edge-adaptive JPEG.

A. Input and Changing to 8 bits

The original RGB color image must input to start the

image compression. The input image is the original

Lotus image with 24-bit and also it is 2048×1898

pixels. Figure 9 shows the Lotus image when user

chooses the Lotus image in the choose image and

then press the load button.

Figure 9. Original Lotus Image (2048×1898)

Pixels

Figure 10 shows the resize image of original color

image. It is 24-bit RGB and 256×256 pixels color

image.

Figure 10. Resize Lotus Image (256×256) Pixels

It is necessary to split three 8-bit images from 24-bit

RGB color image. This stage protects from data

losses in any RGB color image. Figure 11 shows the

three 8-bit split red, green, blue channels image.

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 549

Figure 11. 8-bit Split R, G, B Images

B. Encoding Process in Edge Adaptive JPEG

Figure 12. Canny Edge Detection of R, G, B Images

The edge-adaptive JPEG encoding process contains

Canny edge detection, quadtree decomposition,

discrete cosine transform and DCT quantization with

adaptive quantization steps. After splitting the R, G,

B channels image, Canny edge detector filters out the

noise and detects the edges of image. Figure 12

shows the Canny edge detection of red, green and

blue channels image.

Quadtree decomposition decomposes the R, G, B

channels image of Canny edge detection. Figure 13

shows the quadtree decomposition of red, green and

blue channels image.

Figure 13. Quadtree Decomposition of R, G, B

Images

Figure 14. DCT of R, G, B Images

The image is compressed using discrete cosine

transform, it is divided into subimages of 8 x 8 pixels

to speed up calculations, and then each subimage is

transformed and processed separately. Figure 14

shows the discrete cosine transform (DCT) of red,

green and blue channels image.

Figure 15. DCT Quantization of R, G, B Images

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 550

Quantization steps are quantized separately for the

overall image depends on the edges of image. Figure

15 shows the discrete cosine transform (DCT)

quantization with adaptive quantization steps of red,

green and blue channels image.

C. Decoding Process in Edge Adaptive JPEG

The edge-adaptive JPEG decoding process contains

de-quantization with inverse discrete cosine

transform (IDCT) and median filtering method. IDCT

is the image reconstruction, with each subimage

being reconstructed and placed into the appropriate

image position. Median filtering method is to filter

out the noise and smooth the image. Figure 16 shows

the de-quantization with inverse discrete cosine

transform of red, green and blue channels image.

Figure 16. IDCT of R, G, B Images

D. Merging to the Output Image

Output image is merged from three 8-bit split red,

green, blue channels image into a 24-bit RGB color

image. It is also the output result of edge-adaptive

JPEG image compression. Figure 17 shows the edge-

adaptive JPEG Lotus image with 24-bit color image.

Figure 17. Edge-Adaptive JPEG Lotus Image

E. Comparison of Images in Original Image and

Edge-adaptive JPEG Image

Image compression is an application of data

compression that encodes the original image with few

bits. Edge-adaptive JPEG image compression can

give smaller image data size placed on hard disk

space than original image. In this section, it is

showed images in before compression and after

compression.

The edge-adaptive JPEG compression method gives

the output images having the smaller image data size

while maintaining their visual qualities at high level

as normal JPEG.

Table 1. Comparison of Image Compression in JPEG

and Edge-Adaptive JPEG

Image

Name

Original

Image
JPEG

Edge-

adaptive

JPEG

Lotus

(2048×1

898)

Pixels

384 kB

68 kB 56 kB

Lena

(512×51

2)

Pixels

772 kB

84 kB 60 kB

Lilies

(600×60

0)

Pixels

1.03 MB

132

kB
92 kB

Mountain

View

(568×56

8)

Pixels

948 kB

96 kB 60 kB

The objective of the image compression is to reduce

its data size without much distortion to its original

image quality and so it is attained by using edge-

adaptive JPEG technique. However, this experiment

is not an exception to the image compression theory

which states that the more the image is compressed,

the more its visual quality is lost. So there are some

distortions which are unavoidable factors.

© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880

IRE 1701559 ICONIC RESEARCH AND ENGINEERING JOURNALS 551

V. CONCLUSION

The best well known image compression methods are

predictive coding, orthogonal transform and subband

coding. Predictive coding such as DPCM

(Differential Pulse Code Modulation) is a lossless

coding method, which means that the decoded image

and the original image have the same value for every

corresponding element. Orthogonal transform such as

KLT (Karhunen-Loeve Transform) and DCT

(Discrete Cosine Transform) are the two most well-

known orthogonal transforms. The DCT based image

compression standard such as edge-adaptive JPEG is

a lossy coding method that will result in some loss of

details and unrecoverable distortion. Subband coding

such as DWT (Discrete Wavelet Transform) is also a

lossy coding method. The DCT based image

compression such as edge-adaptive JPEG performs

very well at moderate bit rates than other image

compression methods. However, at higher

compression ratio, the quality of the image slightly

degrades because of the artifacts resulting from the

block-based DCT scheme. Since edge detection is the

initial step in object recognition, it is necessary to

know the differences between edge detection

algorithms. Canny edge detection algorithm is

computationally more expensive compared to Sobel,

Prewitt, Robert and Laplacian operators. However,

the Canny edge detection algorithm performs better

than all these operators under almost all scenarios.

Edge-adaptive JPEG can give smaller image data size

than standard JPEG. Finally, it can be concluded that

edge-adaptive JPEG is the better method for image

compression for the priority of compression ratio

while maintaining the visual quality of the original

image.

VI. RECOMMENDATION

Further and deeper investigations should be carried

out to achieve a better visual quality images. It could

be accomplished by extending the current

successfully-implemented edge-adaptive JPEG image

compression method.

ACKNOWLEDGMENT

The author would like to thank all persons who

involved towards the successful completion for this

research work.

REFERENCES

[1] Richard H. Wiggins, MD.H. Christian

Davidson, MD.H. Ric Harnsberger, MD.

Jason R. Lauman, BS. Patricia A. Goede, BS,

2001, vol. 21, “Image File Formats: Past,

Present, and Future”.

[2] <http://www.wikipedia.org/wiki/Portable-

Network-Graphics>.

[3] Sonal, No date, “A Study of Various Image

Compression Techniques”, Dinesh Kumar

Department of Computer Science &

Engineering Guru Jhambheswar University of

Science and Technology, Hisar.

[4] Rafael C. Gonzalez, March 1993, vol.15,

“Digital Image Processing”.

[5] <http://www.wikipedia.org/wiki/Image-

compression>.

[6] <http://www.wikipedia.org/wiki/Peak-signal-

to-noise-ratio>.

[7] <http://www.wikipedia.org/wiki/Mean-

squared-error>.

[8] <http://www.wikipedia.org/wiki/JPEG>.

[9] Wei-Yi Wei, No date, “An Introduction to

Image Compression”, Graduate Institute of

Communication Engineering, National

Taiwan University, Taiwan.

[10] Rajwinder Kaur, Monika Verma, Kalpna and

Harish Kundra, No date, “Classification of

Various Edge Detectors”, Department of

Computer Science, RIEIT, Railmajra.

[11] Marcia G. Ramos and Sheila S. Hemami, No

date, “Edge-adaptive JPEG image

compression”, School of Electrical

Engineering, Cornell University, and Ithaca.

[12] Hong Shan Neoh and Asher Hazanchuk, No

date, “Adaptive Edge Detection for Real-Time

Video Processing using FPGAs”.

