Toughness in a Cubic Graph

SAN SAN TINT¹, KHAING KHAING SOE WAI²

¹, ² Department of Engineering Mathematics, Technological University (Myitkyina), Myitkyina, Myanmar

Abstract- In this paper we mention vertex-cut and edge-cut. We establish connectivity, edge-connectivity and minimum degree. And then, we discuss toughness \(t(G) \) and independence number \(\beta(G) \) of a graph. Finally the result reveals that the cubic \(G_m = G_1 \) with \(m = \frac{4}{3} \) toughness is obtained.

Indexed Terms- connectivity, edge-connectivity, t-tough, toughness, k-cube, cubic graph, coloring number, vertex-cut, independence number, minimum degree

I. INTRODUCTION

A graph with \(n \) vertices and \(m \) edges consists of a vertex set and an edge set where each edge consists of two vertices called its end-vertices. Two vertices \(u \) and \(v \) of \(G \) are said to be connected if there is a path in \(G \). A graph is said to be connected if every two of its vertices are connected; otherwise it is disconnected. A graph is simple if it has no loops and no parallel edges. The degree of a vertex \(v \) in \(G \) is the number of edges of \(G \) incident with \(v \), each loop counting as two edges. We denote by \(d(G) \) and \(D(G) \) the minimum and maximum degrees, respectively of vertices of \(G \).

Two simple graphs \(G \) and \(H \) are isomorphic (written if and only if there is a bijection such that if and only if a complete graph \(G \) is a simple graph in which every pair of vertices is adjacent. If a complete graph \(G \) has \(n \) vertices, then it will be denoted by \(K_n \).

The vertex-connectivity or simply the connectivity \(k(G) \) of a graph \(G \) is the minimum cardinality of a vertex-cut of \(G \) if \(G \) is not complete, and \(k(G) = n - 1 \) if \(G = K_n \) for some positive integer \(n \). Hence \(k(G) \) is the minimum number of vertices whose removal results in a disconnected or trivial graph. If \(G \) is either trivial or disconnected, \(k(G) = 0 \).

G is said to be k-connected if \(k(G) \geq k \). All non-trivial connected graphs are 1-connected.

The edge-connectivity \(k_e(G) \) of a graph \(G \) is the minimum cardinality of an edge-cut of \(G \) if \(G \) is non-trivial, and \(k_e(K_1) = 0 \). So \(k_e(G) \) is the minimum number of edges whose removal from \(G \) results in a disconnected or trivial graph. Thus \(k_e(G) = 0 \) if and only if \(G \) is disconnected or trivial; while \(k_e(G) = 1 \) if and only if \(G \) is connected. A graph \(G \) is \(k \)-edge-connected, \(k \geq 1 \), if \(k_e(G) \geq k \).

A bipartite graph is one whose vertex set can be partitioned into two subsets \(X \) and \(Y \), so that each edge has one end in \(X \) and one end in \(Y \); such a partition \((X, Y)\) is called a bipartition of the graph. A complete bipartite graph is a simple bipartite graph with bipartition \((X, Y)\) in which each vertex of \(X \) is joined to each vertex of \(Y \) : if \(|X| = m \) and \(|Y| = n \), such a graph is denoted by \(K_{m,n} \).

II. CONNECTIVITY WITH TOUGHNESS

A parameter that plays an important role in the study of toughness is the independence number. Two vertices that are not adjacent in a graph \(G \) are said to be independent. A set \(S \) of vertices is independent if every two of its vertices are independent. The vertex independence number or simply the independence number \(\beta(G) \) of a graph \(G \) is the maximum cardinality among the independent sets of vertices of \(G \).

Let \(F \) be a graph. A graph \(G \) is \(F \)-free if \(G \) contains no induced subgraph isomorphic of \(F \). A \(K_{1,3} \)-free graph is also referred to as a claw-free graph. If \(G \) is a noncomplete graph and \(t \) is a nonnegative real number such that \(t \leq \frac{|S|}{\omega(G - S)} \) for every vertex-cut \(S \) of \(G \), then \(G \) is defined to be \(t \)-tough. If \(G \) is a \(t \)-tough graph and \(s \) is a nonnegative real number such that \(s < t \), then \(G \) is also \(s \)-tough. The maximum real number \(t \) for which a graph \(G \) is a \(t \)-tough is called the toughness of \(G \) and is denoted by \(t(G) \). Since
complete graphs do not contain vertex-cuts, this definition does not apply to such graphs. Consequently, we define \(t(K_n) = +\infty \) for every positive integer \(n \). Certainly, the toughness of a noncomplete graph is a rational number. Also \(t(G) = 0 \) if and only if \(G \) is a disconnected. It follows that if \(G \) is a noncomplete graph, then
\[
t(G) = \min_{S \subseteq V(G)} \frac{|S|}{\omega(G - S)}.
\]

Where the minimum is taken over all vertex-cuts \(S \) of \(G \). Determining the toughness of a graph usually involves some experimentation. The goal is to find a vertex-cut \(S \) that minimizes \(\frac{|S|}{\omega(G - S)} \).

Figure 1 A graph \(G \) of toughness \(\frac{6}{5} \).

For the graph \(G \) of figure 1, \(S_1 = \{g, h, c, d, j, k, o, n\} \), \(S_2 = \{a, c, e, g, q, m\} \), \(S_3 = \{a, d, f, h, l, m, q, p\} \).
\[
\frac{|S_1|}{\omega(G - S_1)} = \frac{8}{6}, \quad \frac{|S_2|}{\omega(G - S_2)} = \frac{6}{5}, \quad \frac{|S_3|}{\omega(G - S_3)} = \frac{8}{5}.
\]

2.1 Theorem
Let \(G \) be a connected graph of order \(n \geq 3 \) that is not complete. For each edge-cut \(X \) of \(G \), there is a vertex-cut \(U \) of \(G \) such that \(|U| \leq |X| \).

Proof: Assume, without loss of generality, that \(X \) is a minimum edge-cut of \(G \). Then \(G - X \) is a disconnected graph containing exactly two components \(G_1 \) and \(G_2 \), where \(G_i \) has order \(n_i \) (\(i = 1, 2 \)). Thus \(n_1 + n_2 = n \). We consider two cases.

Case 1.
Every vertex of \(G_i \) is adjacent to every vertex of \(G_j \). Then \(|X| = n_1n_2\). Since \((n_1 - 1)(n_2 - 1) \geq 0\), it follows that \(n_1n_2 \geq n_1 + n_2 - 1 = n - 1 \) and so \(|X| \geq n - 1\). Since \(G \) is not complete, \(G \) contains two nonadjacent vertices \(u \) and \(v \). Then \(U = V(G) - \{u, v\} \) is a vertex-cut of cardinality \(n - 2 \) and \(|U| < |X|\).

Case 2.
There are vertices \(u \) in \(G_1 \) and \(v \) in \(G_2 \) that are not adjacent in \(G \). For each edge \(e \) in \(X \), we select a vertex for \(U \) in the following way. If \(u \) is incident with \(e \), then choose the other vertex (in \(G_2 \)) incident with \(e \) for \(U \); otherwise, select for \(U \) the vertex that is incident with \(e \) and belongs to \(G_1 \). Now \(|U| \leq |X|\).

Furthermore, \(u, v \in V(G - U) \), but \(G - U \) contains \((u, v)\)-path, so \(U \) is a vertex-cut.

2.2 Theorem
For every graph \(G \), \(\kappa(G) \leq \kappa'(G) \leq \delta(G) \).

Proof: If \(G \) is trivial or disconnected, then \(\kappa(G) = \kappa'(G) = 0 \); so we can assume that \(G \) is a nontrivial connected graph. Let \(v \) be a vertex of \(G \) such that \(\deg v = \delta(G) \), the removal of the \(\delta(G) \) edges of \(G \) incident with \(v \) results in a graph \(G' \) in which \(v \) is isolated, so \(G' \) is either disconnected or trivial. Therefore, \(\kappa'(G) \leq \delta(G) \).

We now verify the other inequality. If \(G = K_n \) for some positive integer \(n \), then \(\kappa(K_n) = \kappa'(K_n) = n - 1 \). Suppose next that \(G \) is not complete, and let \(X \) be an edge-cut such that \(|X| = \kappa'(G)\).

By Theorem 2.1 there exists a vertex-cut \(U \) such that \(|U| \leq |X|\). Thus \(\kappa(G) \leq |U| \leq |X| = \kappa'(G) \).

2.3 Corollary
Let \(G \) be a graph with vertices \(x_1, x_2, \ldots, x_n \), \(d(x_1) \leq d(x_2) \leq \ldots \leq d(x_n) \). suppose
for some \(k, \ 0 \leq k \leq n, \) that \(d(x_j) \geq j + k - 1, \) for \(j = 1, 2, ..., n - 1 - d(x_{n-k+1}), \) then \(G \) is \(k \)-connected.

Proof

Suppose that \(G \) is not \(k \)-connected. Then there exist \(V_1, V_2 \subseteq V(G), \) such that \(V_1 \cap V_2 = \emptyset, \) \(|V_1| = n_1, |V_2| = n_2, n_1 + n_2 = n - k + 1 \) and \(d(x) \leq n_i + k - 2 \) for \(x \in V_i. \) Now, \(X = \{ x \mid j \geq n - k + 1 \} \) is a set of \(k \) elements all with a degree larger than or equal to \(d(x_{n-k+1}). \) Hence, there is at least one \(x \in X \cap (V_1 \cup V_2). \) Without loss of generality, say in \(x \in V_1. \) Thus \(n_2 \geq d(x_{n-k+1}) + 1 - (k - 1) = d(x_{n-k+1}) - k + 2 \) and \(n_1 = n - k + 1 - n_2 \leq n - 1 - d(x_{n-k+1}). \) Take \(x_j \in V_1 \) such that \(j \) is maximal \((j \geq n_j), \) then \(n_i + k - 1 \leq d(x_j) \leq d(x_j) \leq n_1 + k - 2. \)

Thus, if \(G \) is a graph with vertices \(x_1, x_2, ..., x_n, \) with \(d(x_j) \leq d(x_j) \leq ... \leq d(x_n) = \Delta(G) \) and \(d(x_j) \geq j \) for \(j = 1, 2, ..., n - \Delta(G) - 1, \) then \(G \) is connected. The reverse is, obviously, not true.

2.4 Corollary

Let \(G \neq K_n \) be a graph of order \(n, \) then \(\kappa(G) \geq 2\delta(G) + 2 - n. \)

Proof:

Let \(k = 2\delta(G) + 2 - n. \) It suffices to show \(d(x_i) \geq j + k - 1, \) for \(j = 1, ..., n - 1 - \delta(G) \) (because \(d(x_{n-k+1}) \geq \delta(G) \)). This is certainly true if \(d(x_j) \geq n - 1 - \delta(G) + k - 1 \) for all \(j = 1, ..., n - 1 - \delta(G) \) and \(n - 1 - \delta(G) + k - 1 = \delta(G). \)

2.5 Theorem

For every noncomplete graph \(G, \)

\[
\frac{\kappa(G)}{\beta(G)} \leq t(G) \leq \frac{\kappa(G)}{2}.
\]

Proof:

The independence number is related to toughness in the sense that among all the vertex-cuts \(S \) of the noncomplete graph \(G, \) the maximum value of \(\omega(G - S) \) is \(\beta(G), \) so for every vertex-cut \(S \) of \(G, \) we have that \(\kappa(G) \leq |S| \) and \(\omega(G - S) \leq \beta(G). \)

By the definition of \(t(G), \)

\[
t(G) = \min \left\{ \frac{|S|}{\omega(G - S)} : \kappa(G) \leq |S| \right\} \geq \frac{\kappa(G)}{\beta(G)}.
\]

Let \(S' \) be a vertex-cut with \(|S'| = \kappa(G). \)

Thus \(\omega(G - S') \geq 2, \) so

\[
t(G) = \min \left\{ \frac{|S|}{\omega(G - S)} : \kappa(G) \leq |S| \right\} \leq \frac{\kappa(G)}{2}.
\]

2.6 Theorem [3]

A graph \(G \) of order \(n \geq 2 \) is \(k \)-connected \((1 \leq k \leq n - 1)\) if and only if for each pair \(u, v \) of distinct vertices there are at least \(k \) internally-disjoint \((u, v)\) paths in \(G. \)

2.7 Theorem

If \(G \) is a noncomplete claw-free graph, then \(t(G) = \frac{1}{2} \kappa(G). \)

Proof:

If \(G \) is disconnected, then \(t(G) = \kappa(G) = 0 \) and the result follows. So we assume that \(\kappa(G) = r \geq 1. \) Let \(S \) be a vertex-cut such that \(t(G) = \frac{|S|}{\omega(G - S)} \), suppose that \(\omega(G - S) = k \) and that \(G_1, G_2, ..., G_k \) are the components of \(G - S. \)

Let \(v_i \in V(G_i) \) and \(u_j \in V(G_j), \) where \(i \neq j. \) Since \(G \) is \(r \)-connected, it follows by Theorem 2.6 that \(G \) contains at least \(r \) internally disjoint \((u_i, u_j)\)-paths. Each of these paths contains a vertex of \(S. \) Consequently, there are at least \(r \) edges joining the vertices of \(S \) and the vertices of \(G_i \) for each \(i \) \((1 \leq i \leq k)\) such that no two of these edges are incident with the same vertex of \(S. \)

Hence there is a set \(X \) containing at least \(kr \) edges between \(S \) and \(G - S \) such that any two edges incident with a vertex of \(S \) are incident with vertices in distinct components of \(G - S. \) However, since \(G \) is claw-free, no vertex of \(S \) is joined to vertices in three components of \(G - S. \) Therefore,

\[
kr = |X| \leq 2|S| = 2k t(G).
\]
So \(kr \leq 2k t(G) \).

Thus \(t(G) \geq \frac{r}{2} = \frac{1}{2} \kappa(G) \).

By Theorem 2.5, \(t(G) = \frac{1}{2} \kappa(G) \).

III. TOUGHNESS AND INDEPENDENCE NUMBER

In this paper we derive upper bounds on the toughness of cubic graphs in terms of the independence number and coloring parameters.

A coloring of a graph G we mean an assignment of colors to the vertices of G such that any two vertices joined by an edge receive different colors. A color class A is minimal if every vertex of A has a neighbor of every other color.

We show an example of a graph coloring, thus need three colors to color.

A graph is a k-colorable if there is a vertex coloring with k colors. Let be a graph. The chromatic number of G, written is the minimum integer k such that G is k-colorable.

The k-cube is the graph whose vertices are the ordered k-tuples of 0's and 1's, two vertices begin joined if and only if they differ in exactly one coordinate.

![Figure 2. A graph coloring.](image)

A graph coloring is 3-cube. Let \(V \) be the vertex set of k-cube. Let \(v \in V \). Since \(v \) is k-tuple, there are \(k \) edges that differ in \(v \) in exactly one coordinate. There are \(k \)-edges between \(v \) and these vertices.

Let \(E_v \) be the set of edges incident with \(v \).

\[|E_v| = k \]

For all \(v \in V \), we have the sum

\[\sum_{v \in V} |E_v| = k(2^k) \]

But in this sum edge is counted twice.

Therefore 2 (number of edges in k-cube) = \(k(2^k) \).

We have seen that the number of edges in k-cube is \(k2^k = k2^{k-1} \).

Let \(X = \{ v \in V \mid \text{the number of is in } v \text{ is odd} \} \).

Let \(Y = \{ v \in V \mid \text{the number of is in } v \text{ is even} \} \).

Take any edge \(uv \) in k-tuple.

Assume that \(u \in X \).
Since \(u \) and \(v \) differ in exactly one coordinate, \(v \in Y \). Thus for every edge \(uv \) in the \(k \)-cube, one end in \(X \) and the other end in \(Y \).
Hence \(k \)-cube is bipartite.

3.2 Lemma [5]
Let \(G \) be a cubic graph with a 3-coloring \((A, B, C)\) such that \(A \) is minimal. If |
\[
\begin{aligned}
|A| &= a, \\
|B| &= b, \\
|C| &= c
\end{aligned}
\]
then
\[
t(G) \leq \frac{3b + a - c}{2b}.
\]

3.3 Theorem
For a noncomplete cubic graph \(G \) on \(n \) vertices and independence number \(\beta \):
\[
t(G) \leq \min \left\{ \frac{2n - 3\beta}{n - \beta}, \frac{2\beta}{4\beta - n} \right\}.
\]
Proof:
By the definition of a graph coloring, a graph of maximum degree \(r \) has an \(r \)-coloring where one of the color classes is a maximum independent set. Let \((A, B, C)\) be a 3-coloring of \(G \) where \(C \) is a maximum independent set, and subject to this, \(A \) is as small as possible. So \(|C| = \beta \) and \(b \geq \frac{(n - \beta)}{2} \).
Also \(3b \geq 3c - a = 3\beta - (n - b - \beta) \) by inequality, whence \(b \geq \frac{2\beta - n}{2} \).
So by the above Lemma 3.2,
\[
t(G) \leq \frac{3b + a - c}{2b} = 1 + \frac{n - 2\beta}{2b} \leq \min \left\{ \frac{2n - 3\beta}{n - \beta}, \frac{2\beta}{4\beta - n} \right\},
\]
as required.

This is best possible. For \(\beta = \frac{n}{2} \), the theorem gives an upper bound of 1, and any 3-connected cubic bipartite graph has toughness 1. At the other extreme the theorem shows that \(t(G) = \frac{3}{2} \) in noncomplete cubic graphs requires that \(\beta = \frac{n}{3} \) and thus \(n \) a multiple of 3.

Consider also the following cubic graph \(G_m \) for \(m \) a positive integer. Start with a set \(U = \{u_1, \ldots, u_{6m}\} \) of 6m vertices which form a cycle. Then add a set \(V = \{v_1, \ldots, v_m\} \) 3m vertices, and connect \(v_i \) to \(u_{2i-1} \) and \(u_{2i} \). Finally add a set \(W = \{w_1, \ldots, w_m\} \) of \(m \) vertices, and join \(w_i \) to \(v_{3i-2} \), \(v_{3i} \) and \(v_{3i+2} \). The graph is illustrated in Figure 1. The graph \(G_m \) has \(n = 10m \) vertices, toughness \(\frac{4}{3} \) and independence number \(\beta = \frac{2n}{5} \).

The graph is illustrate for the cubic graph \(G_m = G_1 \).

3.4 Proposition [5]
For a noncomplete graph \(G \), \(\kappa(G) \leq t(G) \leq \frac{\kappa(G)}{2} \).

3.5 Lemma
For \(m \geq 1 \), \(G_m \) has toughness \(\frac{4}{3} \).
Proof:
Let \(S \) be a vertex-cut and suppose \(G_m - S \) has \(k \) components. Note that by Proposition 3.4, \(k \leq |S| \) (since \(G_m \) is 3-connected). Thus as \(\frac{|S| + 1}{(k + 1)} \leq \frac{|S|}{k} \) we may assume that \(G_m - S \) has no vertex-cut.
We show first that we may assume that \(S \cap V = \emptyset \). Suppose for some \(W_i \) some of its neighbors are in \(S \).
Then in $G_m - S$ reinsert the neighbors of w_i and remove w_i instead. This action cannot join two components (since v_j's two neighbors in U are already adjacent). The only way this action can reduce the number of components is if w_i a singleton component in was $G_m - S$. But that means all of w_i’s neighbors are in S and since
\[
\frac{|S|-2}{k-1} < \frac{|S|}{k}
\]
we are better off, a contradiction. So this action does not decrease the number of components and does not increase the number of vertices removed. Hence we may assume that $S \cap V = \emptyset$.

Let w denote $|S \cap W|$. Since $G_m - S$ has no cut-vertex, for any w_i not in S the vertices $u_{6i-4}, u_{6i-3}, ..., u_{6i+3}$ must all lie in the component with w_i. Denote the subpath $u_{6i-4}, u_{6i-3}, ..., u_{6i+3}$ by P_i. Now it is not hard to see that the best strategy, once $S \setminus W$ is determined, is to remove every alternate vertex of U that lies outside the P_i corresponding to the $w_i \not\in S$. The number u of vertices of U removed is equal to the number of components that remain. Also $u \leq 3w$. Hence
\[
t \geq \frac{(w + 3w)}{3w} = \frac{4}{3}.
\]

IV. CONCLUSION

We conclude that connected graph have connectivity and edge-connectivity. The bounds of connectivity of a graph G are expressed as in terms of minimum degree of G and numbers of vertices in G. The toughness $t(G)$ is discussed which is related to the connectivity and independence number in G. And then the result of the cubic graph G_m has $4/3$ toughness.

REFERENCES

